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Abstract—Automated person recognition from surveillance-
quality footage is an open research problem with many potential
application areas. In this paper, we aim at addressing this
problem by presenting a face recognition approach tailored to-
wards surveillance applications. The presented approach is based
on domain-adapted convolutional neural networks and ranked
second in the International Challenge on Biometric Recognition
in the Wild (ICB-RW) 2016. We evaluate the performance of
the presented approach on part of the Quis-Campi dataset and
compare it against several existing face recognition techniques
and one (state-of-the-art) commercial system. We find that the
domain-adapted convolutional network outperforms all other
assessed techniques, but is still inferior to human performance.

Index Terms—Surveillance, face recognition, deep models,
Quis-campi

I. INTRODUCTION

THE demand for surveillance systems is growing rapidly.
To be useful, such systems require active human su-

pervision and screening of all recorded surveillance footage,
which is a demanding and time consuming task considering
the number of security cameras commonly installed at the
surveilled areas. Clearly there is a need to devise automated
approaches capable of autonomously recognizing people from
security videos without human intervention. Unfortunately, the
quality and variability of the security footage makes it difficult
to develop automated solutions capable of matching human
performance.

To address this problem, we present in this paper a face
recognition approach based on domain-adapted convolutional
neural networks. The presented approach exploits the so-called
VGG convolutional network trained on a large dataset of facial
images and uses the pretrained VGG network to process the
security footage and extract high-level facial representations.
A softmax classifier is then trained on top of the very deep
network using facial images captured by a security camera.
Here, the classifier acts as a domain-adaption layer which
exploits the facial representations produced by the network
to conduct identity inference in the target domain (i.e., on the
security footage). The presented approach was submitted to
the International Challenge on Biometric Recognition in the
Wild (ICB-RW) organized in the scope of the International
Conference on Biometrics 2016 and ranked second among
nine participants.

In the remainder of the paper we describe the domain-
adapted convolutional network used for our ICB-RW submis-
sion and present experimental results on the Quis Campi [3]
dataset. We describe comparative experiments with various
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face recognition systems and also compare the performance
of the presented approach with human performance on the
same data.

II. DEEP LEARNING FOR SURVEILLANCE APPLICATIONS

A. Deep Learning and Convolutional Neural Networks:

In recent years deep learning has attracted significant atten-
tion in various application domains, such as natural language
processing, computer vision or signal processing. Deep models
have shown state-of-the-art performance for different research
problems by learning high-level feature representations from
raw input data through a hierarchy of model layers.

For computer vision problems, the predominant deep mod-
els are convolutional neural networks (CNNs), which consist
of cascaded stacks of convolutional filters. The networks as
a whole are parameterized by the weights of the individual
filters θ = {W} that are learnt during training. At each layer,
the output of the previous layer is processed via convolutional
filtering, and the output is subjected to a non-linear activation
function. For the n-th layer of an N -layer network this can be
formalized as follows:

yn = fθn(yn−1) = σ(yn−1 ∗Wn), (1)

where yn and yn−1 (1 ≤ n ≤ N ) represent the outputs of
n-th and (n− 1)-th layer, respectively, σ denotes a non-linear
activation function, ∗ stands for the convolutional filtering, the
set of open parameters of the n-th layer are the filter weights,
i.e., θn = {Wn}, and the input to the first layer (n = 1) are
the raw (unprocessed) images. An N -layer deep CNN is then
described as:

y = (fθN ◦ fθN−1
◦ ... ◦ fθ1)(x), (2)

where x and y are inputs and outputs of the network, re-
spectively, and ◦ stands for the function-composition operator.
To reduce the computational requirements and the size of the
parameter space of the CNNs, the convolutional layers are
commonly interspersed with dimensionality-reducing layers,
such as max-pooling, average pooling or strided convolutional
layers, which effectively implement different subsampling
strategies.

By training convolutional networks via gradient descent, the
image representation is learned directly from the input data
in an end-to-end manner, as opposed to classical computer
vision approaches where the image descriptors are typically
hand-crafted before being fed to some classifier.
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(a) CMC curves for all tested methods (b) Sample images from the ICB-RW dataset
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(c) AUC values across three levels of difficulty
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(d) R1 values across three levels of difficulty

Figure 1: Experimental results of the evaluation. The images show: (a) the CMC curves for the comparative assessment, (b)
sample images from the ICB-RW dataset (manually) partitioned into three subsets according to the level of difficulty the images
pose for the recognition process, (c) a comparison of AUC values across the three difficulty levels for all assessed methods,
and (d) a comparison of rank 1 recognition rates across the three difficulty levels for all assessed methods. The figure is best
viewed in color.

B. The VGG architecture

The VGG network architecture, introduced for face recog-
nition in [2], represents a 16-layer CNN that falls into the
class of so-called very deep convolutional networks. The VGG
network achieves competitive performance due to some key
differences over earlier network architectures, i.e.,:

• Small filters: All convolutional filters are of size 3 × 3
pixels, as opposed to earlier CNNs which used much
larger filter sizes. By using multiple 3×3 convolutions in
a sequence, a similar effect is achieved as with larger fil-
ters (receptive fields), but with a less extensive parameter
space.

• No strides: Previous CNN implementations used large
filters combined with strides of more than 1 (commonly:
4) to subsample the input image. This adversely affects
performance and is not required with the VGG architec-
ture.

• Constant representation size: Every sub-sampling step

by a factor of 4 (max-pooling over a 2×2 neighborhood)
is followed by a 2-fold increase in the number of convo-
lutional filters in the following layers. This process results
in a constant representation size of all layer outputs
(in terms of memory requirements) and improves the
computational performance of the CNN.

