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Abstract

Face recognition systems, trained in controlled environ-
ment, often fail to match low resolution images with high
resolution images. State-of-art systems for face identifica-
tion often fail when used on surveillance images, because of
lack of usage low resolution images when training models.

In this paper, we propose quintuplet metric learning
method, which aims to learn useful metric by distance com-
parisons. Idea is pretty similar to triplet metric learning
approach, but uses high resolution and low resolution im-
ages for training. Triplet metric uses anchor image and
compares it to positive and negative classes of the image.
All three images are of the same quality. In our proposed
method, we compare anchor image to positive and nega-
tive class of the same quality image and downsampled pos-
itive and negative images. This means that five images are
used for each quintuplet, where three are used for previ-
ously mentioned triplet.

In this paper we compare Open Source Biometric Recog-
nition framework, VGG neural network, triplet metric and
quintuplet metric on two datasets. We show that probability
of correct face recognition and/or identification is improved
when using triplet metric learning, and furtherly improved
when using quintuplet.

1. Introduction
With advancements in technology, surveillance cameras

now have a profound presence and are widely used in se-
curity and law enforcement applications. There are sevedal
instances where surveillance videos have helped agencies
in apprehending individuals who have commited crime or
identifiy individuals with the intent to commit crime. For
example, in 2005 subway bomb blasts in London [1], CCTV
footage helped law enforcement officers in identifying the
bombers. In 2008 Mumbai terrorist attacks [2], surveil-
lance cameras helped the agencies to track the activities
of terrorists and later identifying them. In both presented
cases, surveillance cameras could not foil the terrorist at-
tacks, however they served as the primary evidence in lead-

ing the investigation and also recognizing the individuals at
the end.

Fig. 1 illustrates the idea of proposed quintuplet met-
ric learning. Beside positive (P) and negative (N) class im-
age, for loss minimization we also use downsampled im-
age of both positive (Pd) and negative (Nd) class. We
feed images to VGG network which returns feature vectors
(XA,XP ,XN ,XPd,XNd) for each of the images. We then
use these feature vectors to learn quintuplet metric.

Figure 1. We feed five images (Anchor (A), Positive (P), Neg-
ative (N), Positive downsampled (Pd), Negative downsampled
(Nd)) to VGG neural network which returns feature vectors
(XA,XP ,XN ,XPd,XNd). Feature vectors are then used to cal-
culate quintuplet loss.

With the increasing use of video surveillance systems for
applications in security and forensics, the demand for face
recognition has been growing. However, recognizing faces
using such systems in real-world scenarios not only requires
one to deal with the facial image variations of pose, illumi-
nation and expression, but also those with insufficient reso-
lution due to long distances between the subjects of interest
and the camera sensors. For example, query images with
low resolution (LR) need to be verified using gallery ones
with high resolution (HR). How to match images across dif-
ferent resolution turns out to be a practical yet challeng-
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ing task. [54] One approach to match cross resolution im-
ages, i.e. low resolution probe with high resolution gallery,
is to downsample high resolution images to the level of
low resolution images before matching. However, infor-
mation useful for face recognition such as texture, edges
and other high frequency information is compromised while
downsampling the images. Another widely used approach
is to enhance the low resolution face images using super-
resolution techniques [3, 4] and then match with high reso-
lution images. Super-resolution techniques are intended for
reconstructing a high resolution view from low resolution
image(s) and are not optimized for face recognition applica-
tions. Though there are few techniques that incorporate face
recognition with super-resolution [5], they remain suscepti-
ble to environmental variations and introduce distortions.

Recently, FaceNet [6] introduced a triplet loss to min-
imize the difference between an anchor image and a pos-
itive one (i.e. with the same identity), while the distance
between it and its negative one is to be maximized. In ad-
dition, Wen et al. [7] introduced a center loss function into
existing CNN models, which also resulted in better recog-
nition performance.

Although the above methods have reported promising
results on challenging and large-scale benchmark datasets,
these approaches typically assume that both the query and
gallery images are with the same or similar resolution. In
other words, as we verify later in the experiments, these
frameworks cannot be easily extended to cross-resolution
recognition.

In this paper, we propose a novel metric learning ap-
proach called quintuplet. The goal is to learn a suitable and
efficient metric function to effectively measure the similar-
ity of face samples, under which the similarity of positive
pairs is enlarged and that of negative pairs is reduced as
much as possible. The proposed metric learning approach
quintuplet is similar to triplet network [6, 8, 9], with five
inputs used instead of three. More detailed description of
proposed approach is given in section 3.

