
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

SBS
#1

SBS
#1

SBS Submission #1. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Face Presentation Attack Detection using Nuisance Attribute Projection

Javier Cubelos Ordás
Faculty of Electrical Engineering

University of Ljubljana
jc3872@student.uni-lj.si

January 14, 2018

Abstract

Face recognition is today the second most deployed bio-
metric technology and its performance has improved re-
markably in the last decade. However, it’s also the bio-
metric technology where most spoofing attacks are detected.
Due to it, a research revolution took place and lots of coun-
termeasures for spoofing attacks have been developed in the
last few years. Nevertheless, most of these techniques have
been only tested in one dataset or see its performance con-
siderably affected when it’s tested in another dataset than
the original one it was build for. The Nuisance Attribute
Projection (NAP) has been used since decades to compen-
sate the ’channel’ effects in speaker recognition, and since
a couple of years it has started been used to other purposes.
In this paper, we study the possibility of using NAP as a, or
as part of a countermeasure technique, for spoofing attacks
to face recognition systems. In fact, we evaluate if there is
relevant information contained in the NAP subspace for de-
tecting attacks. To address this problem, we compute the
NAP subspace, normalize the testing image, extract some
features from it and classify them, all of it using two dif-
ferent datasets: CASIA’s face anti-spoofing database and
OULU-NPU’s mobile face presentation database with real-
world variations, in order to check the performance of our
technique when using it in different datasets.

1. Introduction
Nowadays, biometric [37] provides greater security and

convenience than traditional methods of personal recogni-
tion. In fact, since its first works around 40 years ago,
mainly oriented to automatic voice and face recognition
[12], [24], [39], a new vision appeared where the user
started becoming its own password or key. Since then, re-
searchers from different fields such as computer vision, im-
age processing or pattern recognition focused their work in
this promising technology.

Figure 1. Examples of the whole working system for one subject.
Image a) shows one image of a genuine attempt to a face recogni-
tion system from OULU-NPU dataset, whereas image b) shows a
frame from a spoofing attack to a face recognition system from the
same dataset. Then, in image c) we can observe the global mean of
all the genuine attempts of the training set of OULU’s dataset, and
image d) depicts an example of a representation of the NAP di-
rections of the NAP subspace. Finally, images e) and f) show the
’error’ corresponding to the NAP artefacts found in the genuine
and spoofing frames, respectively.

However, due to this unstoppable technological evolu-
tion, new concerns about the security and privacy of biomet-
ric technology emerged. In fact, public confidence and ac-
ceptance of the biometric systems will depend on the ability
to demonstrate that these technologies are robust, have low
error rates and are tamper-proof (a.k.a. biometric spoofing)
[32].

A hacker might present a copy of a known person’s bio-
metric sample to the system. For example, in 2008, a hacker
club published German interior minister’s fingerprint [70],
supporter of the collection of citizens’ unique physical char-
acteristics as a means of preventing terrorism. But this is
just an example of a big list, including real criminal scenes
[21], [58], [59], [60] and even attacks to big technological
companies, as happened to Apple with the iPhone 5S finger-
print reader [34], or, more recently, with the iPhone X face
ID [61], both hacked the first day after they hit the shelves.
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These attacks have even been reported from live demonstra-
tions in biometric conferences [28], [69].

To try to solve these security problems surrounding bio-
metric technology, lots of researchers all around the world
have started searching for the best technique (or combina-
tion of different techniques) to countermeasure biometric
spoofing. Different approaches have been considered, as
we will explain in the related work section, providing re-
ally good results in the used databases during the research.
However, the performance of almost all these approaches
decreases dramatically when they are tested in different
databases than the original one.

In this paper we try to address this gap by studying
if the Nuisance Attribute Projection (NAP) could be used
as a countermeasure technique for face spoofing attacks,
that may provide a more stable performance when working
alone (or in combination with other techniques) with dif-
ferent databases. To do it, we have first computed the nui-
sance subspace, obtained the ’error’ corresponding to the
NAP ’channel’ artefacts and then evaluated if there is rele-
vant information contained in this subspace. To evaluate the
usefulness of this information, different methods have been
performed, using the full ’error’ image obtained with NAP
and extracting the features contained in this subspace to use
them with further classification methods.

