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Abstract—Dense descriptor-based feature extraction techniques
represent a popular choice for implementing biometric ear
recognition system and are in general considered to be the
current state-of-the-art in this area. In this paper, we study
the impact of various factors (i.e., head rotation, presence
of occlusions, gender and ethnicity) on the performance of
8 state-of-the-art descriptor-based ear recognition techniques.
Our goal is to pinpoint weak points of the existing technology
and identify open problems worth exploring in the future. We
conduct our covariate analysis through identification experi-
ments on the challenging AWE (Annotated Web Ears) dataset
and report our findings. The results of our study show that
high degrees of head movement and presence of accessories
significantly impact the identification performance, whereas
mild degrees of the listed factors and other covariates such
as gender and ethnicity impact the identification performance
only to a limited extent.

1. Introduction

Ear recognition represents a sub-field of biometrics with
important applications in security, surveillance and foren-
sics. Many techniques have been proposed in the literature
for ear recognition ranging from geometric and holistic
techniques [40], [11], [41], [2], [4] to more recent descriptor-
based methods [20], [29], [6], [8], [23]. Especially the latter
have proven highly successful and represent the existing
state-of-the-art in this area as identified by recent surveys
and comparative evaluations [28], [1], [34], [16].

Descriptor-based techniques typically extract identity
cues from local image areas and use the extracted infor-
mation for identity inference. As emphasized by Emersic
et al. [16], two groups of techniques can in general be
considered descriptor-based: i) techniques that first detect
interest points in the image and then compute descriptors for
the detected interest points, and ii) techniques that compute
descriptors densely over the entire images based on a sliding
window approach (with or without overlap). Examples of
techniques from the first group include [3], [9] or more
recently [33]. A common characteristic of these techniques
is the description of the interest points independently one
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Figure 1: Sample images from the experimental dataset
with different labels. The dataset is annotated according to
ethnicity, head rotation (yaw, tilt and roll angles), gender and
presence of occlusions and accessories. These labels serve
as the basis for studying the sensitivity of descriptor-based
ear recognition techniques to various covariates in this work.

from the other, which makes it possible to design matching
techniques with robustness to partial occlusions of the ear
area. Examples of techniques from the second group in-
clude [10], [5], [19], [38]. These techniques also capture
the global properties of the ear in addition to the local
characteristics which commonly results in a higher recog-
nition performance, but the dense descriptor-computation
procedure comes at the expense of the robustness to partial
occlusions. Nonetheless, recent trends in ear recognition fa-
vor dense descriptor-based techniques primarily due to their
computational simplicity and high recognition performance.

Descriptor-based ear recognition technology has ad-
vanced over the last decades thanks to the introduction of
powerful new image descriptors that helped to discriminate
better between identities. Many ear recognition techniques
were presented in the literature exploiting these new descrip-
tors, however, studies focusing on the strengths and weak-
nesses of these techniques are still limited in the literature.
In this paper, we try to fill this gap and present a covariate
analysis of (dense) descriptor-based ear recognition tech-
niques. Our goal is to identify which factors (or covariates)
influence descriptor-based techniques the most and, hence,
contribute the greatest to recognition errors. A detailed un-
derstanding of the strengths and weaknesses of state-of-the-
art recognition technology is extremely important, because
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it allows us to devise more effective recognition techniques
and helps identify future research trends in this area.

We conduct our covariate analysis on the AWE (Anno-
tated Web Ears) dataset [16] (http://awe.fri.uni-lj.si), which
represents one of the most challenging datasets available for
ear recognition research. The dataset ships with ground truth
annotations with respect to various characteristics of the ear
images, such as ethnicity, head rotation (in terms of yaw,
roll and tilt angles), gender and presence of occlusions and
accessories (as shown in Figure 1) and therefore represents
a perfect choice of our work. We include 8 state-of-the-art
descriptor-based ear recognition techniques in our analysis
and show the effects of different factors on the performance
of the identification.

The main contributions of this paper are:

• We conduct a comprehensive covariate analysis of
several state-of-the-art ear recognition techniques on
a challenging dataset of ear images gathered from
web with the goal of studying unconstrained ear
recognition,

• We identify the most important covariates with the
biggest impact on ear recognition performance and
provide directions for future research in this area,

• We evaluate 8 descriptor-based techniques for ear
recognition and establish a relative ranking of the
assessed techniques as a byproduct of our covariate
analysis.

The rest of the paper is structured as follows. In Sec-
tion 2 we review the existing work related to our paper and
further motivate our analysis. We describe the ear recog-
nition techniques considered in this work in Section 3 and
introduce the experimental dataset and protocol in Section 4.
We present the results of the covariate analysis and discuss
its implications in Section 5 and finally conclude the paper
with some final comments and directions for future work in
Section 6.

