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Abstract—Segmentation techniques for ocular biometrics typ-
ically focus on finding a single eye region in the input image
at the time. Only limited work has been done on multi-class
eye segmentation despite a number of obvious advantages. In
this paper we address this gap and present a deep multi-class
eye segmentation model build around the SegNet architecture.
We train the model on a small dataset (of 120 samples) of eye
images and observe it to generalize well to unseen images and
to ensure highly accurate segmentation results. We evaluate the
model on the Multi-Angle Sclera Database (MASD) dataset and
describe comprehensive experiments focusing on: i) segmentation
performance, ii) error analysis, iii) the sensitivity of the model to
changes in view direction, and iv) comparisons with competing
single-class techniques. Our results show that the proposed model
is viable solution for multi-class eye segmentation suitable for
recognition (multi-biometric) pipelines based on ocular charac-
teristics.

Index Terms—Sclera, segmentation, deep learning, convolu-
tional neural networks (CNN), iris, pupil, ocular biometrics

I. INTRODUCTION

Automated recognition systems relying on ocular biomet-
ric traits such as the iris, retina, sclera or the peri-ocular
region have received significant attention from the research
community in recent years [1]–[16]. The interest in these
traits is fueled by the significant market potential of ocular
biometrics, but also from a number of desirable characteristics,
such as high recognition accuracy, reliability, non-invasive data
acquisition and considerable user acceptance [1].

Ocular biometrics are today still dominated by iris recog-
nition technology, which is used widely for authentication
purposes, forensics applications and surveillance software.
Applications relying on other ocular traits, on the other hand,
are less frequent, but the research community is increasingly
looking into the blood vessels of the sclera [17], [18] and the
peri-ocular region [19]–[21] to extract identity cues that can
either be utilized in stand-alone recognition systems or com-
plement the information commonly used for iris recognition.

A key component of ocular recognition systems is an
efficient segmentation procedure that extracts the region-of-
interest (ROI) from the input images and provides the basis
for the subsequent feature extraction and matching steps.
While significant research efforts have been directed towards
segmentation techniques for different ocular traits (e.g., [22]–
[32]), these efforts have typically been limited to techniques
that are able to segment only a single trait at the time from the

Fig. 1: Illustration of multi-class eye segmentation. The input
image is segmented into multiple regions that correspond to
different parts of the eye. The results of the segmentation
procedure are useful for ocular biometric pipelines. The figure
shows: input RGB images (left column), reference annotations
(middle column), prediction by our approach (right column).
The segmentation results are color-coded.

inputs (e.g., only the iris, sclera or eye region). Remarkably,
little work has been done on multi-class eye segmentation,
where multiple eye parts need to be segmented from the input
images with a single segmentation approach, despite some
expected advantages, such as:

• Segmenting the eye image into multiple classes with a
single segmentation approach makes it possible to apply
recognition techniques to different parts of the image
efficiently and devise (ocular) multi-biometric systems
without computational overhead.

• The target classes of the segmentation procedure act as
sources of contextual information for each other and are
expected to improve the segmentation performance for
all (or most) traits, especially in challenging conditions.
For example, information about the boundaries of the
sclera region provides contextual information about the
bounderies of the iris area, the location of the eye leashes
acts as a constraint for the sclera region and so on.

In this paper we try to address the outlined gap and present
an approach to multi-class eye segmentation (as shown in
Fig. 1) that is able to segment the input images in to six distinct
classes that correspond to the pupil, iris, sclera, eyelashes,
medial canthus and the peri-ocular region using a single
segmentation model. We build on the success of deep learn-
ing models for semantic image segmentation, specifically on



convolutional encoder-decoder networks [33], and design our
approach around the recently introduced SegNet architecture.
To facilitate training, we manually annotate a small dataset of
(visible light) eye images in a per-pixel manner, as shown in
the middle column of Fig 1. We report results on the Multi-
Angle Sclera Database (MASD, [29]) dataset and provide
comparative experiments with competing techniques from the
literature. Our experiments suggest that the proposed model is
viable solution for multi-class eye segmentation that could be
integrated in the future into recognition pipelines exploiting
ocular biometrics.