C. The VGG network for surveillance applications

Training a competitive VGG network for face recognition
in surveillance scenarios requires large amounts of training
data and significant computing resources. The original VGG
network, for example, was trained with 2.6 × 106 facial
images over several weeks on a computer equipped with
4 high-performance GPUs [2]. To make the VGG network
applicable to surveillance scenarios, we resort to domain
adaptation techniques and apply them to the pretrained VGG
(face) convolutional network from [2]. We perform net surgery
on the VGG network and use the pretrained configuration
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for representation calculation. On top of the network we
train a probabilistic multi-class softmax classifier using the
development set of the ICB-RW data.

Assume a set of training vectors Y = {yi}i=1:L belonging
to M distinct classes. A softmax classifier computes a vector
of posterior probablities p ∈ RM×1 for all target classes
through the softmax transformation of a linear function of y,
i.e.:

p =
eW

Ty+b∑M
i=0 e

wT
i y+bi

(3)

where the image representation y ∈ RK×1 is generated
by the pretrained VGG network and the matrix W =
[wT

1 ,w
T
2 , . . . ,w

T
M ]T ∈ RK×M and the vector b =

[b1, b2, . . . , bM ]T ∈ RM×1 are learned parameters of the
classifier. The classifier is trained via minibatch error back-
propagation with stochastic gradient descent using the cate-
gorical cross-entropy between the current output probability
distribution and the desired probability distribution as the
objective function. A given input vector y is classified into
the class with the highest posterior probability.

With the presented approach the pretrained VGG network
is treated as a feature extractor and the softmax classifier as
the domain-adaptation layer that maps the computed image
representation into the target application domain.

III. EXPERIMENTS AND RESULTS

We assess the suitability of the domain-adapted VGG net-
work (DA-VGG) for surveillance scenarios on part of the
Quis-Campi [3] dataset used for the ICB-RW 2016 com-
petition. The data contains gallery and probe images of 90
distinct subjects (see Fig. 1 (b)). The high resolution gallery
images consist of one frontal and two profile images of each
subject captured under frontal pose and uniform illumination
in studio-like conditions. The probes are of lower quality and
comprise 10 images captured by a security camera. Our goal
is to automatically determine the identity of the subjects in the
surveillance footage (i.e., the probes) given the high-resolution
galleries.

For the experimental evaluation we follow the ICB-RW pro-
tocol and split the gallery and probe images into a development
set, used for training, and an (hold-out) evaluation set, used
for performance reporting. The former contains all gallery
images and half of the probes, while the latter comprises
the same galleries and the other half of the probe images.
We conduct 450 identification experiments (each involving
270 probe-to-gallery comparisons) for each experimental run.
We report performance in terms of Cumulative Match Score
Curves (CMCw), the rank-1 (R1) recognition rate and the area
under the CMC curves (AUC). Prior to the experiments, we
crop facial regions from the gallery and probe images using
the bounding boxes that ship with the data and rescale the
cropped regions to a size of 224× 224 pixels.

We provide comparative results for a number of competing
methods, i.e., CSU baseline recognition systems based on
Linear Discriminant Analysis (CSU LDA) and the Bayesian
intrapersonal/extrapersonal classifier (CSU BIC) [4], a deep

convolutional neural network based on the VGG architec-
ture trained solely on the development set of the ICB-RW
data (ICB-VGG), and a state-of-the-art commercial off-the-
shelf (COTS) face recognition system. Additionally, a trained
researcher manually assigned a similarity score between 1
(surely different people) and 5 (surely the same person) to
each probe-to-gallery comparison to provide insight into the
capabilities of human annotators on the data. The scoring
methodology followed the approach presented in [5].

The CMC plots of the experiments are presented in Fig. 1
(a). The DA-VGG network outperforms the CSU baselines
with a margin of over 30% in terms of the rank-1 recognition
rate. The DA-VGG network also results in better performance
than the ICB-VGG network, suggesting that large amounts
of training data (albeit outside the problem domain) are a
must for the training of competitive deep models. The COTS
system results in a rank-1 recognition rate of 43%, which is
below the 66% ensured by the DA-VGG network. However,
facial detection is an integral part of the COTS-system, so the
reported performance also includes potential errors at the face
detection stage, which is not the case for other methods.

Among all tested approaches, the DA-VGG performance is
the closest to human performance, though the performance gap
is still around 15% on this dataset at rank 1 in favor of humans.
This observation is in line with previous work, e.g. [5], which
also suggests that for difficult conditions automatic systems
are still inferior to humans.

To further break down these results, a human annotator
partitioned all probe images into three subsets (i.e., easy,
challenging and hard) according to the perceived level of
difficulty of the images for recognition - illustrated in Fig. 1(b).
The AUC values and rank 1 recognition rates across the three
levels are shown in Figs. 1(c) and (d) for all assessed methods.
The human performance is the most consistent, while all other
methods deteriorate in performance when moving to more
difficult conditions. In terms of AUC, human and DA-VGG
performance are reasonably close on “easy” images, while the
performance gap is bigger for the “hard” images.

IV. CONCLUSIONS

We have presented our work related to the ICB-RW evalua-
tion. Our experimental results suggest that, despite the lack of
large-scale datasets of surveillance footage suitable for training
deep face recognition models, adaptation techniques can be
exploited to develop models with reasonable performance.
Nevertheless, automated face recognition for surveillance ap-
plications remains a challenging problem and human perfor-
mance still remains superior for difficult conditions. Given
the potential benefits of fully-automated surveillance systems,
further research in this area is warranted.
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