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Abstract—Privacy is a highly debatable topic in the modern
technological era. With the advent of massive video and image
data (which in a lot of cases contains personal information on
the recorded subjects), there is an imminent need for efficient
privacy protection mechanisms. To this end, we develop in this
work a novel Face Deidentification Network (FaDeNet) that is
able to alter the input faces in such a way that automated
recognition fail to recognize the subjects in the images, while
this is still possible for human observers. FaDeNet is based an
encoder-decoder architecture that is trained to auto-encode the
input image, while (at the same time) minimizing the recognition
performance of a secondary network that is used as an so-
called identity critic in FaDeNet. We present experiments on the
Radbound Faces Dataset and observe encouraging results.

I. INTRODUCTION

Artificial Intelligence (AI) is slowly becoming an every-
day part of our lives. Recent developments in deep learning
have pushed AI-based technology into information services,
applications, gadgets, appliances, cars, and mobile platforms
we use on a day-to-day basis. One area, where the current
frontrunners in AI technology, i.e., deep models, have not yet
made a significant impact is deidentification of personal data,
and in particular, deidentification of facial images, which is a
special kind of so-called Privacy Enhancing Technology (PET)
that removes identity-related cues from the input imagery. Such
technology is of paramount importance for ensuring privacy in
services such as Google Street View or FourSquare, in multi-
media data collections that are shared between government
agencies, or online video-enabled chat rooms and video-
conferencing apps, where vulnerable demographic groups, such
as children or teenagers, are left exposed without suitable
protective measures.

To address this gap, we introduce in this paper FaDeNet
(Face Deidentification Network), a novel face deidentification
approach based on convolutional neural networks (CNNs). We
construct FaDeNet around so-called encoder-decoder networks,
which have proven highly useful for different (conditional)
image translation tasks, including semantic image segmentation
[1], [2], [3]. Depending on the loss function used during
training, encoder-decoder networks can be trained to modify
(alter, degrade) selected image characteristics, while leaving
others intact. We exploit this property in FaDeNet and train
the network for facial deidentification by constructing an
objective function composed of two terms. The first term
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Figure 1: Our face deidentification approach, FaDeNet, takes
a facial image as input (upper left) and alters it in such a
way that it becomes difficult for machine learning models to
recognize (lower left). The deidentified image is, however, still
recognizable by human observers.

is a pixel loss that forces the output image to be close to
input and, thus, promotes information preservation, which is a
desirable property of deidentification techniques. The second
term is a recognition-oriented term that aims to minimize the
recognition performance of a secondary CNN (pretrained for
face recognition) that is used as a so-called identity critic during
training and, thus, makes it difficult for automatic recognition
techniques to identify the person in the generated output image.
To achieve this selective deidentification we use an established
face recognition model, i.e., InceptionV3 [4], in FaDeNet. As
illustrated in Fig. 1, FaDeNet alters the input image in such
a way that it becomes difficult for machine learning models
to recognize, while the alterations are minute enough that
humans are still capable of recognizing the individuals in the
deidentified images.

The main contributions of this work are:
• We introduce a deep face deidentification model called

FaDeNet. The model relies on: i) an encoder-decoder
network that generates deidentified facial images and ii)
a pretrained face recognition model, i.e., InceptionV3,
which serves as a constraint for the generative part of
FaDeNet during training. The entire model is trained in



an end-to-end manner.
• We present an analysis of FaDeNet centered around

reidentification experiments. We show that the deidentified
images are of little use for face recognition models (even
for models not used during training), but still carry identity
information that is useful for human observers.

The rest of the paper is organized as follows. In Section II
we cover related works in the area of face deidentification and
briefly present some relevant deep learning models. In Section
III we introduce FaDeNet for facial deidentification. In Section
IV we describe the datasets used for our work, present training
and implementational details, provide visual examples of facial
images before and after deidentification and report results from
reidentification experiments. We conclude our work in Section
V with some directions for the future research work.

II. RELATED WORK

In this section we describe the deidentification process
and list key approaches that emerged in the field of facial
deidentification. We also discuss recent deep models that are
of relevance to this work.

