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Abstract—Automatic ear recognition is gaining popularity
within the research community due to numerous desirable
properties, such as high recognition performance, the possibility
of capturing ear images at a distance and in a covert manner,
etc. Despite this popularity and the corresponding research
effort that is being directed towards ear recognition technology,
open problems still remain. One of the most important issues
stopping ear recognition systems from being widely available are
ear occlusions and accessories. Ear accessories not only mask
biometric features and by this reduce the overall recognition
performance, but also introduce new non-biometric features that
can be exploited for spoofing purposes. Ignoring ear accessories
during recognition can, therefore, present a security threat to
ear recognition and also adversely affect performance. Despite
the importance of this topic there has been, to the best of our
knowledge, no ear recognition studies that would address these
problems. In this work we try to close this gap and study the
impact of ear accessories on the recognition performance of
several state-of-the-art ear recognition techniques. We consider
ear accessories as a tool for spoofing attacks and show that
CNN-based recognition approaches are more susceptible to
spoofing attacks than traditional descriptor-based approaches.
Furthermore, we demonstrate that using inpainting techniques
or average coloring can mitigate the problems caused by ear
accessories and slightly outperforms (standard) black color to
mask ear accessories.

Index Terms—ear accessories, accessories removal, ear recog-
nition, ear biometrics, biometrics

I. INTRODUCTION

Ear recognition techniques have several advantages over
recognition approaches using competing biometric modalities
as emphasized in a recent survey [1]. However, some recent
studies, such as [2], suggest that partial occlusions of the ear
region, the presence of ear accessories and variable facial
poses under which the images are captured are three of the
main factors adversely affecting ear recognition performance.
The absence of dedicated mechanisms for accounting for the
presence of ear accessories in particular is one of the leading
shortcomings of existing ear recognition techniques.

Ear accessories contain their own identifiable characteris-
tics. This means that they not only occlude usable information,
i.e. biometric ear traits, but also present a feature-rich source
of non-identity related data. To make matters worse, such
accessories can easily be replicated and used in so-called
presentation attacks where the goal is to spoof ear recognition

systems. Consequently, the common use of ear accessories
poses one of the most problematic aspects of ear recognition.

Due to the fact that ear accessories themselves contain
certain features that can be used to identify a subject (e.g., a
person carries the same earrings in all enrollment images), an
classification model can implicitly learn to use the information
from the accessories to distinguish between subjects. This can
lead to two types of problems, P1 and P2:

• P1: A person does not wear the correct (or any) type of
ear accessories in the probe image and the classification
model fails to recognize the person. This problem affect
the overall recognition performance of the classification
model and limits in usability.

• P2: A person wears the same type of ear accessories as
used by some other person during the enrollment stage
and gets recognized as the person originally wearing the
ear accessory. This characteristic (P2) can be exploited
within a presentation-type of attack [3] on the classifi-
cation model, where an attacker tries to impersonate a
target identity and, consequently, affects the security of
an ear recognition system.

To alleviate the outlined issues, ear recognition systems
need to be aware of the presence of ear accessories and
incorporate mechanisms to ignore them when performing
recognition. In related fields, such as face recognition, such
mechanisms, e.g., [4]–[6], typically first detect the occluded
areas and then either remove them from the image or replace
them with suitable surrogates. Such an approach is expected
to circumvent problem (P2), because features related to ear
accessories are removed and the basis for presentation attacks
is eliminated from the image. However, the first problem
(P1) still persists and measures need to be taken to ensure
that ear accessories are not taken into account when learning
recognition models, so accessories need to be removed from
the training (and enrollment) images as well.