For this evaluation, we used the CASIA face anti-
spoofing database [84] and the OULU-NPU mobile face
presentation database with real-world variations [13], both
containing genuine real accesses and masks and video re-
play spoofing attacks to face recognition systems, as we
explain more in detail in the experimental section. An ex-
ample of the ’error’ resulting of the NAP projection for a
spoofing and a genuine attack can be observed in the Figure
1, where also the global mean of OULU-NPU dataset and
an example representation of the NAP directions are shown.
In summary, the main contributions of this paper are:

• The computation of the nuisance subspace of the train-
ing set of images.

• The analysis of the information contained in this sub-
space (’channel’ effects) with different normalization
methods, such as using the ’error’ images obtained
through NAP or the extraction of the Histogram of Ori-
ented Gradients (HoG) descriptors of these images, for
posterior classification using and comparing different
classifier as the Multilayer Perceptron, Random Forest
or Support Vector Machine (SVM).

• The evaluation of this technique with two different
datasets (CASIA and OULU-NPU), checking how
well our system distinguished spoofing attacks from
genuine accesses to face recognition systems.

The rest of paper is structured as follows: First, the re-
lated work is covered, through a brief description of the
typical face spoofing techniques, the principal approaches
in which the researchers have focused their research work
of face anti-spoofing countermeasures, and an introduction
to the nuisance attribute projection. Then, the proposed
method is presented, explaining in detail the core of the
work presented in this paper, and focusing on the nuisance
subspace computation and the different methods of further
evaluation. After that, the experimental results are pre-
sented, presenting more in detail the two selected databases
and the corresponding performance metrics and results. Fi-
nally, a short conclusion of the main contributions is shown,
with the corresponding possible implications and improve-
ments that could be covered in future work.

2. Related work
2.1. Face spoofing

Face recognition has been confirmed by the International
Biometric Group (IBG) as the second largely deployed bio-
metric in terms of market quota [36]. Nevertheless, it’s also
the biometric technology where most spoofing attacks and
research have been detected, just after the fingerprint bio-
metrics, leader of biometrics’ market quota.

The use of masks to avoid being recognized has been
present in almost all the well-known civilizations since cen-
turies. Trends haven’t changed so much, as today the use
of plastic surgery [10] is becoming more and more popular,
due to costs reduction and speed improvement. However,
more elementary methods have also been used for attacking
face recognition systems; for instance, using basic masks
[58] or even only wearing regular make-up [23], face bio-
metric systems can be spoofed.

Even if these techniques (i.e., plastic surgery, face masks,
make-up) have been traditionally used to hide the attacker’s
identity instead of trying to impersonate another user, it has
been proven that they could even been used for direct at-
tacks. For example, in Tabula Rasa’s spoofing challenge
conference [69], a woman succeeded to access in the place
of a man into a face biometric systems, only by using some
make-up.

Almost all the face spoofing techniques may be classi-
fied in two main groups based on the shape of the artefact
used during the attack: 2D surfaces (i.e., photos and video
attacks) or 3D volumes (i.e., mask attacks).

These artefacts have been used to perform three main
types of attacks: ·

- Photo Attacks: Attacks performed presenting a pic-
ture of the genuine user to the biometric system. The
attacker may have taken the picture or even have ob-
tained it from the internet (i.e., social networks [55]),
and print it or even show it in a digital device [28] as
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a mobile phone. A more advanced technique is the
use of high-resolution printed masks where mouth and
eyes have been cut out, making the attacker able to re-
produce typical face movements such as eye blinking.

- Video Attacks: More complex attacks where the im-
postor replays a video of the genuine person using a
digital device such as his mobile phone or laptop [64].
These attacks are more difficult to detect, as the dy-
namics of the face are also copied.

- Mask Attacks: The impostor uses a 3D mask of the
genuine user’s face, making more difficult its detec-
tion. In this case the complete 3D structure of the user
face is replicated, making the use of depth cues (useful
for the two previous types of attacks) inefficient.