2. Motivation and Related Work

Understanding the characteristics of biometric recogni-
tion technology is of paramount importance to the advance-
ment of the field. What properties of the input data make
the recognition process difficult? What properties make it is
easy? Are certain techniques better suited for specific data
characteristics than others? Answers to questions like these
make it possible to target weak points of existing techniques
and provide directions for research needed in this area.

In the field of biometric ear recognition some of these
question outlined above are (partially) discussed in recent
survey papers, such as [28], [1], [34], [16], where struc-
tured comparisons of existing ear recognition techniques
are presented. The comparisons in these papers are based
on previously reported results and summarize recognition
experiments on different datasets with different experimental
protocols. While general trends about the advancement of
ear recognition technology over the years are presented in
these surveys and some of the strengths and weaknesses are
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Figure 2: The identification pipeline used in our experi-
ments. Descriptors are computed from the given input ear
image in a dense manner and stacked into a d-dimensional
feature vector x. The feature vector is then matched against
all gallery feature vectors and the ID of the most similar
vector is returned as the output.

identified, no detailed information about the performance of
the existing techniques with respect to different covariates
is given.

Similarly to our work, the survey by Emersic et al. [16]
also presents a comparison of some descriptor-based feature
extraction techniques from the literature using a challenging
dataset and predefined experimental protocol, but unlike this
paper does not focus on the impact of image characteristics
on the recognition performance of the tested techniques.

Pflug et al. [28] compare the performance of various
texture and surface descriptors for ear biometrics, but differ-
ent from our work uses the descriptors in combination with
subspace projection techniques. The reported experiments
are conducted on a dataset of ear images with laboratory-
like quality, but no ablation study is presented.

The study from [31] is likely the closest to our work, as
it also compares descriptor-based ear recognition techniques
with respect to different covariates. However, the focus here
is on image characteristics, such as noise and blurring, and
not on ear-related covariates such as in our work.

3. Descriptor-based Techniques

In this section we present the descriptor-based ear recog-
nition techniques considered in our analysis. We commence
the section with the description of the overall recognition
pipeline used for the experiments (which is the same for all
techniques) and then proceed with a brief description of the
descriptors relevant for our work.

3.1. Descriptor-based Ear Recognition

For our experiments, we use a simple identification
pipeline illustrated in Figure 2. The pipeline takes an ear
image as input, converts it to gray-scale and computes
descriptors from the gray-scale image in a dense matter. The
computed descriptors are then stacked into a d-dimensional
feature vector, which is matched against the gallery vector
feature vectors. The identity of the most similar feature
vector is ultimately assigned to the input image. Based on
this identity it is possible to generate performance metrics
for the identification process.

http://awe.fri.uni-lj.si


At the core of our identification pipeline is the
descriptor-based feature extraction technique, which com-
putes a feature vector from the input image. This part of
the pipeline is implemented in this paper with 8 different
descriptors that are briefly discussed in the remainder of
this section.

3.2. Local Binary Patterns

Local Binary Patterns (LBP) represent powerful texture
descriptors that achieved competitive recognition perfor-
mance in various areas of computer vision [32]. The use of
the LBP descriptor for ear recognition is mainly motivated
by its computational simplicity and the fact that the texture
of the ear is highly discriminative. Many successful ear
recognition techniques have been presented in the literature
exploiting LBPs either as stand-alone texture representations
or in combination with other techniques, e.g., [30], [17], [7].

LBPs encode the local texture of an image by gener-
ating binary strings from circular neighborhoods of points
thresholded at the gray-level value of their center pixels. The
generated binary strings are interpreted as decimal numbers
and assigned to the center pixels of the neighborhoods. The
number of sampling points P used to generate the binary
strings depends on the radii R of the circular neighborhoods
and results in the following encoding [32]:

LBPP,R =

P−1∑
p=0

2ps(gp − gc), (1)

where LBPP,R stands for the computed binary pattern of
some center pixel, gc and gp denote the gray-level values of
the center pixel and the p-th pixel from the neighborhood,
respectively, and the thresholding function s(·) stands for:

s(x) =

{
1 if x ≥ 0;
0 otherwise.