A. Deidentification

Deidentification is defined as the process of concealing
personal identifiers or replacing them with suitable surrogates
in personal information in order to prevent the disclosure
and use of data for purposes unrelated to the purpose for
which the data was originally collected [5]. In image and video
data, the process of deidentification is commonly related to
deidentification of the facial region, which carries most of the
identity-related information in the imagery.

Early deidentification techniques mostly included naive
approaches, such as blacking-out, pixelation or blurring, which
are generally considered as unsuitable for deidentification
purposes [6], [7]. Blacking-out, for example, puts a black
patch over the original face image to conceal identity, which
guarantees anonymity, but also removes all non-identity related
information – including characteristics that could be useful for
further analysis (such as facial expressions). Pixelation and
blurring are also considered unsuitable for deidentification, as
they are prone to imitation attacks [8].

More recent face deidentification techniques from the lit-
erature try to overcome the above limitations by exploiting
formal privacy models, such as k-anonymity, which provide
formal guarantees regarding the anonymity of the deidentified
data [9], [8], [10]. Methods from this group include the seminal
k-Same approach [9] and related extension, such as k-Same-
Model [11], k-Same-select [12], or the more recent k-Diff-
furthest approach [13]. Most of these techniques rely on Active
Appearance Models (AAMs) and ensure convincing visual
deidentification results. Meden et al. [14] recently presented
a CNN-based approach based on the k-anonymity model
and showed that generative neural networks present a viable
alternative to AAMs, which mitigates some of the problems
associated with AAMs based deidentification. In this paper,
we follow this line of work and also present a CNN-based

face deidentification approach. Similarly to [14], our approach
also tries to achieve privacy protection through the use of a
generative model, however, our goal is to hide the identity
of the individuals in the imagery only for machine learning
models and not humans, which is conceptually very different
from the goals of [14].

Our model is related to the work of Chriskos et al. [15],
which deidentifies facial images using projections on hyper-
spheres. As with our approach, the deidentified images pro-
duced by the work in [15] are still recognizable by human
observers, but represent a challenge to automated recognition
algorithms. Another related approach is presented by Otman
and Ross in [16]. In this work, the authors use morphing to
hide gender information, while still preserving the identity
of the individuals. In a follow up work, Mirjalili and Ross
[17] described how to manipulate gender in face images while
retaining biometric utility.

For a more comprehensive review of existing face deidenti-
fication techniques, the reader is referred to some of the recent
surveys on this topic [5].

B. Deidentification with Deep Learning

Deep learning models have recently been shown to ensure
state-of-the-art performance in a number of vision-related tasks
[18], [19], [3] and have also been considered as a tool for
deidentification. Meden et al. [20], for example, introduced a
face deidentification approach using generative neural networks.
Here, a deidentification pipeline is described that ensures
identity protection through the use of a parametrized generative
network. The network is able to produce alternative facial
identities from a closed set of faces that can be used as
surrogates during deidentification. The approach was later
extended by integrating it into a formal k-anonymity based
deidentification model, called k-Same-Net [14].

Chi and Hu [21] used facial identity preserving (FIP) features
to preserve the aesthesis of the original images, while still
achieving k-anonymity-based facial image de-identification
and preserving desired utilities.

Brkić et al. [22] present a deidentification approach
for soft and non-biometric traits (including facial synthesis,
hairstyle and clothing) in video sequences. They use Deep
Convolutional Generative Adversarial Networks (DCGANs)
for face synthesis, recoloring scheme for clothing-color and
hairstyle deidentification and perform rendering of extracted
(segmented) hairstyles from existing facial images onto the
synthesized faces.

Mirjalili et al. [23] present an privacy protection approach
based on semi-adversarial learning which is similar to the
approach presented in this work from a methodological point
of view (using an auto-encoder architecture with additional
classifier), but differs in the application domain (privacy
protection of certain attributes, such as gender, race or age).
The transformed facial images, produced by the approach
from [23] can be used for face recognition, but are challenging
for automated gender classification. Our approach, on the other
hand, tries to hide identity information from the images that



is important from a machine learning perspective, while still
preserving the ability for human recognition of the altered
images.

