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Abstract— With recent advancements in deep learning and
convolutional neural networks (CNNs), face recognition has
seen significant performance improvements over the last few
years. However, low-resolution images still remain challenging,
with CNNs performing relatively poorly compared to humans.
One possibility to improve performance in these settings often
advocated in the literature is the use of super-resolution (SR).
In this paper, we explore the usefulness of SR algorithms
for cross-resolution face recognition in experiments on the
Labeled Faces in the Wild (LFW) and SCface datasets using
four recent deep CNN models. We conduct experiments with
synthetically down-sampled images as well as real-life low-
resolution imagery captured by surveillance cameras. Our
experiments show that image super-resolution can improve face
recognition performance considerably on very low-resolution
images (of size 24 × 24 or 32 × 32 pixels), when images are
artificially down-sampled, but has a lesser (or sometimes even
a detrimental) effect with real-life images leaving significant
room for further research in this area.

I. INTRODUCTION

Automated face recognition systems have recently been
shown to match and in some cases even surpass human
recognition performance given facial images of appropriate
quality [1], [2], [3]. In cross-resolution settings, however,
where low-resolution (LR) images need to be matched
against high-resolution (HR) galleries, contemporary systems
still lag behind human capabilities. This is a crucial con-
sideration for surveillance and security applications, where
reliable recognition from low-resolution imagery is key [4].

Existing work on automated cross-resolution face recog-
nition can be grouped into techniques that exploit: i) joint
multi-resolution feature learning and try to learn compu-
tational models that extract identical features from images
at different sizes/resolutions [5], [6], [7], ii) low-frequency
feature extraction and strive to build models that focus on
blur-invariant low-frequency features which are not affected
by low image resolution [8], [9], and iii) super-resolution
(SR) algorithms, which try to modify the low-resolution
probe images to reduce the dissimilarity with the high-
resolution gallery/target data [10], [11], [12]. The latter group
of techniques is becoming increasingly popular mainly due
to the successes of recent supper-resolution algorithms.

Contemporary SR approaches exhibit considerable ability
to reconstruct high-resolution details from low-resolution
images [13], [14], [15], [16], and, therefore, offer a straight-
forward way of boosting the performance of cross-resolution
face recognition. As illustrated in Fig. 1, a desirable char-
acteristic of using SR at the pre-processing level is that it
can be used independently from existing recognition models.
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Fig. 1. We evaluate the use usefulness of super-resolution for cross-
resolution face recognition using the experimental setup shown above. With
this setup super-resolution algorithms reconstruct a HR image from the
LR probe. The HR reconstructions are then used with a pre-trained face
recognition model to assess performance. While such an setup is common
in the literature (e.g., [17], [18], [19]), it’s usefulness beyond synthetically
down-sampled images is still under-explored.

Thus, SR models can be deployed with existing commercial
products and existing models and can aid in improving
performance in difficult settings where the input data is of
(prohibitively) low-resolution.

The benchmarks typically used in SR research involve re-
constructing synthetically-degraded images via the optimiza-
tion of metrics such as peak signal-to-noise ratio (PSNR)
or the structural similarity measure (SSIM, [20]). Such an
approach is inherently focused on the perceptual quality
of the super-resolved images and less so on the semantics
of the reconstructions. Even when SR is used to improve
the semantic content of the images (e.g., pre-processing for
face recognition), most of the existing work focuses only on
synthetically-degraded and not real-life low-resolution data.

In this paper we try to address this gap and study the
utility of existing image SR algorithms on synthetic and real
low-resolution images as the basis for further research into
the use of SR for (automated and human) cross-resolution
face recognition. To evaluate the general applicability of
example- (or learning-) based SR algorithms beyond their
training samples, we first generate artificial low-resolution
face images from the Labeled Faces in the Wild (LFW)
dataset [21]. We process the degraded images using different
SR algorithms and perform recognition experiments with
four state-of-the-art deep recognition models using the super-
resolved images. To assess the performance of SR algorithms
on real-life low-resolution images, we use the SCface [22]
dataset of surveillance-camera images containing face images
captured in real-life surveillance scenarios.

Our research results in the following main contributions:
• A comprehensive experimental assessment of the use-

fulness of SR algorithms for cross-resolution face recog-
nition with a particular emphasis on recent SR ap-
proaches and deep recognition models.
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Fig. 2. Visual examples of the upscaling capabilities of the considered
super-resolution algorithms. The figure shows an input image of size 32×32
pixels (left most image) and super-resolved images upscaled by a factor of
2× using different SR techniques (the four images on the right).

• A characterization of the generalization properties of
SR algorithms via a comparison of their performance
on synthetically down-sampled and real-life LR images.

• A discussion of open problems and pointers to research
needs in the field of super-resolution.

II. RELATED WORK

Super-resolution algorithms have progressed from the
early interpolation-based methods to more recent example-
based SR techniques which aim at learning the relation-
ship between low- and high-resolution images from training
data [23], [24], [25]. Especially with advancements made in
deep-learning, interest in SR has gained additional momen-
tum and numerous algorithms with remarkable reconstruc-
tion capabilities have been proposed in the literature [14],
[15], [16], [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35]. Despite its primary goal as a digital zooming
tool aimed at improving the perceived quality of the super-
resolved image data, a significant body of work exploit it s
a pre-processing step for face recognition [11], [17], [18],
[19], [36], [37]. However, most of this work centers around
artificially down-sampled images, leaving the question of
performance on real-life LR images mostly unexplored.