(2)

In practice, not all binary patterns returned by Eq. (1)
are useful for texture representation. Typically, only binary
strings with at most two bitwise transitions from 0 to 1 (or
vice versa) are considered in the final descriptor. For a 8-
pixel neighborhood and a consequent 8-bit binary string, for
example, exactly 58 such patterns (called uniform patterns)
can be computed. Most methods exploiting LBPs with a 8-
pixel neighborhood for texture description, therefore, com-
pute 59-bin histograms from local image blocks and then
concatenate the computed histograms over all blocks into a
global texture descriptor (our d-dimensional feature vector
x) that can be used for recognition. A similar procedure is
also used in our experiments in Section 5.

3.3. (Rotation Invariant) Local Phase Quantization

Local Phase Quantization (LPQ) features [26] are very
similar in essence to LBPs, as the local image texture is
again encoded using binary strings, histograms are again
computed from the binary strings of local image blocks and

concatenated into the final representation of the given image.
LPQ features are computed from the Fourier phase spectrum
of an image and are known to be invariant to blurring under
certain conditions. This feature makes LPQs an attractive
alternative for ear recognition (see, e.g., [30]), where blurred
and low-resolution images represent a problem for the ex-
isting technology.

With LPQ, the local neighborhoods of every pixel in the
image are first transformed into the frequency domain using
a short-term Fourier transform. Local Fourier coefficients
are computed at four selected frequency points and the local
phase information contained in these (complex) coefficients
is then encoded. Here, a similar quantization scheme is used
as in iris recognition systems, where every complex Fourier
coefficient contributes two bits to the final binary string.
The result of this coding procedure is a 8-bit binary string
for every pixel in the image from which the local 256-
bin histograms are computed and later concatenated into a
global descriptor of the image.

An extension of this technique to rotation invariant local
phase quantization features (RILPQ) was presented in [27].
The idea here is similar to the original LPQ technique
with the difference that a characteristic orientation is first
estimated for the given local neighborhood and then this
orientation is used to compute a directed version of the
binary descriptor. The binary descriptor is computed with
the same procedure as the original LPQ, but every local
neighborhood is first rotated in accordance with its char-
acteristic orientation. RILPQ descriptors are not only blur
invariant, but also exhibit a certain degree of robustness
towards image rotation.

3.4. Binarized Statistical Images Features

Binarized Statistical Images Features (BSIF) [18] repre-
sent a more recent tool for texture description. Here, binary
strings (encoding texture information) are again constructed
for each pixel in the image, but this time by projecting image
patches onto a subspace, whose basis vectors are learnt from
natural images. The subspace coefficients are then binarized
using simple thresholding. This procedure is equivalent to
filtering the input image with a number of pre-learned filters
and binarizing the filter responses at each pixel location.
Each filter contributes 1 bit to the binary string of a pixel
making the length of the binary string dependent on the
number of filter used. Similar to LBP and LPQ, the binary
string of each pixel is interpreted in decimal form and a
global histogram-based representation (our d-dimensional
feature vector x) is constructed for the given images by
concatenating histograms constructed from smaller image
blocks.

The main characteristic that makes BSIF features so
appealing is the the fact that the binary strings are not
constructed based on heuristic operations, but on the basis
of statistics of natural images. The idea behind BSIF-based
texture description is in line with recent feature learning
approaches, which produced competitive results for many
computer vision problems in recent years. The use of BSIF



features for ear recognition was advocated by Pflug et al.
in [30], where excellent performance was reported.

3.5. Histograms of Oriented Gradients

Descriptors exploiting Histograms of Oriented Gradients
(HOG) were originally introduced for the problem of human
detection by Dalal and Triggs [12], but have since been
successfully applied to various fields of computer vision,
including ear recognition [30], [13]. HOG descriptors have
excellent texture description properties and are considered
robust towards moderate illumination changes. This fact
makes them highly suitable for problems, such as ear recog-
nition, where illumination-induced variability is one of the
major problems.

HOGs are computed based on a simple procedure. The
computation starts by calculating the gradient of the image
using 1-dimensional convolutional masks, i.e., [−1, 0, 1] and
[−1, 0, 1]T . In the next step, the image is divided into
a number of cells and compact histograms of quantized
gradient orientations are computed for each cell. Here, a
voting procedure is used during histogram construction, so
that pixels with higher gradient magnitudes contribute more
to the histogram bins than pixels with lower magnitudes.
Neighboring cells are then grouped into larger blocks and
normalized to account for potential changes in contrast
and illumination. This normalization procedure is applied
in a sliding-window manner over the entire image with
some overlap between neighboring blocks. Ultimately, all
normalized histograms are concatenated into the final HOG
descriptor (our feature vector x) that can be used for match-
ing and recognition.