In general, there are multiple options for ear accessories re-
moval. A straight forward approach is to replace image regions
corresponding to ear accessories with a uniformly colored
patches (e.g., black or white patches). Another possibility is
trying to incorporate information from the area surrounding
the ear accessories into the surrogate region using inpainintg
techniques. Both of these approaches have certain advantages
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Fig. 1: Illustration of the inpainting process used in this work. We assume that the location and shape of the ear accessories
is known and try to replace the ear accessory in the input image with a surrogate region produced by a context encoder. The
result (on the out most right) is an inpainted images where the ear accessory has been removed.

and disadvantages
Using uniformly colored regions, for example, can in-

troduce new edges and shapes that the recognition system
can erroneously use to distinguish and classify samples.
However, this can also happen when replacing accessories
with realistically-looking textures. Such textures can introduce
new, non-biometric features that the classification system can
wrongfully assume to be important. The resulting images may
look better to the human observer compared to images masked
with uniformly colored areas, but can again adversely affect
the recognition process. Due to this issues we evaluate both
approaches in this work (i.e., inpainting and masking).

Generally speaking, there are two goals when performing
ear accessories removal:

• Noise removal: The first goal is to remove all non-
biometric features, while not introducing new class-
biased information. This can be evaluated by observing
the recognition performance which should not change
significantly compared to images without ear accessories.

• Realistic appearance: In some domains, keeping realisti-
cally looking images of ears is preferable to introducing
artificial blobs and other non-naturally looking areas –
this is important if we plan to use the processed images
with removed earrings in some other, already developed
systems, e.g. we wish to perform accessories removal
before inputting the image into an ear segmentation
system, or would like to use it in conjuncture with a
face detector. In cases like this it is key that the replaced
areas appear natural and do not stand out.

Our goal in this work is to answer two basic research
questions related to ear accessories removal, which, to the best
of our knowledge, have not been addressed in the literature
before: 1) Do accessories removal techniques help recognition
performance? and 2) Which methods of ear accessories re-
moval work best? When trying to remove accessories from ear
images, the first step is typically to detect whether ear acces-
sories are present in the input image in the first place and to lo-
calize the accessory region using segmentation techniques [7],
[8]. However, evaluating the potential of accessories removal
techniques in conjunction with detection and segmentation

may lead to biased results, as the detection/segmentation
performance also affects accessories removal. We, therefore,
limit ourselves to oracle-type of experiments in this work
and assume that the location and shape of the accessories is
already known and binary masks exist that can be used to
conceal the ear accessories. In practice, different detection and
segmentation approaches can be used in the final recognition
pipeline to generate the actual masks - see, e.g., [7]–[9].

The main contributions we make in this work are:

• We conduct (for the first time) and empirical investigation
into the effects of ear accessories on the performance
of ear recognition techniques and study the possibility
of using accessories for presentation attacks. We use
recent convolutional-neural-network-based (CNN-based)
approaches as well as traditional ear recognition ap-
proaches for our experiments.

• We present a novel approach to ear accessories removal
using CNN-based inpainting [10] of textures that yields
realistically looking images. A diagram of the process is
illustrated in Fig. 1.

• We introduce a novel dataset of ear images with anno-
tated ear accessories containing artificially generated and
superimposed earrings that is made freely available to the
research community from http://ears.fri.uni-lj.si.

II. RELATED WORK

Although ear recognition has gained on popularity in recent
years [11]–[15], ear accessories and their effects on recogni-
tion has, to the best of our knowledge, not yet been studied
comprehensively in the literature. This is in stark contrast to
other biometric problems, where studies regarding occlusions
and accessories are common and have contributed significantly
to the performance and most of all robustness of biometric sys-
tems [4], [5], [16]–[19]. In [20], [21], for example, the authors
studied the effect of the presence of face accessories, such as
eyeglasses, scarfs and hats, on face recognition performance
using Local Binary Patterns (LBPs). These works are related
to ours in the sense that the authors address a conceptually
similar problem with similar characteristics.

http://ears.fri.uni-lj.si


Many solutions to the problem of texture replacement
(also tailored specifically toward accessories removal) have
been proposed in the literature. In the context of biometric
recognition, these have most commonly been applied for
face recognition. Early approaches were based on a statistical
analysis of the textures surrounding the accessories areas [22],
[23], whereas more recent inpainting methods are mostly based
on CNNs [5], [10], [16], more traditional approaches [4] or a
combination ob both, such as [24].