The rest of the paper is structured as follow: In Section II
we present a brief overview of the related work on eye
segmentation. In Section III we describe the multi-class eye
segmentation approach and corresponding training procedure.
We evaluate the proposed approach in comprehensive experi-
ments in Section IV and conclude the paper with some final
comments in Section V.

II. RELATED WORK

In this section we present a brief overview of existing tech-
niques for ROI segmentation for ocular biometrics. The reader
is referred to [1] for a more complete and comprehensive
coverage of the topic.

A. Iris segmentation

Iris segmentation techniques have received considerable
attention from the research community [1]. The interest in
these techniques is spurred mainly by the popularity of iris
recognition technology and the corresponding market poten-
tial. Existing techniques for iris segmentation range from
Daugman’s integro-differential operator [34], active contour
models [35] and clustering algorithms [36] to methods ex-
ploiting gradient (edge) information [37]–[39], variants of the
Hough transform [40], [41] and others [1].

More recently, researchers started looking at classification-
based methods for iris segmentation e.g., [23], [24], [42].
These methods try to assign each pixel from the input image
a label from a predefined set of target labels and are thus
similar in spirit to our work. Nevertheless, most of the existing
methods only consider binary segmentation problems (e.g., iris
vs. non-iris) or resort to separate segmentation models to find
other eye-regions, e.g., most commonly the sclera [43], that
can contribute towards more efficient iris segmentation. Our
approach, on the other hand, segments the not only the iris,
but also five other eye-parts from the image using a single
segmentation model. Because all six classes are segmented
jointly, there is limited computational overhead and the model
is forced to learn inter-class-relationships during training.

B. Sclera segmentation

As emphasized in [31], the problem of sclera segmentation
is typically studied as a sub-problem of other tasks, such as
iris recognition or gaze estimation. Nonetheless, research into
sclera segmentation techniques is gaining traction within the
biometric community, owing mostly to the series of sclera

Fig. 2: We use the SegNet [49] convolutional encoder-decoder
(CED) architecture for multi-class eye segmentation. Our
approach is able to segment six classes from the image, i.e.,
the pupil, the iris, the sclera region, the eyelashes, the medial
canthus and the periocular-region, using a single segmentation
model.

segmentation competitions, organized in the scope of major
biometric conferences [29], [30], [32], [44] and the potential
of sclera recognition techniques for stand-alone biometric
systems or or supportive recognition technology for other
ocular traits.

The literature on sclera segmentation is split between i)
techniques that aim to extract only information about the
sclera vasculature from images and ii) methods that try to
segment the entire sclera region from the input eye-images.
An overview of techniques from the first group can be found
in [45]. Among the techniques from the second group (which
are also of relevance to this work) convolutional decoder-
encoder (CED) architectures have recently been shown to
ensure state-of-the-art performance, as they represented the
winning techniques from the 2017 and 2018 sclera seg-
mentation competitions, where they were able to outperform
competing approaches by a large margin - see [29], [44] for
details. In this paper we build on the success of CED networks
for sclera segmentation, but present an approach capable of
segmenting multiple classes from the input images.

C. Other traits

Segmentation techniques for other ocular traits are limited in
the literature. Some research has been conducted on eyelid and
eyelash segmentation with the goal of masking out occluded
regions during iris recognition, e.g., [46]–[48]. However, these
attempts are again limited to segmentation/detection mod-
els trained and applied separately from other segmentation
approaches and can, hence, make only limited use of the
available contextual information provided by other ocular
traits.

III. METHODOLOGY

We now describe our approach to multi-class eye seg-
mentation. As illustrated in Fig. 2, we use a convolutional
encoder-decoder (CED) network architecture to segment the
input eye images into six distinct classes, i.e., the pupil, the
iris, the sclera region, the eyelashes, the medial canthus and



Fig. 3: Examples of eye images (top row) and corresponding pixel-level annotations (bottom row) used in this work. The
annotations are color coded and cover six distinct eye parts, i.e., the pupil, the iris, the sclera region, the eyelashes, the medial
canthus and the periocular-region. The images were taken from the Multi-Angle Sclera Database (MASD, [29]). The figure is
best viewed in color.

the periocular-region. Our network is based on the recently
introduced SegNet architecture from [49], which was shown
to ensure state-of-the-art results for various segmentation tasks
and was already successfully applied for the problem of sclera
segmentation [50].