3.6. Dense Scale Invariant Feature Transform

The Scale Invariant Feature Transform (SIFT), intro-
duced by Lowe in [22], represents one of the most suc-
cessful techniques for image description in computer vision.
The original approach to SIFT calculation includes both a
keypoint detector, capable of finding points of interest in an
image, as well as a local descriptor that can effectively rep-
resent the local neighborhood around the detected keypoints.
As indicated in the introductory section, early techniques to
ear recognition relied on the SIFT keypoint detector as well
as the SIFT descriptor, e.g., [15], [3] and [9], and, therefore,
demonstrated a high degree of robustness towards partial
occlusions.

More recent techniques, on the other hand, compute
dense SIFT (DSIFT) representations from the images and
do not rely on the keypoint detector. Here, the keypoints are
simply arranged uniformly into a grid that is placed over the
image. Techniques based on DSIFT (e.g., [24], [19]) have
reported excellent recognition performance as well as ro-
bustness to partial occlusions similar to techniques based on
the original SIFT formulation. We evaluate a DSIFT-based
technique in the experimental section and, thus, discuss here
only the SIFT keypoint descriptor. The reader is referred

to [22] for a detailed description of the keypoint detection
procedure.

The SIFT descriptor shares similarities with the HOG
descriptor. For every point of interest, SIFT considers a
local neighborhood of 16 × 16 pixels. This neighborhood
is partitioned into sub-regions of 4× 4 pixels and for each
sub-region an 8-bin histogram is computed based on the
orientations and magnitudes of the image gradient in that
sub-region. The gradients are also weighted by a Gaussian
function to give more importance to image gradients closer
to the point of interest and normalized by the dominant
gradient orientation to achieve rotation invariance. The final
dimensionality of the SIFT descriptor is 128 for a sin-
gle keypoint, so care needs to be taken when computing
DSIFT representations from the image. The dimensionality
of final feature vector can easily become computationally
prohibitive if too many grid points are chosen for DSIFT
calculation.

3.7. Gabor Wavelets

2D Gabor wavelets were originally introduced by Daug-
man [14] for the problem of iris coding, but due to their
ability to analyze images at multiple scales and orientations,
they have been successfully employed in other problem
areas as well. In the spatial domain, Gabor wavelets are
defined with the following expression[35], [36]:

ψu,v(x, y) =
f2
u

πγη e
−( f

2
u
γ2
x′2+

f2u
η2
y′2)

ej2πfux
′
, (3)

where

x′ = x cos θv + y sin θv,

y′ = −x sin θv + y cos θv
(4)

and the parameters fu and θv represent the center frequency
and orientation of the complex sinusoidal from Eq. (3),
respectively. γ and η define the ratio between the center
frequency and the size of the Gaussian and ensure that all
generated wavelets share some specific properties [37]. For
feature extraction, a family of wavelets is typically created
and used to extract features from the processed image. This
family commonly consist of wavelets of 5 scales and 8
orientations, i.e., f0, f1, ..., f7 and θ0, θ1, ..., θ4.

To extract Gabor features from an image, the image is
convolved with the entire family of Gabor wavelets (filters),
the magnitude responses of the convolution outputs are
retained (the phase responses are discarded), down-sampled
and concatenated into a global feature vector encoding
multi-resolution, orientation-dependent texture information
of the input image.

Techniques based on the outlined procedure and its mod-
ifications (e.g., using log-Gabor wavelets) are among the
most popular techniques for ear recognition [21], [20], [25],
[39], [23]. Their advantages lie in their excellent discrimina-
tive properties, however, Gabor features are computational
relatively complex to compute, as the input image needs to
be filtered with an entire family of filters.
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Figure 3: The graphs show the distribution of covariates (labels) of the images of the AWE dataset. The dataset contains
1000 images of 100 subjects. Gender and Ethnicity are lebeled on a per subject basis, whereas occlusions, head roll, head
pitch, and head yaw vary for each image in the dataset. Accessories are not shown explicitly here, but from the 1000 AWE
images, 91% have no accessories, 8% have some accessories and 1% (or 9 images) has a significant amount of accessories.

3.8. Patterns of Oriented Edge Magnitudes

Patterns of Oriented Edge Magnitudes (POEM) [38]
represent another popular approach to texture description
that combines ideas from LBP and HOG descriptors as well
as Gabor wavelets.

The POEM construction procedure starts by computing
the gradient of the input image and building magnitude-
weighted histograms of gradient orientations for every pixel
in the image. This histogram is computed from local pixel
neighborhoods referred to by the authors as cells. In this
regard, POEM shares similarities with the HOG descriptor,
which also relies on gradient directions to encode an image,
but different from HOG, POEM computes the histograms
densely in a sliding window-manner over the entire image.
After this step, every pixel in the image is represented
by a local histogram of quantized gradient orientations, or
in other words, the image is decomposed into m oriented
gradient images, where m is the number of discrete ori-
entations of the local histograms. Each of these images is
then encoded using the LBP operator and a global image de-
scriptor is constructed by concatenating all block histograms
computed from the oriented gradient images.