However, the goal of ear accessories removal is in essence to
remove discriminative features from accessories and replacing
them with artificially generated surrogates [25], produced
for example by generative neural networks (GNNs). Along
these lines, the authors of [5], [16] use generative adversarial
networks (GAN) for image inpainting. GANs, however, tend to
produce unrelated data with high probability, if not constantly
constrained by the unwanted image [16]. Auto-encoders, on
the other hand, tend to generate overly smoothed images [16].
One of the possible solutions to this problem is to condition
the auto-encoder on the corrupted images and using a so-
called context encoder. In [10], the authors use such an
context encoder to predict missing data and generate sharp and
realistically looking surrogate images. We use a similar idea
and also build our inpainting process around context encoders.

III. METHODOLOGY

The key questions regarding ear-accessories-aware recog-
nition are i) which accessories removal techniques are most
suitable, ii) to what extent do removal techniques help, and
iii) are accessories in ears images as problematic as they have
been proven to be in other areas of biometrics? To answer
these questions we conduct a number of experiments using
the methodology presented in the remainder of this section.

A. Dataset Preparation

We first built a suitable dataset for our experiments using
a subset of images from the Unconstrained Ear Recognition
Challenge (UERC) test dataset [7]. The UERC dataset was first
presented as a test dataset for the Unconstrained Ear Recogni-
tion Challenge held in conjunction with the International Joint
Conference on Biometrics (IJCB) 2017. It contains images
acquired from the Internet, which exhibit variability in terms
of illumination conditions, different pose angles, occlusions,
and most importantly accessories. However, because the subset
of images that contain accessories is small (i.e. 189 images)
we generate an artificially augmented dataset where a set of
different earrings is superimposed over the existing ear images.
There are nine source images of earrings, but are always
resized and changed in color, resulting in many different
variations. A few examples of the resulting images are shown
in Fig. 2.

In order to follow realistic earrings positions, the earrings
are generated in locations using the following rules:

• the vertical position of the earring is selected randomly
in the lower half of the image,

Fig. 2: Sample images from the generated dataset. The top
rows shows original images from the UERC dataset and
the lower row shows images with artificially superimposed
earrings.

• the horizontal position is set randomly, so that the ear-
rings are at least 20% of the image width away from the
left and right image border,

• the earring size is set randomly for the height and width
with ratios ranging from 0.8 to 1.5 of the original earring
dimensions.

With the outlined procedure we can generate a practically
infinite amount of ear images, however, for our experimental
dataset we limited to the original size of 4,104 ear images.
Since the images are artificially generated, a binary mask
indicating the location and shape of the ear accessories is also
included in the dataset for each image. The dataset is publicly
available from: http://ears.fri.uni-lj.si.

B. Removal of Ear Accessories

We remove ear accessories by replacing the unwanted
image pixels corresponding to earrings with three different
approaches:

• Inpainting: replacement of the ear accessories with nat-
urally looking surrogate regions,

• Fixed-color: replacement of the ear accessories with
black overlay color - this is the most straight-forward
approach, and

• Adaptive-color: replacement of the ear accessories with
the average color of the image – to avoid too sharp edges
at the borders of the new area while still ensuring the
absence of unwanted accessory features.

We describe all three approaches in detail in the remainder
of this section.

Replacing accessories with CNN-based inpainting: For
the accessories removal we use Context Encoders initially
proposed in [10]. The reason we rely on context encoders is
that they ensure realistic surrogate regions for the inpainting
process and that an open source implementation is readily
available from https://github.com/jazzsaxmafia/Inpainting.

Context encoders represent CNN-based auto-encoders that
are conditioned on the input image. They can easily be trained
to generate the missing contents of an arbitrary input image,

http://ears.fri.uni-lj.si
https://github.com/jazzsaxmafia/Inpainting


including ear images. The architecture consists of encoder-
decoder pipeline, where the encoder uses an input image with
missing areas and extracts features. The features are then
fed to the decoder through the fully-connected layer which
generates a complete image, consequently filling in the missing
areas [10]. The three main parts of a context encoder are as
shown in Fig. 1 and are the following:

• The encoder: derived from the first five layers of
AlexNet [10], [26] that accepts 227× 227 RGB inputs.