In the remainder of this section, we discuss (in detail) the
SegNet architecture, the training procedure and our multi-class
segmentation approach.

A. The SegNet architecture

The SegNet [49] (semantic-segmentation) network architec-
ture consists of two high level building blocks: an encoder
and a decoder. The goal of the encoder is to compress the
semantic content of the image and generate a descriptive image
representation that can then be fed to the decoder, which then
produces the final segmentation output [51].

SegNet’s encoder is inspired by the VGG-16 [52] architec-
ture, but unlike VGG-16, the encoder uses only convolutional
layers and no fully-connected layers. This is what makes
SegNet a fully-convolutional network [53] (FCN). The SegNet
encoder consists of 13 convolutional layers (followed by batch
normalization and ReLU activations) and 5 pooling layers.
The decoder is an additional, inverted VGG-16 model with-
out fully-connected layers, which has a pixel-wise soft-max
layer at the top. The soft-max layer generates a probability
distribution for each pixel that can be exploited to classify
pixels into one of the predefined semantic target classes. Thus,
during training the encoder needs to learn to produce low-
resolution semantically-meaningful feature maps, whereas the
decoder has to learn filters that can generate high-resolution
segmentation masks from the low-resolution feature maps
produced by the encoder.

A unique aspect of the SegNet model are so-called skip-
connections that connect the pooling layers of the encoder with
the corresponding up-sampling layers of the decoder and prop-
agate spatial information (pooling indices) from the encoder
to the decoder, which helps avoid information loss through

the network. Consequently, SegNet’s output probability masks
have the same dimensions (i.e., width and height) as the input
images, which enables relatively precise segmentation. The
number of output probability masks is equal to the number of
semantic target classes.

B. Multi-class eye segmentation and network training

To be able to train the SegNet model for multi-class eye seg-
mentation, we generate the needed training data by manually
annotating a (small) dataset of eye images at the pixel level
with C = 6 target-class labels Ω = {ωi}Ci=1 that correspond
to six distinct eye regions, i.e., the pupil, the iris, the sclera
region, the eyelashes, the medial canthus and the periocular-
region, as shown in Fig. 3. We use the annotated images and
learn the parameters of the SegNet model using categorical
cross-entropy as our training objective. Since certain classes
are represented more frequently in the images than others
(i.e., the images are dominated by peri-oculuar, iris and
sclera pixels) we use median frequency balancing to force the
network to efficiently segment less frequent classes as well.
Such an approach is also advocated in [49].

Once the model is trained, it takes an RGB eye image
I(x, y) ∈ Rw×h×3, consisting of wh pixels, as input and
returns a probability distribution over the C = 6 target
classes for each pixel location. This is, for each location
s = [x, y]T in the input image I(x, y), the network outputs a
distribution ps = [pω1

, . . . pωC
]T ∈ RC×1, where pωi

denotes
the probability that the pixel at location s belongs to the
i-th target class and

∑C
i=1 pωi = 1. To generate the final

segmentation result, we consider two strategies:
• Max-out strategy (MOS): We predict the final class label

ω̂k ∈ Ω for each pixel location s by finding the maximum
of the generated probability distribution, i.e.,

ω̂k = arg max
ωi

(ps). (1)

This strategy assigns the class label with the highest
probability to the pixel at location s regardless of the



Fig. 4: Example probability maps Pωi
(s) generated by the

softmax layer of the SegNet model. The figure shows the input
image (on the left) and corresponding probability maps (from
left to right and top to bottom): the iris, the peri-ocular region,
the medial canthus, the eyelashes, the pupil and the sclera
region.

actual value of the probability (i.e., even if the class
probability is low or comparable to the probability of
another class). As a result, each pixel in the input images
is assigned one (and only one) class label.