These different types of attacks may be already found in the
face spoofing databases available for researchers [5], [30],
[84].

2.2. Face anti-spoofing

The creation of the Tabula Rasa european project [68]
in 2010, focused on the study of the spoofing attacks to
biometric systems, led to the revolution in anti-spoofing
research. In addition, the distribution of several public
face spoofing databases (mentioned before) [5], [19], [29],
[30], [78], [84], was the other important factor that encour-
aged the development of anti-spoofing techniques, as the re-
searcher could directly start focusing in the implementation
of countermeasures.

In this section we will go through the works that have
addressed countermeasures for biometric spoofing. It’s dif-
ficult to decide which technique is better than the rest, as
the performance depends of the type of attack and these
methods loose accuracy when they are tested in different
databases. Therefore, sometimes the best results may be
obtained through the combination of several of these meth-
ods [30], [31].

We will cover the anti-spoofing techniques classifying
them into four groups depending on their approaches:

- Feature Level Dynamic Approaches
It appeared as an anti-spoofing method against photo at-

tacks which use printed faces. These methods are based in
the detection of motion over a face video sequence. They
mostly study the trajectory of face segments such as eye-
blinking [38], [44], [54], [62], [80] or face and head ges-
tures (i.e. smiling, nodding...). The latest being detected
through face and gaze tracking [3], [11] or through optical
flow estimation [4], [7], [43], [45]. The analysis of these
trajectories makes possible the checking of face’s liveness
and, therefore, allows the discrimination between real faces
and printed versions. However, these methods loose consid-
erable accuracy when trying to detect video attacks where

the face’s movement is also replicated. Several research
branches have appeared to try to overcome this problem
such as obtaining 3D structure of the face by the analysis
of 2D images with different poses [27], [81], using context-
based analysis to also exploit the non-facial captured infor-
mation [42], [63], [82], estimating the noise [22], obtaining
temporal information [25], comparing face dynamics with
other rigid objects dynamics (i.e. photos or masks) [47] or
enhancing the motion in a video [8].

- Feature Level Static Approaches
This approach appeared due to the duration limitation

of the dynamic approach. It’s focused on the analysis of
one single static image, making it faster than the previous
method, sometimes at the cost of performance decrease.
Most of these methods are based on the analysis of face tex-
ture using different image processing tools such as Fourier
Spectrum [53]; multiple Difference of Gaussian (DoG) fil-
ters to extract frequency information [84] or even a combi-
nation of DoG with Lambertian Model [78]; providing good
results also with bad illuminations [66]; partial least squares
for low-level descriptors [73], its combination with high-
level descriptors [83]; using Local Binary Patterns (LBP)
[19], [49], its combination with shape information extracted
using Histogram of Oriented Gradient (HOG) [57]; detect-
ing paper’s microtextures [6], [19], [56]; using video con-
text (upper body location [48], pixel difference between
consecutive frames [41]). Some of these techniques have
been successfully combined at feature level showing im-
proved accuracy [40], [44]. Also, comparative studies show
that the fusion of static and dynamic techniques provides
the best performance [30], [31].

- Sensor Level Approaches
Some approaches have been proposed using information

outside the visual spectrum, such as infrared (IR) or near in-
frared (NIR) images, even able to distinguish between iden-
tical twins [65], [67]; or the use of LEDs and photodiodes
to compare reflectance of real faces and fake materials [9],
[85]. In addition, some personal authentication technolo-
gies could be potentially useful for anti-spoofing such as
thermal imaging [15], [35]; facial vein pattern [14], [74]; or
3D face acquisition [50], [51], [52]. Finally, some multi-
modality techniques emerged combining face and voice for
detecting attacks [16], [17], [18], [46], [71] (i.e. lip move-
ment).