• The fully connected intermediate layer: a simplified fully-
connected layer, where some part are not really fully
connected for performance reasons.

• The decoder: uses the feature representations from the
fully connected layer in five upsampling and convolu-
tional layers to generate the final inpainting output [27].

For the loss function we use an adversarial loss within
a GAN framework. This means the context encoder is con-
secutively learning an adversarial discriminative model D to
provide loss gradients to the generative model. The learning
procedure is a process where the adversarial discriminator D
takes in the prediction of the generator G and the ground truth,
and then tries to distinguish between them. At the same time
G tries to confuse D by producing samples that appear more
an more realistic (i.e., similar to the actual ground truth) as
the training procedure progresses [10].

The pipeline for the inpainting method is shown in Fig. 1
and is the following:

1) In the first step, the mask of the ear accessory is defined -
here we assume this is known, but in practice the mask
can be generated automatically using techniques, such
as [8], [9].

2) Next, the bounding box for the ear accessory is defined.
The area of this bounding box is stored as a new image
and used with the CNN inpainting model. During train-
ing, these cropped areas (without the ear accessories)
are used to train the model – both the original cropped
area and the area with the overlaid mask are needed by
the training procedure. At test-time the rectangular area
with the masked-out ear accessory serves as an input for
the inpainting model.

3) Once the masked and cropped region is processed by the
inpainting model, the resulting inpainted image reinsert
into the original image.

4) In the last step, the prediction is merged with the ear-
accessory mask to produce smoother baounderies in the
final inpainted ear image.

Our inpainting pipeline can be seen to be related to [28],
where the authors used GNNs for face deidentification. In
their pipeline they swap originals with generated faces. This
is analogue to our pipeline, however instead of faces we are
“deidentify” accessories and instead of GNNs we use context
encoders.

Replacing accessories with uniformly colored areas:
Because inpainting produces realistically looking areas it also
means that potentially unwanted features are created. The
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Fig. 3: Illustration of the experimental setup for the spoofing-
attack experiments. For each identification attempt the earring
of the probe image is copied over to the images all other
gallery identities, whereas the gallery images of the same
subject get a different earring. The dotted line indicates the
probe image in the current identification attempt. Subjects
are color coded and accessories are marked with letters (best
viewed in color).

premise for using uniformly-colored patches (or masks) is that
no new features are introduced. Using areas like these, the
classification system has no non-biometric information to rely
on, that would adversely impact the recognition performance.
This is the reason that we include these options in our tests.
However, although these areas contain no textures, they still
have certain shapes and edges. Due to this reason we consider
two options:

• The whole masked region is set to 0, resulting in black
color everywhere where ear accessories used to be (i.e.,
fixed-color replacement),

• The whole masked region is colored uniformly with
the average pixel value of the whole image. The area
corresponding to the ear accessory is omitted from the
average color information and each color channel average
is calculated separately (i.e., adaptive-color replacement).

C. Recognition

We use two feature representations for our recognition
experiments. The first is based on a CNN-based recognition
model exploiting a VGG model architecture that was already
used as a baseline for UERC [7]. The second representation
relies on Local Binary Patterns (LBP) and is again taken from
the UERC toolkit. The parameters of both feature extractors
were left to the default values (as shipped with the UERC
toolkit) and were not altered for the experiments, as our
goal was not to optimize recognition performance itself, but
to study the effect of ear accessories and different replace-
ment/removal techniques on two representative ear-recognition
techniques.

CNN-based recognition with VGG-16: The VGG network
(or model) [29] is an example of so-called very deep CNN
models and in the most common configuration consists of a
total of 16 network layers (VGG-16). The VGG model has



been successfully applied to numerous recognition problems,
including ear recognition (see e.g., [7], [11], [30], [31]) and has
been shown to ensure competitive performance on challenging
ear datasets. Although newer architectures were shown to
outperform the model for certain recognition tasks [32], we
select VGG-16 for our tests to show how one the most widely
used CNN architectures performs with accessories removal
techniques and how susceptible it is to presentation attacks
based or ear accessories.