The POEM descriptor has demonstrated impressive per-
formance for face recognition [38] and exhibits desirable
properties, such as orientational-selectivity, robustness to

moderate illumination changes and low-computational com-
plexity, which make it appealing for image representation in
ear recognition systems.

4. Dataset and Experimental Protocol

For our experiments, we use the recently introduced
Annotated Web Ears (AWE) dataset, which contains 1000
ear images of 100 distinct subjects (with 10 images per sub-
ject). The dataset was gathered from the web with a semi-
automatic two-step procedure. In the first step candidate
images for the dataset were collected from the web using
web-crawlers that looked for appropriately tagged imagery
on Flickr and Google’s image search. The candidate images
were then manually screened and curated in the second
step to ensure that ears were indeed present in all images.
This approach ensured that the appearance variability of the
images was not artificially reduced through automatic ear-
detection techniques and resulted in a challenging dataset of
ear images captured in unconstrained settings [16].

The images of the AWE dataset contain ground truth
annotations in terms of gender, extent of head pitch, roll,
and yaw rotations, ethnicity and presence of occlusions,
and thus provide a perfect starting point for our covariate
analysis. The labels/annotations were assigned to the images
by a trained annotator and validated by the authors of the



Figure 4: Sample images from the AWE dataset.

dataset. Because the image acquisition procedure was not
controlled, each image from the dataset typically exhibits
variations across several attributes (e.g., large pitch, roll and
yaw angles at the same time) and is annotated with multiple
labels, so attribute cross-talk effects need to be taken into
account when interpreting the results presented in the next
section. The distribution of the individual label categories
is presented in Figure 3 and some sample images from the
dataset are shown in Fig. 4.

To assess the impact of the different covariates, we
conduct identification experiments with the AWE dataset
and observe various performance metrics, such as the rank 1
recognition rate (rank-1), the rank 5 recognition rate (rank-
5) and the Area Under the Cumulative Match Score Curves
(AUC). For each of the experiments the probes consist of
all images with a specific label (e.g., severe head yaw),
while the galleries represent all images from the AWE
dataset. With this setup, the gallery size is fixed for all
experiments, while the number of probes (and consequently
number of conducted identification experiments) depends on
the label distribution (shown in Fig. 3) and differs from
experiment to experiment. Related covariates are merged for
the experiments: mild head yaw from both left and right are
merged into one group of mild yaw, the same for the severe
yaw rotation and the other head rotations (roll and pitch).

For the descriptor-based feature extraction methods we
use the implementations that ship with AWE toolbox [16]
and make no change to the default parameters.

5. Experiments and Results

In this section we report the performances of 8 state-of-
the-art feature descriptors for each of the covariate factors.
A visual comparison of the rank-1 recognition rates for
all experiments is presented in Figure 5 and more detailed
comparison including rank-1, rank-5 and AUC values for
the evaluation is given in Table 1.

The results show that head rotation negatively impacts
the identification performance. Gender and ethnicity have
the smallest impact on identification performance - the

results for all subgroups of these covariates are very close,
while the minor performance differences are likely a conse-
quence of the different number of probes in each subgroup.
Surprisingly, occlusions which consist mostly of hair have
a limited impact on performance. The reason for this, we
argue, is that the occlusions are more or less consistent
throughout all ear images for a selected subject, whereas
accessories significantly vary from image to image and have
therefore a bigger performance impact.

The impact of accessories requires a more in-depth
analysis. In the most severe cases where accessories rep-
resent a significant part, the performance is degraded the
most among all tested covariates. This can be attributed
to the fact that samples that fall into this category contain
large hearing aids, headphones or some large ornaments,
which may not be present in the gallery images. The rank-
1 recognition rates of 0%, 11.1% and 22.2% need to be
considered with reservation since only 8 samples were avail-
able for this experiment. Nevertheless, we believe, that the
low performance can still be ascribed to the presence of
large accessories and cannot be explained away with the
small sample size. More experiments are needed thought to
validate this result.