• Thresholding strategy (THS): We construct six probability
maps (one per class label) from the probability distribu-
tions ps of all pixel locations, i.e.,

Pωi
(s) = p(s)ωi

, (2)

where the superscript (s) indicates that the probability
pωi corresponds to pixel location s = [x, y]T and x =
1, . . . , w, y = 1, . . . , h. An example of the probability
maps Pωi

(s) generated for a sample eye image are
shown in Fig. 4. The final segmentation result (i.e., the
segmentation masks) is generated by thresholding the
probability maps using some class-specific threshold ∆ωi

,
i.e., Pωi(s) > ∆ωi . Because we tune the thresholds inde-
pendently for each class, not all pixels may be assigned a
class label, while some may be assigned multiple labels.

IV. EXPERIMENTS AND RESULTS

In this section we evaluate the proposed multi-class eye
segmentation approach. We start the section by describing the
experimental database, proceed by elaborating on the network
training procedure and then present the final experimental
results.

A. Database description

For the evaluation, we use part of the Multi-Angle Sclera
Database (MASD, [29]), which in total features 2624 eye
images of variable size and corresponding masks for the
sclera region. The images were taken in the visible spectrum
in completely unconstrained settings. The variability of the
images is mostly across view directions, as the subjects look
either to the left, to the right, up or down.

Because we are interested in multi-class eye segmentation,
we manually annotate 120 images (belonging to 30 distinct
subjects) in a per-pixel manner as shown in Fig. 3. This
makes it possible to train our SegNet model for multi-class
eye segmentation and to evaluate it’s performance.

B. Experimental protocol and performance metrics

We use a 4-fold cross validation experimental protocol for
our experiments. During each fold 90 images are used as the
training set and 30 as the test set. The training images are
utilized to learn the parameters of the segmentation models,
and the test images are used for performance evaluation.

We measure the performance of the multi-class segmenta-
tion approach on a per-class basis and, therefore, compute pre-
cision, recall and F1 scores for all classes in each experiment.
The performance metrics are defined as follows:

precision =
TP

TP + FP
, (3)

recall =
TP

TP + FN
, (4)

F1-score = 2 · precision · recall
precision + recall

, (5)

where TP denotes the number of true positive pixels, FP
stands for the number of false positive pixels, and FN
represents the number of false negative pixels.

Among the above measures, precision measures the pro-
portion of correctly segmented pixels with respect to the
overall number of true pixels of a given class (i.e., it provides
information about how many segmented pixels are relevant).
Recall measures the proportion of correctly segmented pixels
with respect to the overall number of pixels assigned to a
certain class (i.e., it provides information about how many
relevant pixels are segmented for a given class). It is often
convenient to combine precision and recall into a single metric
called F1-score, in particular if a simple way to compare two
segmentation models is required.

Note that with the MOS strategy, we obtain fixed pre-
cision and recall values for the segmentation output, while
for the THS strategy complete precision-recall curves can be
generated for each of the six target classes by varying the
corresponding decision threshold ∆ωi

.

C. Training details

Prior to SegNet training we resize all training images to
a fixed size of 640 × 480 pixels. Since we only have 90
images available during each experimental fold for learning
the parameters of the segmentation models, we use heavy
data augmentation as suggested in [54]. Specifically, we gen-
erate 100 variants of each training image by flipping images
left-right, generating sub-crops, Gaussian blurring, brightness
changes, and applying affine transformations such as scaling,
rotation or shear. Our experiments suggest that the small
number of images together with data augmentation provides
sufficient training data to learn segmentation models that
perform robustly in difficult conditions and generalize well
to unseen subjects.

For the training phase, we use the Caffe implementation
of SegNet from [49]. We train the model on a GTX 1080
Ti graphics card with 30, 000 iterations using a batch size
of 4, learning rate of 0.001 and stohastic gradient descent



Fig. 5: Average precision-recall curves (with standard deviation) generated during the evaluation of the SegNet model using
the THS strategy and a 4-fold cross validation scheme. The graphs show results for (from left to right and top to bottom): the
peri-ocular region, the sclera, the canthus, the iris, the pupil and the eyelashes region.