In our experiments we use the output of the second fully
connected layer (referred to as FC6) of the VGG-16 model
as our image representation, instead of feeding the features
forward to the next fully connected layer (textitFC7) and the
final softmax layer at the end. This enables us to use VGG-
16 open-set recognition problems, where identities in the test
set are different from the identities used to train the model.
To measure similarities we use the cosine distance in the
experiments.

LBP-based recognition: Local Binary Patterns (LBP) [33]
represent one of the most popular (hand-crafted) feature-
extraction methods used for recognition purposes [1], [34]–
[36]. We used the implementation available as a part of the
AWE [1] and UERC [7] toolkits. The use of the LBP descriptor
for ear recognition is mainly motivated by its computational
simplicity and the fact that the texture of the ear is highly
discriminative. Many successful ear recognition techniques
have been presented in the literature exploiting LBPs either
as stand-alone texture representations or in combination with
other techniques, e.g., [37]–[39]. The technique used in this
work uses uniform LBPs (with a radius of 1 and 8 neighbors)
extracted from partially overlapping image blocks as an image
representation and again the cosine distance for similarity
measurements. A more detailed description of the approach
is available from [7].

IV. EXPERIMENTS & RESULTS

In this section we describe the experiments used to evaluate
the impact of ear accessories on ear recognition techniques
and assess the usefulness of different accessories-removal
techniques.

Experimental setup. We perform two types of experiments:
• Standard identification experiments (1:N matching,

where N denotes the number of identities), where ei-
ther the original UERC ear images (without artificial
accessories) or images with superimposed ear accessories
are used. The goal of these experiments is to establish
the baseline performance for the tested recognition tech-
niques and evaluate the impact of the presence of ear
accessories on the recognition performance.

• Spoofing attempt experiments in an identification sce-
nario, where ear accessories, or more precisely earrings,
are copied from the probe to the gallery images to
artificially increase the similarity of the images between
subjects. Specifically, for each identification test the ear-
ring of the given probe image is superimposed onto the
gallery images of all target subjects. To make the problem

Fig. 4: Sample inpainting results. For easier comparison,
inpainting in these examples was done on the same region
each time. The first column contains the original images, the
second column are the input images, the third are the outputs
of the inpainting model, and the last column shows the outputs
of the pipeline after masking.



TABLE I: Comparison of the Rank-1, Rank-5 and AUCMC
score generated during the experiments. The approach most
affected by presentation attacks is highlighted in gray and the
best performing accessories removal approach for each method
(VGG-16 vs. LBP) and performance metric (Rank-1 vs. Rank-
5 vs. AUCMC) is shown in bold.

Exp. type Data Method Rank-1 Rank-5 AUCMC

Standard
Original

VGG-16 12.06 28.85 82.66

LBP 14.90 29.91 77.28

Accessories
VGG-16 4.89 15.06 71.08

LBP 12.84 27.29 75.90

Spoofing

Attack
VGG-16 0.00 0.00 1.05

LBP 3.84 9.06 55.98

Inpainting
VGG-16 10.45 25.85 81.50

LBP 14.29 27.96 76.57

Fixed color
VGG-16 9.01 22.79 78.69

LBP 13.62 28.02 75.78

Adapt. color
VGG-16 11.01 24.68 80.47

LBP 14.01 28.46 76.13

harder and capitalize on the role of ear accessories, a
different earring is placed over the gallery images of
the true identity (i.e., the gallery images corresponding
to the identity of the probe image). The overall idea
of this experiment is illustrated in Fig. 3. The goal of
this series of experiments is to test how susceptible the
two feature extraction approaches are to accessory-based
presentation attacks and evaluate how useful accessory
removal techniques are as spoofing counter measures.

We adopt a similar all-vs-all protocol as for UERC, where
a total of 1800 images belonging to 180 subjects is used for
the experiments. Each of the 1800 images is used once as the
probe and is matched against all remaining 1799 images for
each identification attempt. The dataset contains an additional
(subject disjoint) training set of 2, 304 images that are used to
train the inpainting network. This training set is further divided
into train and validation set for the learning procedure with the
ratio of 7 : 3 – 1, 728 images in the training and 576 images
in the validation set. The inpainting model is trained from
scratch on a desktop PC with a Titan Xp GPU using stohastic
gradient descend (SGD) with a learning rate of 0.002, weight
decay rate of 10−5, and a momentum 0.9.