- Score Level Approaches
This approaches are more recent and they focus on the

topic of score-level anti-spoofing strategies for 2D face
recognition systems. For instance, one of these approaches
consists on the study of the impact of anti-spoofing tech-
niques on the performance of face recognition systems, by
analysing different score fusion techniques [20], and the
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combination of anti-spoofing modules, as the static and dy-
namic fusions mentioned above [55], [72], in order to im-
prove the performance when we change of dataset [26].

As we mentioned before, almost all these techniques
demonstrated really good performance while working in the
database that was originally used during the research. Nev-
ertheless, only some of these techniques have been tested
in more than one dataset, and even then, the performance
gets really worst when the approach is tested in a different
database. In the next section we will introduce the Nui-
sance Attribute Projection (NAP), that will be later stud-
ied as a possible cross-database stable countermeasure tech-
nique for biometric spoofing.

2.3. Nuisance attribute projection (NAP)

NAP is an important technique originally used in the
field of speaker recognition for compensation of channel
effects regardless of its source, the main problem of auto-
mated speaker recognition [75], [76]. The channel effects
compensated by NAP are assumed to lie a low dimensional
variability subspace. In the field of biometrics in uncon-
strained environment, the variability sources are mixed and
unknown.
Previous works proposed a normalization scheme based in
NAP to remove the illumination artifacts [77], by projecting
away multiple dimensions of a low dimensional illumina-
tion space. Then, based on this work, another research took
place, applying NAP this time to compensate for any kind
of variability factors that affect the face recognition perfor-
mance [79]. Both researches open the possibility of trying
to use NAP for detecting attacks into face recognition sys-
tems, as we will cover in this paper.
In this paper we will compute the NAP subspace and eval-
uate if the nuisance factors of a face contain relevant infor-
mation for face spoofing detection.

3. The proposed method: NAP subspace and
normalization

In this section we present our proposed procedure, which
consists on the computation of the NAP subspace and the
normalization of the extracted information for further eval-
uation. To do it, we have first used the training data to ob-
tain the projection matrix to the NAP subspace. Then we
have used this matrix to normalize all the dataset’s images
in this NAP subspace, to finally obtain the variability at-
tributes that will be used during the evaluation to classify
genuine and spoofing attempts in face recognition systems.

3.1. NAP compensation scheme

One of the most exploited variants of the NAP technique
projects away multiple dimensions of a specifically de-
signed subspace, called NAP (or nuisance) subspace, with

the goal of reducing the channel induced variability. In our
case, the variability attributes (’channel’ effects) would be
all the effects induced to the image due to the face spoofing
attack (print or video replay attacks), such as reflections,
shadows... In fact, these variability attributes are what we
finally plan to obtain use to distinguish between genuine
and spoofing attempts during the evaluation.

Consider a set of n images (in vector form) of size N =
a× b pixels arranged into a n×N column data matrix X =
[x1, x2, ..., xn]. NAP tries to remove any additive distortion
in the images as follows:

X’ = P(X − M), (1)

where X’ denotes the new data matrix with compensated
’channel’ effects, M denotes a matrix of the same size as
X containing in each of its columns the global mean of the
images in X and P stands for the n× n projection matrix:

P = I −
d′∑
i=1

wiw
T
i . (2)

Here, I denotes the n × n identity matrix, wi represents
the i-th NAP direction, d’ stands for the number of NAP
directions.
Now, when looking at Eq. (2) we may ask ourselves how
we determine the d′, which corresponds to the number of
NAP directions needed for the compensation scheme. To
answer this question lets assume that we have nCj

sample
images from the j-th class, where C1, C2, ..., Cr represents
the class labels of the images in X.
For each of these images we can write:

xCj,k
= x̂Cj,k

+ ck (3)

Here, we modified some of our notations, the symbols used
in Eq. (3) denoting: Cj - the class label of the image, k -
index of the image in the j-th class, x̂Cj,k

- the channel-free
part of xCj,k

, ck - the vector encoding the channel effects
for the k-th image of the j-th class.