In summary, we make the following contributes:

• Presemt novel metric learning procedure that is useful
for matching cross-resolution images

• Evaluate proposed method on two datasets

• Compare method with state-of-art face recognition and
identification systems for matching cross-resolution
images

2. Related work

The related work review is divided into three parts: (1)
review of cross-resolution face recognition related work, (2)
metric learning and (3) deep learning.

2.1. Cross-resolution Face Recognition

In the literature, several approaches have been presented
to match cross-resolution face images. These approaches
can be classified into two categories: super-resolution and
transformation based approaches. Super-resolution based
approaches for cross-resolution matching enhance the low
quality probe image before recognition. On the other hand,
transformation based approaches extract features that are re-
silient to resolution changes and matching cross-resolution
face images.

Super-resolution based approaches: In recent years,
many super-resolution face recognition approaches have
been presented [32] - [37]. Due to environmental varia-
tions and distortions, the proposed approaches failed to sig-
nificantly improve the recognition performance. However,
there are some approaches that simultaneously optimize
both super-resolution and face recognition [39, 5, 40]. Pro-
posed super-resolution technique from [40] improved face
recognition performance for the very low resolution prob-
lem.

Transformation based approaches: Unlike super-
resolution, another method to match cross-resolution im-
ages is to downsample high resolution images to the level
of low resolution images before matching. To address this
problem, several approaches were proposed [41] - [38]. Li
et al. [41] proposed to project both high resolution and low
resolution images to a feature space using coupled map-
pings. Biswas et al. [42] proposed a multidimensional scal-
ing approach to simultaneously transform the features from
high resolution gallery and low resolution probe images.
Lei et al. [43] proposed a local frequency descriptor based
on the magnitude and phase information to match cross-
resolution face images in the frequency domain. Shekhar
et al. [24] proposed a generative approach using the infor-
mation from high resolution gallery to match low resolution
probe images with illumination variations. Lei et al. [38]
proposed a coupled discriminant analysis for heterogeneous
face recognition (matching high vs. low resolution images).
To maintain the discriminative power and generalizability
of their approach, they utilized multiple samples from dif-
ferent resolutions along with locality information in the ker-
nel space.

2.2. Metric Learning

Many metric learning algorithms have been proposed
over the past decade, and some of them have been success-
fully applied to address the problem of face verification in
the wild [10] - [14]. Metric learning aims to learn a simi-
larity (distance) function. Traditional metric learning [15]
- [18] usually learns a matrix A for a distance metric || x1
- x2||A =

√
(x1 − x2)T A(x1 − x2) upon the given features

x1, x2.
Recently, prevailing deep metric learning [19, 20, 21,
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22, 23, 6] usually uses neural networks to automatically
learn discriminative features x1, x2 followed by a simple
distance metric such as Euclidean distance. Most widely
used loss functions for deep metric learning are contrastive
loss [26, 27] and triplet loss [25, 6, 8], and both impose
Euclidean margin to features. Our proposed approach is
similar to triplet approach, but instead of three factors uses
five.

Quadruplet metric learning: After triplet loss, quadru-
plet loss was introduced in [53] where authors used quadru-
plet network to investigate the presence of smile on face
images. Their approach aims at efficiently modeling sim-
ilarity from rich or complex semantic label relationships.
Proposed method is shown on Fig. 2.

Figure 2. Quadruplet-wise (Qwise) strategy on 4 face classes
ranked according to the degree of presence of smile. Instead of
working on pairwise relations that present some flaws, Qwise strat-
egy defines quadruplet-wise constraints to express that dissimilar-
ities between examples from (f) and (g) should be smaller than
dissimilarities between examples from (e) and (h). [53]

2.3. Deep Learning

Deep learning is arguably one of the most active re-
search area in the past few years. Generally, deep learning
aims to learn hierarchical feature representations by build-
ing high-level features from low-level ones. Existing deep
learning methods can be categorized in three classes: un-
supervised, supervised and semi-supervised, and they have
been successfully applied to many visual analysis applica-
tions such as object recognition [14], human action recog-
nition [28, 29] and face verification [30]. While many at-
tempts have been made on deep learning in feature engi-
neering such as deep belief network [31], stacked auto-
encoder [29], and convolutional neural networks [28], lit-
tle progress has been made in metric learning with a deep
architecture. More recently, Cai et al. [10] proposed a non-
linear metric learning method by combining the logistic re-
gression and stacked independent subspace analysis. Differ-
ently, our proposed quintuplet method employs a network to

learn the distance metric where the back propagation algo-
rithm can be used to train the model.