In Figure 6 a comparison of the rank-1 recognition rate
for all assessed techniques with respect to the considered
covariates is given in the form of radar graphs. Here, the
most challenging subgroup is selected and plotted for each
technique and each covariate. For gender, the male group
was selected for all 8 extractors, for ethnicity Black was
chosen for LBP, BSIF, RILPQ, POEM and HOG, and Cau-
casian for LPQ, DSIFT and Gabor. For accessories, pitch
and roll rotations, the most severe cases were the most
challenging for all the cases and these values are plotted in
the radar graphs. However, for yaw rotations for POEM and
DSIFT the neutral poses were selected, whereas for others
the most severe cases were used. For occlusion the most
challenging proved to be completely non-occluded images
for LPB, BSIF and LPQ, while for the remaining techniques
the most challenging were the most heavily occluded ears.
The graphs show that none of the assessed techniques has
a clear advantages over the others, except for BSIF, which
covers a slightly larger area than the other techniques in the
radar graphs.

6. Conclusion

We have evaluated 8 popular dense descriptor-based
feature extraction methods for ear recognition with different
covariates. The results show that gender and ethnicity with
some exceptions do not impact identification performance
significantly. However, severe angles at which ear images
are taken (head poses) and severe use of accessories all
negatively impact recognition performance. Furthermore, we
showed that hair occlusions negatively impact performance
to a much more limited extent than other factors. The reason
for this, we argue, is that hair that belongs to a specific
person is similar throughout all (or most) ear images.
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(d) Accessories: Severe
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(e) Gender: Male
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(r) Occlusion: Negligible

Gabor
DSIFT

HOG
POEM
RILPQ

LPQ
BSIF
LBP

0 20 40 60 80 100
39.6
43.3

50.5
48.4

39.6
42.9

47.6
45.5

39.6
43.3

50.5
48.4

39.6
42.9

47.6
45.5

39.6
43.3

50.5
48.4

39.6
42.9

47.6
45.5

39.6
43.3

50.5
48.4

39.6
42.9

47.6
45.5

39.6
43.3

50.5
48.4

39.6
42.9

47.6
45.5

39.6
43.3

50.5
48.4

39.6
42.9

47.6
45.5

39.6
43.3

50.5
48.4

39.6
42.9

47.6
45.5

39.6
43.3

50.5
48.4

39.6
42.9

47.6
45.5

39.6
43.3

50.5
48.4

39.6
42.9

47.6
45.5

[%]

(s) Occlusion: Mild
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(t) Occlusion: Severe
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(q) Ethnicity: Black
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(f) Head Pitch: Negligible
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(g) Head Pitch: Mild
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(h) Head Pitch: Severe
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(i) Ethnicity: Caucasian
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(j) Head Roll: Negligible
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(k) Head Roll: Mild

Gabor
DSIFT

HOG
POEM
RILPQ

LPQ
BSIF
LBP

0 20 40 60 80 100
18.6
18.6

23.3
23.3

20.9
16.3

23.3
23.3

18.6
18.6

23.3
23.3

20.9
16.3

23.3
23.3

18.6
18.6

23.3
23.3

20.9
16.3

23.3
23.3

18.6
18.6

23.3
23.3

20.9
16.3

23.3
23.3

18.6
18.6

23.3
23.3

20.9
16.3

23.3
23.3

18.6
18.6

23.3
23.3

20.9
16.3

23.3
23.3

18.6
18.6

23.3
23.3

20.9
16.3

23.3
23.3

18.6
18.6

23.3
23.3

20.9
16.3

23.3
23.3

18.6
18.6

23.3
23.3

20.9
16.3

23.3
23.3

[%]

(l) Head Roll: Severe
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(m) Ethnicity: Asian
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(n) Head Yaw: Negligible
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(o) Head Yaw: Mild
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(p) Head Yaw: Severe

Figure 5: The plots show a comparison of 8 state-of-the-art descriptor-based ear recognition techniques for all considered
covariates in terms of rank-1 recognition rates. Due to the small number of subjects for the Hispanic ethnicity subgroup,
the results for this subgroup were omitted from the comparison. The small number of images also contributes to the higher
rank-1 recognition rates for women compared to men. Here, only 9 classes of female subjects are present in the AWE
dataset compared to 91 male subjects. The most severe cases of pitch, roll and tilt angles show a negative impact on the
performance of all assessed techniques. The biggest impact is observed with large accessories, but the results for this test
are also generated with a small number of probe images. The results are best viewed in color.



Table 1: Comparative assessment of 8 descriptor-based techniques considered in this work. Results were generated on the
whole AWE dataset of 1000 images of 100 subjects for rank-1 and rank-5 recognition rates, and the Area Under the
Cumulative match score curve (AUC). All results are given in perecentages, RIL., PO., DSI. and Gab., denote RILPQ,
POEM, DSIFT and Gabor, respectively.