Lets assume that the channel effect vector ck represents
a random variable drawn from the standardized normal dis-
tribution N(0, 1). Then the class-conditional sample mean
is defined:

µCj =
1

nCj

(

nCj∑
k=1

x̂Cj,k
+

nCj∑
k=1

ck) =
1

nCj

nCj∑
k=1

x̂Cj,k
. (4)

The above expression suggests that the mean value of each
of the r classes µCj (j = 1, 2, ..., r) represents a channel-
free estimate of an image from the j-th class (if nCj >> 1).
Thus, by removing the corresponding class means from
each image in the data matrix X we arrive at a new data

4
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Figure 2. Overview of the proposed method. The procedure first computes the means of the genuine attempts of the different training
subjects, to then calculate the NAP subspace P projection matrix by calculating the covariance and extracting the eigenvector of the
spoofing training attempts. This matrix is then used, as well as the total mean, to normalize the images of the dataset and compute the
’error’ image. This ’error’ is then, or used to extract the HOG descriptors, or directly used, to compute the Principal Component Analysis
(PCA) and finally classify the testing images.

matrix containing only information about the channel ef-
fects in the original data, that’s exactly what we are look-
ing for. If we wanted to remove these effects from the in-
put data, we would have to estimate the NAP directions wi

(i = 1, 2, ..., d′) that correspond to the principal axes of the
scatter matrix Σw:

Σw =

r∑
j=1

nCj∑
k=1

(xCj
− µCj

)(xCj
− µCj

)T , (5)

where the axes are computed as the leading eigenvectors of
the following eigenproblem:

Σwwi = λiwi, i = 1, 2, ..., d′ ≤ n− r (6)

3.2. Normalization and ’error’ computation

Starting from the Eq. (1), we notice that the channel
effects can be removed from the facial image using the pre-
sented NAP compensation scheme, by estimating the NAP
directions corresponding to the artefacts. Any input image x
(in vector form) can easily then be normalized with respect
to this artefacts by projecting away a number of directions
in the NAP subspace. The normalization procedure can be
written as:

x′ = P(x− µ), (7)

where µ represents the global mean of the images in X.
In our case, as we want to use the information present in

the variability attributes, we just have to subtract this nor-
malized version of the testing images to the corresponding
original testing images, obtaining the ’error’ representing
the artefacts resulting of the NAP subspace computation:

e = x− x′. (8)

In the experiments made in the next section, we used this
’error’ images and also extracted the HoG descriptors from

it, to evaluate how this information could be useful for a
classifier in order to identify the spoofing attacks.

An overview schema of the whole proposed method ex-
plained in this section is shown in Figure 2.

4. Experimental results
In this section we first introduce both datasets, then ex-

plain briefly the pre-processing applied to the training and
testing sets of these datasets and finally present the results
obtained after feature extraction and classification.

4.1. Datasets

To study the effectiveness of the use of NAP as a counter-
measure for anti-spoofing, two popular face anti-spoofing
databases were chosen, named CASIA face anti-spoofing
database [84], and, OULU-NPU mobile face presentation
database with real-world variations [13].

The first, the CASIA face anti-spoofing database, con-
tains 600 video clips, 12 videos of each of the 50 genuine
subjects. This dataset covers three different type of attacks:
warped photo attacks, cut photo attacks and video playback
attacks; with three different image qualities (named low,
normal and high quality). In fact, each subject contains 12
videos (3 genuine and 9 fake), one for each category and
quality. The training set consists on 20 of these subjects
and the resting 30 subjects are leaved for testing. In Figure
3 the overall data for one subject is shown.

The second, the OULU-NPU mobile face presentation
database with real-world variations, contains 4950 video
clips that where recorded with 6 different smartphones, di-
vided between 55 subjects. To consider the real-world vari-
ations, the real videos and attack materials were collected
in 3 sessions with different acquisition conditions. The at-
tack types considered in the OULU-NPU database are print
(two different printers) and video-replay (two different dis-

5
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Figure 3. One complete video set of CASIA dataset for a subject.
The left top four images represent the low quality videos (L1-L4),
the left bottom are the normal quality videos (N1-N4), and the
right are the high quality videos (H1-H4). For each quality, from
left to right are genuine, warped photo attack, cut photo attack and
video attack.

plays). Due to the big amount of video clips present in this
dataset, we have just used the clips from one of the different
smartphones (considering the 3 capture sessions and differ-
ent attacks). Both testing and training parts consist on 20
different subjects. In Figure 4 the overall data captured for
one subject with one smarpthone in one of the capture ses-
sions is shown.