3. Metric learning

Metric learning is the task of learning distance function
over . A metric or distance function has to obey four ax-
ioms: non-negativity, identity of indiscernibles, symmetry
and subadditivity / triangle inequality. In practice, metric
learning algorithms ignore the condition of identity of in-
discernibles and learn a pseudo-metric. [55]

In next two subsections, we describe triplet metric learn-
ing and present our proposed approach quintuplet metric
learning. We will briefly discuss the similarities between
them and how they differ from each other. In chapter 4, we
present results both for triplet metric learning and for quin-
tuplet metric learning.

3.1. Triplet metric learning

Triplet network aims to learn feature embedding by op-
timizing the relative distance between the samples from the
same class and dissimilar classes. Fig. 3 illustrates the idea
of metric learning using triplet network.

Figure 3. Triplet example before and after learning. The essence
of metric learning is to make Anchor (A) and Positive (P) image
as close as possible and at the same time distance between Anchor
(A) and Negative (N) image as far as possible. [6]

Triplet loss is learned on a series of triplets, which con-
sist of images A (anchor image), P (positive class) and N
(negative class). The goal of the triplet loss is to keep A
closer to P than N. The triplet loss is formulated as:

Ltrp =

i∑
a,p,n

[||f(xa)− f(xp)||22−||f(xa)− f(xn)||22+α],

(1)
where f(xa) is feature vector extracted from Anchor (A)

image, f(xp) feature vector from Positive (P) image and
f(xn) feature vector from Negative (N) image.

Triplet network structure is illustrated on Fig. 4.
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Figure 4. Firstly, features are extracted from Anchor (a), Positive
(p) and Negative (n) images. Aim of triplet loss is to minimize dis-
tance between Anchor (a) and Positive (p) images and to maximize
distance between Anchor (a) and Negative (n) images.

Training is performed by feeding the network with sam-
ples where A and P are of the same class, and N is of dif-
ferent class. The network architecture allows the task to be
expressed as a 2-class classification problem, where the ob-
jective is to correctly classify which of P and N is of the
same class A. 4

3.2. Quintuplet metric learning

Quintuplet metric learning is quite similar to triplet met-
ric learning, but instead of just positive and negative classes,
we add downsampled images for positive and for negative
class. This gives as quintuples xA, xP , xN , xPd and xNd.
We use them to define quintuplet loss.

For quintuplet metric learning, we had to downsample
images for positive and negative classes. For downsam-
pling, we resized images from 224x224 to 16x16 and then
resized images back to 224x224. Using bicubic interpola-
tion, as can be seen from Fig. 5, a lot of information is lost.

Figure 5. We take image of size 224x224 and resize it to 16x16
and then we resize it back to 224x224.

Quintuplet loss is learned on a series of quintuplets,
which consist of images A (anchor image), P (positive
class), N (negative class), Pd (positive downsampled class),
Nd (negative downsampled class). The goal of the quintu-
plet loss is to keep A closer to P and Pd than to N and Nd.
The quintuplet loss is formulated as:

Lquin =

i∑
A,P,N,Pd,Nd

[||f(xA)− f(xP )||22−

||f(xA)− f(xN )||22 + ||f(xA)− f(xPd)||22−
||f(xA)− f(xNd)||22 + α],

(2)

where f(xA), f(xP ), f(xN ), f(xPd), f(xNd) are fea-
ture vectors extracted from Anchor (A), Positive (P), Neg-
ative (N), Negative downsampled (Pd), Positive downsam-
pled (Nd) images, respectively.

Quintuplet network structure is illustrated in Fig. 6.

Figure 6. Firstly, features are extracted from Anchor (A), Posi-
tive (P), Negative (N), Positive downsampled (Pd) and Negative
downsampled (Nd) images. Aim of quintuplet loss is to minimize
distance between pairs Anchor (A) - Positive (P) and Anchor (A) -
Positive downsampled (Pd) images and to maximize distance be-
tween pairs Anchor (A) - Negative (N) and Anchor (A) - Negative
downsampled (Nd) images.