C. Perceptual Learning and Adversarial Attacks

Recent machine learning techniques often define objective
functions based on high-level image representations produced
by deep learning models. These functions, commonly referred
to as perceptual loss functions, are at the hart of many state-
of-the art vision techniques and are also used in the work
presented in this paper.

An example of perceptual learning is presented by Johnson et
al. in [24], where a perceptual loss is used for image translation
tasks and image super-resolution. A similar idea is presented for
heterogeneous face recognition in by Sarfraz and Stiefelhagen
in [25]. Here, the authors use an objective functions that try to
minimize the difference between image features computed from
facial images captured in different visual domains (visible light.
vs. near infrared). Notably, our work uses a similar idea and
also relies on a objective function computed from a pretrained
CNN model, but uses a global objective (i.e., minimization of
the recognition performance) instead of an objective defined
over image features.

Our work can be seen to be related to the area of adversarial
attacks, where the goal is to alter the input images is such
a way that they become unrecognizable by machine learning
models or force the models into incorrect predictions. The
work from Nguyen et al. [26], for example, demonstrates how
deep architectures can be fooled into making high confidence
predictions for unrecognizable images, which might look
completely noisy or unreal to a human observer. Similarly,
Su et al. [27] describe how predictions of deep models can be
altered by modifying only one pixel. Another example from this
area is utilizing adversarial attacks [28] to force deep models
into making incorrect predictions. The goal of our FaDeNet is
similar to methods focusing on adversarial learning, but our
model tries to do the opposite - making images unrecognizable
for machine learning models, and less so for human observers.

III. FACE DEIDENTIFICATION NETWORK - FADENET

We now describe our selective face deidentification approach
built around the Face Deidentification Network, FaDeNet. We
start the section with a high-level overview of FaDeNet and
then discuss the architecture of FaDeNet’s components as well
as the training procedure and loss used during model learning.

A. Overview of FaDeNet

As illustrated in Fig. 2 FaDeNet consists of two main parts,
which we refer to as:

• A transformer network which tries to alter (deidentify)
the input image x in such a way that the difference
between the input and output image is minimized. The
minimization procedure is needed to ensure that as much
of the available information of the input as possible is
preserved in the deidentified image. If we denote the
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Figure 2: Illustration of FaDeNet. The model uses an encoder-
decoder network (i.e., U-Net - the transformer) to selectively
deidentify the input image, and a pretrained recognition
model (i.e., InceptionV3 - the identity critic) to ensure that
the deidentified images are not useful for automatic face
recognition. The recognition model is not used during run-
time.

output of the transformer network as y, then the input-
output mapping fθTN

can be defined as:

y = fθTN
(x), (1)

where θTN denotes the set of model parameters that need
to be learned during training.

• An identity critic, a CNN model pretrained for face
recognition that is used as a recognition constraint. It
serves as the identity classifier upon which a perceptual
loss can be defined. The goal of the perceptual loss is to
maximize the difference between identity labels obtained
from the input image x and deidentified image y. The
identity critic is used as a constraint for the training
procedure and is not needed during run-time. If we denote
the identity critic as fθIC , then the identity labels xid

(or better said the class-probability distribution) can be
computed from an input image x as follows:

xid = fθIC (x), (2)

where θIC again stands for the set of model parameters.
When implementing FaDeNet, we use a U-Net [1] archi-

tecture for the transformer network and separately trained
InceptionV3 [4] model as our identity critic. The U-Net
architecture is chosen due to it’s popularity, state-of-the-art
performance for various vision-oriented tasks and the fact that
an implementation is readily available1. The InceptionV3 model,
on the other hand, is selected because of its light-weight nature,
which allows us to train FaDeNet efficiently without significant
computational overheads. Next we describe the transformer
network and identity critic in detail.