Figure 4. One complete video set of OULU-NPU dataset for a sub-
ject captured with one smartphone in one of the captured sessions.
From left to right, the images represent the real genuine attempt,
the two print attacks and the two video replay attacks.

4.2. Pre-processing: training and testing

As the final purpose of this experimental section was to
test if the nuisance subspace contains relevant information
for spoofing attacks detection, and this will be tested using
some classifier, we first need to pre-process the datasets’
videos.

For each of the videos (genuine and spoofing) from each
of the sets (training and testing) of both datasets (CASIA
and OULU-NPU), we extracted the frames and extracted
the grayscale cropped region corresponding to the face de-
tected on it using Viola-Jones algorithm. Finally, to speed
up the computation, we decided to resize the cropped faces
to 100 x 100 pixels.

Finally, for CASIA’s dataset, we got a total of 45400 im-
ages for training (12980 genuine and 32420 spoofing) and
79680 images for testing (27060 genuine and 52620 spoof-
ing). Then, for OULU-NPU dataset, we got a total of 22715
images for training (2843 genuine and 19872 spoofing) and
25272 images for testing (4582 genuine and 20690 spoof-
ing). An example of a pre-processed genuine and spoofing

images is shown in the Figure 5.

Figure 5. Example of a pre-processed training genuine (left) and
spoofing images (right) from CASIA dataset.

Once we had the training and testing sets ready, we
computed the NAP subspace as described in the previ-
ous section. During these experiments, we tried to see
how the different classifiers (that will be introduced later)
will perform depending on the number of NAP direc-
tions. After testing different NAP directions values as
d’=25,50,75,100,200,500 and classifying the resulting NAP
’errors’ we concluded that the results were optimal for a
NAP directions value of 50, so we took d’=50 as default
value for the rest of experiments.

4.3. Feature extraction

Now it was time to check if this ’error’ information, con-
tained in the NAP subspace, has relevant information for
spoofing detection. However, not only the whole ’error’ im-
ages were used in the evaluation of classifiers’ performance.
In fact, different feature extraction approaches where con-
sidered, such as the extraction of the LBP (Local Binary
Patterns) [1] or of SIFT (Scale-Invariant Feature Transform)
[33] or HOG (Histogram of Oriented Gradients) [2] descrip-
tors.

After testing these different approaches, we decided to
keep going the classification step with the HOG features and
the original ’error’ images from the NAP subspace, as both
approaches provided considerably better results compared
to the rest of feature extraction methods.

4.4. Principal Component Analysis (PCA)

As we are working with images of 100x100 pixels, the
’error’ images will have the same dimension (10000 dimen-
sional vector). On the other hand, for HOG we found that
the best results without comprising computational problems
were obtained for a cellsize of 4 during the HOG descriptors
extraction, resulting in 19375 dimensional vectors as HOG
descriptors of one image. This could definitely cause prob-
lems during classification due to the hardware constraints of
the computer used during the experiments, which lacks of
GPU.

To solve this issue, and to try to uncorrelate the different
variables of the feature vectors, PCA (Principal Component
Analysis) was performed in top of these vectors. To ob-
tain the optimal dimensionality of the PCA, we checked for
each database, the number of eigenvalues of the diagonal
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eigenvalues matrix, presented in the Eq. (6), that must be
summed up in order to satisfy the following relation:

λ1 + λ2 + ...∑n
i=1 λi

> 0.90 (9)

where the number of eigenvalues needed in the numerator
of the fraction to satisfy this relation, represents the dimen-
sionality of PCA. After checking this for both datasets, we
decide to use a PCA dimensionality of 50 for OULU-NPU’s
dataset and of 25 for CASIA’s one.