4324



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

SBS
#1

SBS
#1

SBS Submission #1. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Training is performed by feeding the network with sam-
ples called quintuples, where A, P and Pd are of the same
class, and N and Nd are of different class. Since we
still have only two classes, task is still expresses as a 2-
class classification problem. Similar as for learning met-
ric distance using triplets, we used whole CASIA-WebFace
dataset. Every image was used once as an Anchor (A), Pos-
itive (P ), Positive downsampled (Pd), Negative (N ) and
Negative downsampled (Nd) were choosen randomly.

4. Experiments

4.1. Datasets

For training and testing three datasets were used. For
training we used CASIA-WebFace dataset [44] and for test-
ing Labeled Faces in the Wild [45] and SCface - surveil-
lance cameras face database [46].

CASIA-WebFace: The CASIA-WebFace dataset [44]
contains 494,414 images of 10,575 subjects and it is free for
research and educational purposes. Taken into account that
face recognition dataset only needs face image and identitiy,
images can be obtained relatively simply by just crawling
different web pages. This dataset was obtained by scrap-
ping images and their identities from IMDb website. Each
celebrity has an independent page on the website. This
makes in pretty simple to scrap the data from it. Images
were isolated so that only one face is on each of the images.

We cropped the faces from the images and resized them
to 224x224 pixels. Whole dataset was downsampled to
16x16 pixels and then resized to 224x224 pixels. Down-
sampled dataset was also used to learn quintuplet metric.
Downsampling process is illustrated on Fig. 5.

Labeled Faces in the Wild: The Labeled Faces in the
Wild [45], often reffered to as LFW is a dataset of face pho-
tographs designed for studying problem of unconstrained
face recognition. It consists of 13233 images fo 5749 peo-
ple. All of the images are 250 x 250 pixels in size and
were gathered using the Viola-Jones face detector. We used
LFW dataset for evaluation of our proposed approach. As a
comparison benchmark, 10-fold cross validation using ran-
domly generated splits was used. We additionally cropped
faces from the images and resized them to 224 x 224 pix-
els. Results are presented in the form of ROC curves with
inforamtion about area under the curve (AUC) and equal
error rate (EER).

SCface: The SCface dataset [46] consists of 4160 static
face images of 130 subjects. Images were taken in un-
controlled indoor environment using five video surveillance
cameras of various qualities. Images from different quality
cameras should mimic real-world conditions and enabled
robust face recognition algorithms testing, emphasizing,
different law enforcement and surveillance use case scenar-
ios. In datasert paper, four evauluation protocols were pro-

posed: DayTime tests, NightTime test, Performance metrics
and Training scenario.

For evaluation of our proposed approach, we used the
DayTime tests. This test is pretty much straightforward,
where we compare the mug shot image to all the other im-
ages (from cam1 to cam5) using three different distances
from where images were taken (4.20m, 2.60m and 1m).
Five different cameras were used which gives us 15 pos-
sible different probes sets, verying both in distances from
camera and in camera qualities. Comparing the probe im-
age to one gallery image is the most logical real-world (law
enforcement) scenario.

List of surveillance cameras used to obtain images that
we used for evaluation:

• cam1 - Bosch LTC0495/51

• cam2 - Shany WTC-8342

• cam3 - J&S JCC-915D

• cam4 - Alarmcom VFD400 - 12B

• cam5 - Shany MTC-L1438

As for both previous datasets, we cropped faces from im-
ages and resized images to 224 x 224 pixels. Results are
presented as rank n identification rate, where we present re-
sults for first 20 ranks.

4.2. Performance metrics

Performance of metric learned is demonstrated on both
face recognition problem (LFW dataset) and face identifi-
cation problem (SCface dataset).

Graphically, the results on LFW dataset are presented
as Receiver Operating Characteristic (ROC) [52], which
shows relation between true positive rate (TPR) and false
positive rate (FPR) for different thresholds.

As quantitative measurements, results for LFW dataset
are shown in a table as Area Under the ROC Curve (AUC)
and Equal Error Rate (EER) measurements. EER is the
value where 1-TPR equals FPR. Value of AUC is always
between 0 and 1, but since random guessing when facing 2-
class classification problems gives us result 0.5, we expect
results to be better than 0.5. AUC value can be interpreted
as probability, with which classifier correctly classifies ran-
dom sample.