B. The Transformer Network – U-Net

The transformer network (illustrated in Fig. 2) is a standard
U-Net [1], a state-of-the-art architecture initially developed
for fast and precise segmentation of images. The U-Net
architecture relies on an encoder-decoder structure that consists
of a contractive and an expansive path. The contractive path

1https://github.com/zhixuhao/unet

https://github.com/zhixuhao/unet


follows the typical architecture of a convolutional encoder,
consisting of repeated 3×3 convolutions followed by a rectified
linear unit (ReLU) and a 2 × 2 max pooling operation with
stride 2 for down-sampling. Each down-sampling operation
doubles the number of feature channels. In the expansive
path, every step consists of an up-sampling operation of the
feature maps, followed by a 2×2 convolution (also denoted as
“up-convolution”) that halves the number of feature channels.
The expansive path also concatenates appropriately cropped
feature maps from the corresponding contracting path at each
level. The concatenated feature maps are followed by two
3 × 3 convolutions and a ReLU activation. The final layer
uses 1 × 1 convolutions to map each 64-component feature
vector to the desired number of classes. The architecture has
23 convolutional layers in total [1]. To make the architecture
suitable for our purposes, we modify the last layer of the
network, so it generates 3-channel color images at the output.

C. The Identity Critic Network – InceptionV3

For the identitiy critic, we use the InceptionV3 [4] model,
pretrained for face recognition. It needs to be noted that the
parameters of the InceptionV3 model are not learned during
FaDeNet training, instead the model is used with frozen weights
and is exploited only as a recognition constraint (i.e., for the
definition of a perceptual loss) when training the transformer
network.

The InceptionV3 architecture is based on the idea of
incorporating multiple smaller models inside a bigger network.
Each of these smaller models, referred to as inception modules,
consist of multiple parallel pathways and each of them uses
different convolution and pooling layers to recover local
features via smaller convolutions and high abstracted features
with larger convolutions. Specifically, a single inception module
consists of 4 pathways: a single layer with 1× 1 convolution,
two layered 3×3 and 1×1 convolutions, two layered 5×5 and
1×1 convolutions and two layered 1×1 convolutions, followed
by 3× 3 max pooling layer. Each inception module achieves
a significant amount of dimensionality reduction via a filter
concatenation layer, which combines all 4 parallel pathways
into a single feature map of reduced size and applies a ReLU
activation before passing it into the next inception module.
The resulting network model is deeper and more complex than
many competing architectures, but still has a relatively small
number of parameters and lower computational complexity than
most competing models. No fully-connected layers are used in
InceptionV3, Instead, the last convolutional map is subjected to
channel-wise global average pooling, and the average activation
values of each of the 2048 channels are typically used as the
feature vectors of the input image and/or the input to a softmax
classifier during training [19].

D. Loss and Training

The goal of the FaDeNet training procedure is to learn the
parameters of the transformer network θTN using a combined
pixel-level and perceptual loss, where the pixel-level loss is
defined over the inputs and outputs of the transformer network

and the perceptual loss is defined over the outputs of the
softmax classification layer at the top of the InceptionV3 model.

Consider a training set of N facial images X = {x(i)}Ni=1

belonging to M identities. The end-to-end FaDeNet training
procedure can then be defined based on the following two
objective functions:

• The pixel-level loss L1(θTN ) that penalizes the difference
between the input and output images of the transformer
network and forces the transformed (deidentified) image
to be close to the input (making it recognizable to human
observers):

L1(θTN ) = ||x(i) − fθTN
(x(i))||2, (3)

where x(i) stands for an image from X and || · || denotes
the L2 norm.

• The perceptual loss L2(θTN ) that penalizes the cross
entropy between the identity labels corresponding to
the input and output images predicted by the identity
critic and consequently (indirectly) encourages the identity
features corresponding to the input and output images
of transformer network to be different (making the
images unrecognizable to machine learning models). The
perceptual loss is defined as:

L2(θTN ) = −
M∑
c=1

x
(i)
id logy

(i)
id , (4)

where x
(i)
id denotes the ground truth class probability

distribution (a one-hot vector) of the input image x(i) and
y
(i)
id denotes the output probability distribution produced

by the softmax layer of identity critic based on the
deidentified facial image y(i).

Finally, the combined loss Ltotal used for FaDeNet training
is defined as:

Ltotal = L1 − λL2, (5)

where λ is loss weighting parameter with value λ = 0.001.
We minimize Ltotal on our training set X using error back-
propagation. Note that the minus in the above equation
ensures that we minimize the recognition performance on
the deidentified training images. Before calculating L1, we
normalize all training images from X onto the unit circle using
the Euclidean norm.