4.5. Classification and scoring

The performance of different classifiers recognizing
spoofing attacks has been tested, such as the Naı̈ve Bayes
classifier, the Random Forest classifier, the Multilayer Per-
ceptron (MLP) classifier and, finally, the Support Vector
Machine (SVM) classifier. The results of the classification
of the NAP ’error’ images of the testing images and the cor-
responding HOG’s descriptors obtained from them are re-
flected in the Table 1.

Table 1. Performance results of ’error’ images and HOG features
classification with Naı̈ve Bayes, Random Forest, MLP and SVM
classifiers, for CASIA and OULU-NPU datasets.

Different metrics have been used to compare the perfor-
mance of the different classifiers:

• True Positive Rate (TPR): it measures the quantity of
positives that are correctly identified as such.

• False Positive Rate (FPR): it measures the quantity of
negatives that are wrongly identified as positives.

• F-Measure: the harmonic mean of the precision (frac-
tion of relevant instances among the retrieved in-
stances) and recall (fraction of relevant instances over
the total amount of relevant instances). This metric is
better than the two metrics that it comprises, as it make
easier the performance comparison of different classi-
fiers.

• ROC Area: is the area under the receiver operating
characteristic curve (ROC). As ROC is the most used
metric for analysing the performance of classifiers and
reflects the TPR against the FPR, its area is really rep-
resentative of the classifier performance.

The ROC curves of the different experimental tests de-
scribed above can be observed in the Figure 6, where a.1)
and b.1) correspond to the performance of full ’error’ im-
ages for CASIA’s and OULU-NPU’s datasets respectively.
Then, a.2) and b.2) curves represent respectively CASIA’s
and OULU-NPU’s performance while using HOG descrip-
tors as features.

Taking a closer look to the Table 1, we can observe that
Random Forest classifier and MLP classifier are the ones
that perform better globally, obtaining TPR up to 88.3%
for OULU-NPU dataset and of 69.5% for CASIA dataset.
The rest of metrics present in the table make possible to se-
lect one classifier among the previous two. For example,
as it can be seen, Random Forest classifier usually performs
similar or better considering TPR, F-measure or the area un-
der the ROC curve. However, taking a look into the FPR,
we see that it’s considerably smaller for the MLP classifier,
what makes it even more suitable than the Random Forest
one. On the other hand, a big performance difference is
observed between both datasets, probably due to the differ-
ence between both databases, as OULU-NPU’s one is the
most recent and controlled one.

Finally, taking another look at the ROC curves, we can
confirm the hypothesis mentioned in the previous paragraph
observing the shape of the different curves. Both MLP and
Random Forest classifier curves are the ones that look better
in all cases. Nevertheless, the observation of these graphs
makes us possible to conclude that it looks like the system
works better with the HOG features than with the whole
’error’ images, as the receiver response curves look consid-
erably more stable in HOG’s case (with less oscillations).

Therefore, we can conclude that our method performs
the best using HOG descriptors as features and MLP as clas-
sifier in OULU-NPU’s dataset.

5. Conclusions
In this paper we have presented the first, to the best of our

knowledge, use of the Nuisance Attribute Projection (NAP)
for detecting spoofing attacks to face recognition systems.
We have proven that NAP, in combination with Histogram
of Oriented Gradients (HOG) features, could be consid-
ered as a countermeasure for biometric spoofing, alone or in
combination with other techniques mentioned in the state-
of-the-art section. We’ve also shown that a countermeasure
approach can be easily tested in more than one dataset, even
if our performance results vary more than expected from
one dataset to another.
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Figure 6. ROC curves of the four considered classifiers: Naı̈ve Bayes classifier, Random Forest classifier, MLP classifier and SVM classifier.
The curves a.1) and b.1) correspond to CASIA’s and OULU-NPU’s full ’error’ images evaluation, respectively. On the other hand, curves
a.2) and b.2) correspond respectively to CASIA’s and OULU-NPU’s HOG features evaluation.

Future work may try to improve the performance results
obtained in this paper, varying parameters such as NAP’s
dimensionality or the feature extraction method. Moreover,
the use of RGB frames could also reveal more artefacts after
NAP computation that may improve also our results.
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