Visually, the results on SCface dataset are presented
as Cumulative Match Characteristic (CMC). CMC curve
is rank based metric. Each probe sample is compared
against all gallery samples. The resulting scores are sorted
and ranked. We then determine the rank at which a true
match occurs. We measure True Positive Identification Rate
(TPIR), which is the probability of observing the correct
identitiy within the top K ranks.
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As quantitative measurements, we calculated how many
times correct identity was observed within top 20 ranks. Re-
sults are given in Table 2.

4.3. Used Algorithms

Two algorithms were used for metric learning and eval-
uation. VGG neural network [47] was used for extrac-
tomg feature vectors from images for metric learning on
CASIA-WebFace dataset [44] and evaluation on LFW [45]
and SCface [46] and Open Source Biometric Recognition
(OpenBR) [48] was used for evaluation on LFW and SC-
face datasets.

OpenBR: Open Source Biometric Recognition
(OpenBR) [48] is a framework for investigating new
modalities, improving existing algorithms, interfacing with
commercial systems, measuring recognition performance,
and deploying automated biometric systems. The project
is designed to facilitate rapid algorithm prototyping, and
features a mature core framework, flexible plugin system,
and support for open and closed source development. [48]

While algorithms implemented within the OpenBR
project are applicable to many biometric disciplines, partic-
ular effort has been devoted to the scenario of facial recog-
nition. The default face recognition algorithm in OpenBR
is based on the Spectrally Sampled Structural Subspaces
Features (4SF) algorithm [49]. 4SF is a statistical learn-
ing based algorithm used previously to study the impact of
demographics [50] and aging [51] on face recognition per-
formance. [48]

The 4SF algorithm is not claimed to be superior to other
techniques in the literature, instead it is representative of
modern face recognition algorithms in its use of face rep-
resentations and feature extraction. The 4SF algorithm
demonstrates strong accuracy improvements through sta-
tistical learning, allowing OpenBR to differentiate itself
from commercial systems in its ability to be trained on spe-
cific matching problems like heterogeneous face recogni-
tion. [48]

VGG: The VGG (Visual Geometry Group) neural net-
work [47] is a 16 weight layer convolutional neural network
used for image recognition. Authors were investigating the
effect of the convolutional network depth on its accuracy in
the large-scale image recognition setting. Main contribu-
tion of paper [47], where VGG is presented, is a thorough
evaluation of networks of increasing depth using an archi-
tecture with very small (3x3) convolutional filters, which
shows that a significant improvement on the prior-art con-
figurations can be achieved by pushing the depth to 16-19
weight layers, which is substantially deeper than what has
been used in the prior art.

VGG neural network can be used in many frame-
works: Caffe, The Microsoft Cognitive Toolkit, Tensor-
Flow, theano, Torch, MXnet, Chainer and Keras. We used

Keras which is build on TensorFlow.
We used a slightly different VGG model which was

trained in our laboratory, on the same dataset that authors
used to train VGG-16 model. We then used this model to
extract feature vectors from images that were used for met-
ric learning and for algorithm evaluation. Features that we
got from CASIA-WebFace dataset were then used for met-
ric learning and features that we got from SCface dataset
were used for algorithm evaluation.

4.4. Face Recognition

We used VGG neural network and OpenBR framework
in a face recognition scanario. Firstly, we evaluated both al-
gorithms on LFW and SCface datasets, before metric learn-
ing was done above VGG neural network. Then we used
triplet and quintuplet metric learned to repeat evaluation and
to prove that metric learning improves recognition rate. Fur-
therly, we proved that proposed quintuplet method outper-
forms triplet method.

For training we used 494414 triplets from CASIA-
WebFace dataset [44]. Every image from dataset was used
once for an anchor, positive and negative classes were cho-
sen randomly from the set. Results are presented in chapter

Table 1 shows AUC and EER values for evalution done
on LFW dataset. VGG in Table 1 is the original neu-
ral network model with 16 layers. VGG+Triplet and
VGG+Quintuplet are results that we got after we learned
triplet and quintuplet metric above feature vectors that we
got using original VGG network, respectively.