TABLE I: Multi-class segmentation results for the MOS
strategy. Average performance metrics and the corresponding
standard deviations are reported.

Class (eye region) Precision Recall F1-score
Iris 0.94± 0.05 0.89± 0.12 0.91± 0.10

Sclera 0.92± 0.04 0.90± 0.09 0.91± 0.07

Pupil 0.89± 0.16 0.84± 0.21 0.85± 0.19

Peri-ocular 0.92± 0.05 0.89± 0.06 0.90± 0.05

Eyelashes 0.57± 0.10 0.72± 0.12 0.63± 0.10

Canthus 0.67± 0.28 0.45± 0.25 0.49± 0.24

(SGD). All four view directions are represented equally in
all training sets. At test time the model takes approximately
150 milliseconds on average to make a prediction for a single
input image (calculated over 100 input images) when run on
the GPU.

D. Multi-class segmentation results

In our first experiments we examine the performance of the
SegNet model for multi-class eye segmentation using 4-fold
cross validation outlined in Section IV-B. We report results
in the form of average precision, recall and F1-scores and
corresponding standard deviations for the MOS strategy in
Table I and in the form of precision-recall curves for the
THS strategy in Fig. 5. note that the use of the class-specific
threshold in the THS strategy allows us to show complete
precision-recall curves, instead of a single operating point as
this is the case with the MOS strategy.
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Fig. 6: Confusion matrix generated for the MOS strategy. The
matrix shows the type of errors produced by the SegNet model.

The results show that the iris, sclera and peri-ocluar region
are segmented by the model quite accurately. The segmenta-
tion performance for the pupil is slightly worse, but exhibits
large deviations across the experimental folds. The segmenta-
tion performance for the eyelashes and canthus is considerably
lower, which is understandable given the fine structure of the
eyelashes that is difficult to segment and the poor contrast with
respect to the surrounding region in the canthus area.
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Fig. 7: Sensitivity analysis: the graphs show the average precision (left), recall (middle) and F1-scores (right) with respect to
the view direction of the subjects, i.e., straight, left, right or up. Standard errors for the average values are also shown at the
top of the bars (n = 4).

To get better insight into the types of errors that are
produced by the SegNet model, we present a class-normalized
confusion matrix for the MOS strategy in Fig. 6. The matrix
show which classes are confused most often and is normalized
for each eye part separately - the sum of all values in one row
equals one. We see that the peri-ocular region is most often
confused with the eyelashes, cantus pixels are mixed with peri-
ocular pixels and (to a lesser extent) also with sclera pixels, the
eyelashes are often classified as belonging to the peri-ocular
region, and the pupil is confused with the iris. The sclera and
iris regions have more or less evenly distributed errors among
the other classes.

E. Sensitivity analysis and qualitative results

Next, we investigate the sensitivity of the SegNet model
to changes in view direction. The MASD dataset, used in
our experiments contains eye images of four different views
(i.e., looking straight, left, right and up), so it is of interest
to examine whether the performance of the model varies with
respect to the view direction. Since the MOS strategy ensures
a reasonable operating point with comparable precision and
recall values, we use this strategy for the sensitivity analysis.
The result of our experiments are presented in Fig. 7.

When comparing recall values for the pupil or iris by view
direction, we see that the values are higher when the eye is
looking straight/up and lower when looking left or right. The
reason for such an result can likely be attributed to the fact
that in the dataset eyes are not as widely open when looking
left/right as they are when looking straight/up. Because of this
there are more occlusions by eyelashes. The second reason is
that all irises in the dataset are brown, and when the eye is
looking right/left the brown iris color becomes darker in the
corners of an eye and the model often confuses pupil pixels
with iris pixels.

Sclera segmentation is on average the most successful when
the eye is looking up (both precision and recall exceed 0.95
with the MOS strategy). We believe the main reason here is
that there are usually no eyelashes covering the sclera region
in these images. The second reason is that on images where
the eye is looking up, there is only one continuous sclera

region, compared to other cases where the sclera region is
often split into two parts because of the iris. When looking
left/right there is also often a small region of the sclera next to
the medial/lateral canthus (depending on eye and the direction
of view) which is frequently undetected or confused for the
canthus itself.