IV. EXPERIMENTS AND RESULTS

This section presents experiments to evaluate our (selective)
transformative deidentification approach. We first discuss the
datasets used for network training and experimentation, we
describe the network training and the data augmentation
techniques used and lastly present visual results along with
a qualitative analysis which suggest that our proposed dei-
dentification approach is indeed effective against automatic
deep recognition models while preserving the possibility of
recognition by humans.
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Figure 3: Visual examples of original and deidentified pairs of faces. Images (a) – (e) show the original input images and
images labeled (f) – (j) show deidentified images generated by FaDeNet. Note that the deidentified images are visually still
very close to the originals from a human perspective, but are very different in the domain of extracted identity features, when a
pretrained InceptionV3 face recognition network is used for feature extraction. The results are best viewed in color.

Method Rank-1 (µ ± σ) – orig. Rank-1 (µ ± σ) – deid. Rank-5 (µ ± σ) – orig. Rank-5 (µ ± σ) – deid.

Inception V3 [4] (id. critic) 0.353± 0.015 0.023± 0.005 0.946± 0.028 0.119± 0.007
VGG-Face [29] 0.902± 0.024 0.058± 0.012 1.0± 0.019 0.254± 0.026

Table I: Recognition performance over five repetitions of recognition experiments with images form the Radbound Faces Dataset
before and after deidentification. Two different deep recognition approaches are included in the comparison: our identity critic
network InceptionV3 and the independently trained VGG-Face (trained by Grm et al. [19]).

Figure 4: Close-up detail of a texture rich region in the
deidentified image. We can clearly see that introducing the
perceptual loss term during training results in modified color
channels in the deidentification proces. This, in turn, reduced
the similarity of the extracted features in comparison with the
features obtained from the original images.

A. Datasets

We use the XM2VTS dataset [30] to train FaDeNet end-
to-end. The dataset consists of good quality, mostly frontal
face images with neutral facial expressions, taken against a
uniform background. There is a total of 2360 face images of

295 subjects in the dataset (eight images per subject, shot in
multiple sessions).

We use the Radbound Faces Dataset [31] as our test image
set, due to the small number of identities included, high quality
image with good alignment with eyes facing towards the
camera, providing uniform image background and very good
illumination conditions. The dataset contains facial images
of 67 subjects with eight different facial expressions (i.e.,
anger, disgust, fear, happiness, sadness, surprise, contempt
and neutral) per subject. The complete dataset captures faces
in three different gaze directions and from five camera angles
under all eight facial expressions. From these images, we select
only the frontal images displaying 57 adult subjects with 8
different facial expressions for our test set in the recognition
experiments. There is a total of 456 images in the dataset, and
we equally divide them into 228 gallery images and 228 probe
images).

B. Training details

First the identity critic network of FaDeNet is trained as
identity classifier with a batch size of 32 over 40 epochs, using
the Adam optimizer with default parameters.

After training the identity critic, the transformer network of
FaDeNet is trained with a batch size of 32 over 40 epochs,
using the Adam optimizer with default parameters and the
learning rate of lr = 0.00001. The dimensions of the input
and output images are fixed to 224 × 224 pixels, due to the
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Figure 5: Recognition experiments: average Cumulative Match
Characteristics (CMC) curves over five repetitions of the
recognition experiments on the original and deidentified images
of the Radbound Faces Dataset with two recognition techniques.
Results indicate that unaltered identities are correctly recog-
nized most of the time with both techniques considered, while
the performance is severely degraded after performing selective
deidentification.

usage of same size input and output dimensions while training
identity critic network.

To avoid over-fitting, we perform various data augmentation
tasks during training. Specifically, we use random horizontal
flips with a probability of 0.5. Additionally we apply cropping
and padding in the range [−5%, 10%], using the imgaug aug-
mentation library2. Lastly, we add some affine transformations
to the sequential augmentation in form of random scaling
with a scaling factor in the range [80%, 120%] in both image
directions, and random rotations in the range of [−5◦, 5◦]. Such
augmented images enable the transformer network to converge
quicker and produce better resulting output images.