Perf. metric Rank-1 [%] Rank-5 [%] AUC [%]
Method LBP BSIF LPQ RIL. PO. HOG DSI. Gab. LBP BSIF LPQ RIL. PO. HOG DSI. Gab. LBP BSIF LPQ RIL. PO. HOG DSI. Gab.

Female 54.4 55.6 50.0 43.3 47.8 47.8 45.6 52.2 70.0 71.1 67.8 61.1 67.8 66.7 64.4 71.1 92.8 90.3 90.6 90.1 90.8 89.8 88.8 93.4
Male 39.5 43.1 38.5 38.1 46.8 46.2 39.9 42.4 61.8 62.0 60.4 58.1 65.7 70.2 59.0 67.9 87.8 89.5 88.8 86.3 89.9 92.2 87.5 93.6
Asian 41.0 45.2 41.4 43.8 48.6 46.2 46.2 42.9 63.3 64.3 61.4 63.3 69.5 67.1 61.4 68.6 89.8 92.4 91.3 87.9 91.5 91.9 89.6 94.1
Caucasian 40.2 43.4 38.2 36.9 45.7 45.9 38.0 42.5 60.8 62.3 60.3 56.7 65.6 70.2 58.5 67.4 87.4 88.4 87.7 86.5 89.5 92.1 86.9 92.9
Black 37.3 40.9 40.9 32.7 42.7 42.7 38.2 46.4 60.0 57.3 58.2 51.8 59.1 70.0 56.4 70.0 86.5 89.1 88.1 83.7 86.7 90.1 85.9 94.5
Accessories / 40.4 44.1 39.7 39.3 47.4 47.0 41.1 43.7 62.4 62.8 61.2 59.0 66.4 70.7 60.0 68.7 88.4 89.7 89.1 86.7 90.1 92.1 87.9 93.8
Accessories + 48.7 47.4 42.3 34.6 44.9 43.6 37.2 42.3 66.7 65.4 64.1 55.1 65.4 65.4 56.4 66.7 87.6 88.4 87.7 87.4 89.3 91.4 86.3 91.8
Accessories ++ 11.1 22.2 0.0 0.0 11.1 0.0 0.0 11.1 33.3 44.4 22.2 22.2 22.2 33.3 33.3 33.3 82.0 82.9 85.7 80.3 83.6 80.5 72.3 82.8
Pitch / 42.0 43.8 41.1 40.5 49.2 50.5 41.8 43.1 63.4 62.6 62.3 59.5 66.5 73.5 62.1 68.1 88.5 90.2 89.5 87.0 90.5 93.4 88.6 93.8
Pitch + 41.4 46.1 39.2 37.9 46.3 43.1 40.6 45.3 63.8 64.8 61.1 58.4 67.0 67.2 58.6 70.2 88.5 89.2 88.8 86.6 90.3 91.1 87.3 93.6
Pitch ++ 23.5 33.3 25.5 23.5 27.5 27.5 23.5 29.4 43.1 49.0 49.0 47.1 51.0 52.9 39.2 52.9 83.5 85.5 84.3 83.4 81.7 84.0 79.3 90.5
Roll / 45.0 48.5 42.1 42.9 50.6 50.6 43.7 47.0 66.4 67.4 65.0 61.6 70.2 75.7 63.5 73.6 90.1 91.3 90.9 87.9 91.8 94.0 89.7 94.6
Roll + 35.2 38.9 37.7 32.8 43.1 41.3 37.1 39.5 59.0 57.5 56.9 56.3 61.1 63.3 55.7 61.5 86.4 88.0 86.9 85.8 88.8 89.7 85.2 92.2
Roll ++ 23.3 23.3 16.3 20.9 23.3 23.3 18.6 18.6 32.6 37.2 37.2 27.9 39.5 37.2 30.2 41.9 75.8 76.5 76.3 75.2 72.0 79.4 75.6 88.0
Yaw / 42.0 46.0 38.7 40.7 42.7 44.7 35.3 44.0 60.7 68.0 60.0 59.3 64.7 70.0 61.3 74.0 88.7 89.6 90.0 85.7 88.6 94.1 87.7 94.7
Yaw + 43.6 46.4 41.6 42.9 49.1 49.1 42.7 47.7 65.5 63.9 63.5 61.7 68.7 72.8 59.8 70.8 89.5 90.7 89.8 88.0 91.0 92.3 88.8 94.4
Yaw ++ 34.7 38.9 35.8 29.2 44.8 41.7 38.5 34.4 57.6 58.0 56.9 51.4 61.1 64.2 58.0 60.1 85.6 87.3 86.8 84.5 88.7 90.3 85.2 91.3
Occlusion / 38.3 42.2 37.9 38.6 46.4 45.2 39.5 45.9 61.4 61.9 60.4 57.6 65.0 67.7 58.2 69.9 87.6 89.1 88.5 85.6 89.5 91.9 87.3 93.8
Occlusion + 45.5 47.6 42.9 39.6 48.4 50.6 43.3 39.6 64.7 65.1 63.3 61.5 66.6 75.3 62.6 65.8 88.9 90.4 89.4 88.8 90.6 92.5 87.8 93.1
Occlusion ++ 46.0 48.7 40.5 35.1 46.0 40.5 37.8 33.8 63.5 62.2 59.5 54.1 71.6 68.9 59.5 62.2 91.2 90.9 91.1 88.6 92.3 91.1 89.3 92.8