Qualitative evaluation of the inpainting model. Some
sample outputs of the inpainting model are shown in Fig. 4.
Note that the output in the last column look reasonably
realistic, a closer look, however, reveals some features that
are different from the ground truth on the far left. This
means that the inpainting produces results in images that look
realistic to a human observer, but are not necessary more
useful for recognition purposes than the more simple maksing
techniques (using either fixed or adaptive color masking).
This observation is also validated by the experimental results
presented in the next section.

Recognition experiments. For the recognition (identifi-

cation) experiments, we use all three accessories removal
strategy introduced in Section III-B. We report the results in
terms of the rank-1 and rank-5 recognition rates as well as
the normalized area under the Cumulative Match Score Curve
(AUCMC) similarly to [7]. We also provide CMC curves of
the experiments for a more detailed picture of the performance.

From the results in Table I and Fig. 5 we see that the LBP-
based technique performs slightly better than the VGG model
on the original UERC images without any ear accessories
(see row of Table I labeled Original). Once accessories are
randomly added (row of Table I labeled Accessories) to the
images, the recognition performance drops for both techniques
suggesting that accessories have in general an adverse effect
on the recognition performance. The observed performance
drop is significantly larger for the VGG model than for the
LBP-based technique, which shows that accessories affect
the learned features to a larger extent than the hand-crafted
features.

The impact of the ear accessories becomes even more
extreme in the case of presentation attacks, where the earrings
in the gallery were intentionally copied over from the probe
images to simulate spoofing attempts. In this case (see Table I
row labeled as Attack), the features generated by the VGG-16
network are rendered virtually useless, as the rank-1 as well
as the rank-5 recognition rate both drop to 0. For the LBP-
based approach, the drop in performance is still in the range
of 75%, but, nevertheless, not as extreme as with the CNN-
based features. This is an important finding, as it shows that
using traditional approaches based on hand-crafted features in
real life deployment might still be viable, despite the recent
advancements in deep learning. The results suggest that simply
by matching ear accessories (which often cover a large are of
the ear images) between probe and gallery images it is possible
to spoof existing ear recognition systems.

We observe that accessories removal techniques can largely
mitigate the impact of accessories on the recognition perfor-
mance even within the more challenging spoofing scenario.
There still exists a performance gap between the original
images and the processed images with masked or inpainted
accessories, which is slightly larger for the CNN-based fea-
tures than for the hand-crafted ones, but overall all assessed
accessories removal techniques help with the recognition per-
formance significantly. It is interesting to observe that the
inpainting technique, despite being computationally the most
demanding and producing the best visual results, has only a
slight advantage over the much simpler masking techniques.
As we can see from the lower part of Table I and the CMC
plots in Fig. 5, the difference in the recognition performance
ensured by the three tested accessories removal techniques is
minimal.

CONCLUSION

In this work, we showed for the first time that ear acces-
sories present a real problem for ear recognition techniques
that not only significantly affects performance, but can also be
exploited as the basis for presentation attacks. We also showed



Fig. 5: Cumulative match score curves (CMC) generated during the spoofing experiments without any counter measures (denoted
as Attacks) and with the three ear accessories removal techniques (denoted as Inpainting, Fixed-color, and Adaptive-color - see
Section III-B for details) using: LBP features (left), and VGG-16 features (right). The plots show that the learned CNN-based
features are much more susceptible to presentation attacks than the hand-crafted LBP features and that all three accessories
removal technique represent effective counter measures, which ensure similar recognition performance.

that especially CNN-based approaches are highly suscepti-
ble to these kinds of attacks. Furthermore, our experiments
suggested that accessories removal techniques can be used to
efficiently mitigate the impact of accessories on ear recognition
systems.

As part of our future work we plan to incorporate the best
performing ear accessories removal technique into a complete
ear recognition pipeline with together with an CNN-based ear
accessories segmentation model that we are currently working
on and that will automate all steps of the inpainting procedure.
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