Some of the best and worst per-pixel results for each view
direction are presented in Fig. 8. Here, the first column of
image triplets represent examples of the best segmentation
results and the second column of triplets represents examples
of the worst segmentation results. In each image triplet, the
first image is the original input image, the second is the
manually annotated ground truth and the third is the SegNet
prediction. Example a) presents a straight view, b) a view to
the left, c) a view to the right and d) a view up. The sclera,
the pupil, the iris and the canthus are classified (segmented)
very accurately in these examples. With example a) we can
see that the segmented pupil is a little smaller than the ground
truth. In examples b) and c) we can also see that the model
detects the majority of eyelashes which are located close to
one another, but usually misses the separate ones.

On the right side of Fig. 8 some of the worst per-pixel
results are presented for each direction of view. With example
e) we can see that a lot of the iris is misclassified as the medial
canthus. The eyes marked as f) and g) are almost closed. In
f) we can see that there is almost no canthus detected and
the bottom part of the iris is misclassified as peri-ocular skin.
With g) there is significant occlusions present due eyelashes
and thus almost no iris pixels are correctly classified. In h)
we can see that the right part of the sclera is not detected due
to the dark sclera pattern, and it is misclassified as peri-ocular
skin. Also the top most part of iris is classified as eyelashes
because of the very contrasting transition from the iris to the
upper eyelid.

F. Comparison with single-class segmentation techniques

In our last experiment, we compare the performance of the
multi-class SegNet model to the performance of the SegNet
model trained only for a single class. We train the single-
class model with the same set of parameters as the multi-



Fig. 8: Examples of some of the best and worst SegNet multi-class predictions. The first column of image triplets represents
examples of the best SegNet predictions and the second column represents examples of the worst predictions. In each triplet
the first image is the original RGB image, the second is the ground truth and the third is the segmentation result.

TABLE II: Comparison of multi-class and single-class seg-
mentation results for the sclera region and the MOS strategy
using SegNet.

Performance metric Precision Recall F1-score
Sclera (single-class) 0.88± 0.08 0.93± 0.07 0.90± 0.07

Sclera (multi-class) 0.92± 0.04 0.90± 0.09 0.91± 0.07

class model and observe approximately the same training
time as with the multi-class model. We focus on the sclera
region in this experiment, where the single-class SegNet model
currently represents the state-of-the-art on the MASD dataset
as reported in recent sclera-segmentation competitions [44],
[50]. We report result for the MOS strategy in Table II.

As we can see from the presented results, both model
perform comparably and no statistically significant differences
can be observed between the results. This results suggests
that multi-class segmentation has no disadvantage (in terms
of performance) in comparison to the single-class approach
despite the fact that it is able to segment multiple eye parts
form the input images. It also needs to be noted that the
computational complexity of both models is identical.

A qualitative comparison of the segmentation masks ob-
tained with both methods (multi-class and single-class) is
presented in Fig. 9. We can see that both models predict the
majority of pixels the same way and that the largest difference
is close to the borders with other eye parts, e.g., close to the
eyelashes, the canthus, etc.

V. CONCLUSION

We have presented a multi-class approach to eye-image
segmentation based on the SegNet model. Our results show

Fig. 9: Qualitative results for the sclera region obtained with
the multi-class and single-class SegNet models and the MOS
strategy. The figure shows (from left to right): the input image,
the multi-class results, the single-class result.

that the model is able to segment eye images into a number
of target classes with high accuracy. As part of our future
work we plan to integrate the segmentation model into a
multi-modal ocular biometric pipeline and evaluate the multi-
class segmentation approach on other iris datasets with larger
variability in eye colors.
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Emeršič, P. Peer, and V. Štruc. SSRBC 2017: Sclera Segmentation and
Recognition Benchmarking Competition. In IJCB, pages 1–6, 2017.
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