We hope that the findings of this paper help with the
development of new ear recognition algorithms – our results
show there is need for pose normalization techniques and
unwanted-objects (accessories) segmentation.

Acknowledgements

This research was supported in parts by the ARRS
(Slovenian Research Agency) Research Programme P2-0250
(B) Metrology and Biometric Systems, the ARRS Research
Programme P2-0214 (A) Computer Vision.

References

[1] A. Abaza, A. Ross, C. Hebert, M. A. F. Harrison, and M. Nixon.
A Survey on Ear Biometrics. ACM Computing Surveys, 45(2):1–22,
2013.

[2] M. Alaraj, J. Hou, and T. Fukami. A neural network based human
identification framework using ear images. In Proceedings of the
International technical conference of IEEE Region 10, pages 1595–
1600. IEEE, 2010.

[3] B. Arbab-Zavar and M. S. Nixon. Robust log-gabor filter for ear
biometrics. In Proceedings of the International Conference on Pattern
Recognition, pages 1–4. IEEE, 2008.

[4] Z. Baoqing, M. Zhichun, J. Chen, and D. Jiyuan. A robust algorithm
for ear recognition under partial occlusion. In Proceedings of the
Chinese Control Conference, pages 3800–3804, 2013.

[5] A. Basit and M. Shoaib. A human ear recognition method using non-
linear curvelet feature subspace. International Journal of Computer
Mathematics, 91(3):616–624, 2014.

[6] A. Benzaoui, N. Hezil, and A. Boukrouche. Identity recognition
based on the external shape of the human ear. In Proceedings of the
International Conference on Applied Research in Computer Science
and Engineering, pages 1–5. IEEE, 2015.

[7] A. Benzaoui, A. Kheider, and A. Boukrouche. Ear description
and recognition using ELBP and wavelets. In Proceedings of the
International Conference on Applied Research in Computer Science
and Engineering, pages 1–6, 2015.

[8] H. Bourouba, H. Doghmane, A. Benzaoui, and A. H. Boukrouche.
Ear recognition based on Multi-bags-of-features histogram. In Pro-
ceedings of the International Conference on Control, Engineering
Information Technology, pages 1–6, 2015.

[9] J. D. Bustard and M. S. Nixon. Toward unconstrained ear recognition
from two-dimensional images. Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans, 40(3):486–494, 2010.

[10] T.-S. Chan and A. Kumar. Reliable ear identification using 2-D
quadrature filters. Pattern Recognition Letters, 33(14):1870–1881,
2012.
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Figure 6: The radar graphs show a comparison of the rank-1 recognition rates of the evaluated feature extraction methods
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Recognition, pages 394–404. Springer, 2010.
[20] A. Kumar and C. Wu. Automated human identification using ear

imaging. Pattern Recognition, 45(3):956–968, 2012.
[21] A. Kumar and D. Zhang. Ear authentication using log-gabor wavelets.

In Proceedings of the Symposium onDefense and Security, page
65390A. International Society for Optics and Photonics, 2007.

[22] D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints.
International Journal of Computer Vision, 60(2):91–110, 2004.

[23] A. Meraoumia, S. Chitroub, and A. Bouridane. An automated ear
identification system using Gabor filter responses. In Proceedings
of the International Conference on New Circuits and Systems, pages
1–4. IEEE, 2015.

[24] A. Morales, M. Ferrer, M. Diaz-Cabrera, and E. Gonzalez. Analysis of
local descriptors features and its robustness applied to ear recognition.
In Proceedings of the International Carnahan Conference on Security
Technology, pages 1–5. IEEE, 2013.

[25] L. Nanni and A. Lumini. Fusion of color spaces for ear authentication.
Pattern Recognition, 42(9):1906–1913, 2009.
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