Table 1. UAC and EER values for tests on LFW dataset.
Algorithm AUC EER
OpenBR 0.8460 0.233
VGG 0.9277 0.1477
VGG + Triplet 0.9692 0.09
VGG + Quintuplet 0.9741 0.0826

Fig. 7 shows ROC curves for evaluation on LFW dataset.
As we can see from the Fig. 7, the best recognition improve-
ment is achieved using quintuplet network. Using triplet
network is slightly worse, because triplet metric wasn’t
trained for that kind of circumstances. Quintuplet metric
was learned for face recognition using cross resolution im-
ages, especially those with very low quality. Better and
more representative results are visible on Fig. 8 which
shows CMC curve for evaluation on SCface dataset.

Table 2 shows results for Rank-N identification done on
SCface dataset. All results are in percentages. Each number
presents percentage of correctly identified people within the
top N ranks.

Figure 8 shows CMC curves for evaluation on SCface
dataset. As we can see from the Fig. 8, the best recogni-
tion is achieved using OpenBR. Beside that, quintuplet met-
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Figure 7. ROC curves for evaluation on LFW dataset. Blue
line belongs to OpenBR, red line to original VGG, black line to
VGG+Triplet and green line belongs to VGG+Quintuplet. Pink
line presents random classification rate. We see that best result is
achieved using quintuplet metric learning.

Table 2. Rank-1 recognition rate values in percentages for tests on
SCface dataset.

Rank OpenBR VGG VGG+Triplet VGG+Quintuplet
1 21 4 3 5
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Figure 8. CMC curves for evaluation on SCface dataset. Blue
line belongs to OpenBR and shows much better performance
than VGG or our learned metrics. Green line belongs to
VGG+Quintuplet, black to VGG+Triplet and red belongs to origi-
nal VGG net. We can see that quintuplet metric learned improves
results when comparing with triplet metric or original VGG net.

ric leared outperforms original VGG neural network, which
means that proposed method is useful and needs to be fur-
ther investigated. Problem for such poor results using VGG
is in the network itself. It wasn’t trained for usage on low-
resolution images.

When origial VGG neural network from the VGG paper
was used, we got far better results than with the net that
was trained in our lab. Just for Rank-1, we got 70 % iden-
tification accuracy. When we tried learned metric, this per-
centages dropped, because features used for learning metric
weren’t extracted using original VGG network, but our lab’s
one.

Percentages on SCface prove that our proposed method
improves face recognition, but a lot of work needs to be

done in that area. For start, we will use original VGG
neural network to extract features from CASIA web-face
dataset, which will then be used to learn triplet and quin-
tuplet metrics again. We expect results to improve a lot,
because original network is returns much better results on
cross-resolution images. We will also test metrics used on
more datasets than just mentioned two, because they don’t
give enough transparency. Both LFW and SCface have, al-
though used for other purposes, images of relatively high
quality. Even though SCface dataset contains surveillance
video images, their quality is not that low.

Most time consuming task was feature extraction us-
ing VGG for CASIA-webface dataset where we had to ex-
tract 1 million features, because we used original dataset
and downsampled one, which sums up to about 28 GB of
data. Additionally, learning triplet and quintuplet metric
distance took a lot of time (12 hours for each attempt for
each method), because we needed about 50 GB of RAM,
but we didn’t have GPU’s on the same machine, so we had
to learn using only CPU. This took about 2 hours for each
model with batch size of 256 triplets/quintuplets, 2048 steps
per epoch and 10 epochs. Another problem we encountered
during learning was convergence of the model. We needed
to stop learning a few times because model over-fitted and
became useless.

5. Conclusion and futher work

In this paper, we proposed method called Quintuplet
metric learning. The method is not used instead of existing
neural network for feature extraction, but above neural net-
work. This means that it is used once we already have our
features, to better calculate matching score between images.
The idea of quintuplet metric learning is similar to triplet
metric learning described in [8], but also uses downsam-
pled images for learning. This means that beside positive
and negative class image of high-quality, positive and nega-
tive class images of low-quality are also used. To downsam-
ple images, we just resized images from 224x224 pixels to
16x16 pixels and then back again to 224x224. We man-
aged to learn network to behave and classify images with
greater performance than without proposed metric learning
method, but can be improved furtherly. For start, we should
use more appropriate neural network to extract features for
learning. Once we have done extraction step, we can try to
learn more efficient metric. We will not only use downsam-
pled images of positive and negative class, but various com-
binations where downsampled image of anchor class will
also be included.
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