C. Visual Examples

Some visual examples of image pairs before and after the
deidentification are displayed in Fig. 3. As we can see, the
transformer network mixes the color channels, so the output
appear as selectively perturbed color-like images with visually
recognizable facial structures while modifying only local
patterns in such way, that the InceptionV3 recognition model is
unable to infer the correct identity. In other words, the network
alters the image in such way, that recognition is still possible
for a human observer, but it becomes significantly difficult
when recognition is done based on extracted features generated

2https://github.com/aleju/imgaug

by a pretrained recognition network, such as InceptionV3 or
VGG-Face as we show in the next section.

In Fig. 4 a facial patch from a texture rich region is enlarged
to highlight the effect of the transformer network. We can
see how edges and other high frequency details are altered
when the patch is examined up-close. If we observe the details
carefully, we can distinguish between displacements and color
alterations of each of the image channels. We presume that these
displacements are the main reason for facial deidentification
in the feature space, as it is indicated in results in the next
Subsection IV-D.

D. Recognition experiments

We quantify the efficiency of our deidentification approach
on automated recognition models through recognition experi-
ments with images from the Radbound Faces Dataset [31]. We
randomly split the 456 images of 57 identities from the dataset
during each experimental run into probe image set consisting
of 4 randomly selected facial images per each identitiy to be
deidentified (total of 228 images) and the remaining set of 4
images per identity to serve as the gallery (total of 228 images).

We perform identification experiments with the constructed
probe and gallery sets, repeating this process five times and
report the identification performance in the form of the average
rank one and rank five recognition rates (Rank-1 and Rank-5)
and corresponding standard deviations computed over the five
experimental repetitions. Experiments are conducted before
and after deidentification to assess the performance level of
deidentification by the proposed approach.

The results of the recognition experiments on the unaltered
and deidentified Radbound Faces Database are shown in
Figure 5 in the form of Cumulative Match Characteristics
(CMC) curves and in Table I as mean Rank-1 and Rank-5 rates
with corresponding standard deviations.

We use two recognition models for the experiments: i)
InceptionV3 that was already used during FaDeNet training,
and ii) an independently trained CNN face recognition model
VGG-Face (taken from [19]). The latter model is used to
evaluate the generalization capability of the deidentification
approach. We use features from the 6-th dense layer when
evaluating VGG-Face, which produces a feature vector of 4096
values. When evaluating InceptionV3 we obtain features from
the last flattening layer of size 2048, which is placed in between
last average pooling and final softmax layer. Once the features
are extracted, we rely on the cosine distance to measure the
similarity between feature vectors and conduct recognition.

As can be seen, both of the two evaluated recognition
approaches (our identity critic and independently trained VGG-
Face) achieve high recognition rates on unaltered images, which
suggests that the original images are relatively easy to identify.
On the other hand, the recognition performance is severely
impacted by our deidentification approach, as it can be seen
in Figure 5.

All in all, the empirical evaluation suggests that the risk
of reidentification for images deidentified with our approach
is severely degraded. The recognition performance of all

https://github.com/aleju/imgaug


tested recognition techniques has significantly dropped after
performing deidentification.

V. CONCLUSIONS

Our results indicate that introducing an additional critic
network into the training process of a transformer network
for face deidentification results in a deep model, that can
deidentify input images in such way, that the processed
images are still recognizable to human observers, however
the features obtained from these altered images (by using deep
recognition networks) are scrambled to a degree that hinders
the possibility of re-identification by state-of-the-art automated
methods based on deep learning. In our opinion, this research
opens new opportunities for research on deep learning based
deidentification as well as offers new insights and questions
about the interpretability of deep features produced in such
models.
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[19] K. Grm, V. Štruc, A. Artiges, M. Caron, and H. K. Ekenel, “Strengths
and weaknesses of deep learning models for face recognition against
image degradations,” IET Biometrics, vol. 7, no. 1, pp. 81–89, 2017.

[20] B. Meden, R. C. Mallı, S. Fabijan, H. K. Ekenel, V. Štruc, and P. Peer,
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