III. METHODOLOGY

A. Experimental setup

To evaluate the usefulness of SR techniques for cross-
resolution face recognition we use the experimental setup
illustrated in Fig. 1. Here, the low resolution (LR) probe
image is first processed and enhanced with a SR algorithm to
generate a high-resolution (HR) input that better matches the
characteristics of the HR gallery. A pre-trained deep model is
then used to compute an image descriptor from the enhanced
probe and employed to generate similarity scores (based on
the cosine similarity) that are exploited for identity inference.

All super-resolution techniques considered in the evalua-
tion are used with a fixed upscaling factor of 2× regardless
of the input image size. To further upscale the input image
to the size required by the different deep models, bicubic
interpolation is used. This setup allows us to make full use
of the super-resolution algorithms, which commonly perform
best with small upscaling factors [16], [29], [30], [31], and to
super-resolve the smallest image size used in our experiments
(i.e., 24×24 pixels) to a size that can be handled by all tested
recognition models (as evidenced by our results).

B. Super-resolution algorithms

Using the presented setup, we assess the usefulness of four
super-resolution algorithms, i.e., Bicubic interpolation [38],
the Naive Bayes Super-resolution Forest (NBSRF, [28]),

TABLE I
HIGH-LEVEL COMPARISON OF THE CONSIDERED DEEP MODELS

Model #parameters input dim. output dim. #layers
AlexNet [41] 58, 282, 752 (3, 224, 224) 4096 7
VGG-Face [2] 117, 479, 232 (3, 224, 224) 4096 15
GoogLeNet [42] 21, 577, 728 (3, 299, 299) 2048 37
SqueezeNet [43] 3, 753, 856 (3, 224, 224) 2048 12

the Superresolution Convolutional Neural Network (SRCNN,
[14]), and the Very Deep SuperResolution Network (VDSR,
[15]). For the example-based super-resolution algorithms
(i.e., NBSRF, SRCNN, VDSR), which learn image upscaling
from training data, we use publicly available pre-trained
models from the web. A comparison of the upscaling ca-
pabilities of the four SR techniques is presented in Fig. 2
and a brief description is given below.

Bicubic interpolation: Interpolation methods are param-
eter free procedures used to change the sampling rate of
signals. Bicubic interpolation [38] upsamples an image by in-
terpolating missing pixel values using Lagrange polynomials,
cubic splines, or other similar functions. The interpolation is
commonly available in most image editing applications, and
has the favorable property (compared to nearest-neighbor and
bilinear interpolation methods) of preserving continuous val-
ues and gradients given a continuous sampling grid. Bicubic
interpolation represents our baseline, as it is commonly used
to ensure a correct input size for various recognition models.

NBSRF: This approach uses a tree ensemble to learn
hierarchical dictionaries of LR image patches and corre-
sponding (locally linear) regressors needed for HR patch
estimation [28]. Unlike previous dictionary learning ap-
proaches [13], [39] which use flat (non-hierarchical) patch
dictionaries with sparse coding constraints, the hierarchical
tree-ensemble provides advantages in both runtime and per-
formance due to the Bayesian tree selection criterion that
ensures that a single tree is selected during inference-time.

SRCNN: This algorithm represents one of the first at-
tempts at example-based super-resolution using deep neural
networks. Here [14], a relatively simple neural net with
three convolutional layers that reflects the LR patch ex-
traction, non-linear mapping and HR patch selection stages
from dictionary-learning-based SR approaches is used. Its
advantage over prior dictionary-based methods is efficient
end-to-end training combined with greater expressivity due
to localized constraints and regularizations enabled by the
gradient-based training procedure.

VDSR: In [40], the idea of shortcut connections and
residual learning was introduced to the field of deep learning.
VDSR [15] applies this idea to super-resolution - instead
of the super-resolution algorithm having to reconstruct the
entire high-resolution image, by adding an interpolated low-
resolution image to its output, it effectively only learns the
missing high-resolution details, greatly improving expressiv-
ity and performance given the same network complexity.

C. Face recognition models

We use four diverse deep-learning-based face recogni-
tion models for our evaluation, i.e., the AlexNet [41],
GoogLeNet [42], VGG-FACE [2] and SqueezeNet [43]

2
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convolutional neural networks (CNNs). The models chosen
differ in terms of architecture, parameter-space size, size of
the input image they are able to process, the size of the
output descriptor and number of network layers. A brief
high-level overview of the models is presented in Table I,
while a more comprehensive comparison is found in [44].
We train all four models for the face classification task on
around 1.8 million images (of appx. 2600 subjects) that we
are able to collect from the web based on the URLs provided
in the VGG Face dataset [2]. We use data augmentation
techniques including random cropping, blurring, translating
and rotating to avoid over-fitting and once trained remove
the classification layer from each model and exploit the
activations of the penultimate layer as the image descriptor
of the input images.

D. Datasets, protocols and performance metrics

We use two popular face datasets for our experiments. The
first is the Labeled Face in the Wild (LFW [21]) dataset,
where we introduce artificial down-sampling to simulate
different image resolutions. The second one in the SCface
dataset [22], which contains real-life low resolution images
recorded by a number of surveillance cameras at different
distances of the cameras to the subjects. The datasets and
corresponding experimental protocols are presented below.

LFW: The dataset consists of 13, 233 face images of
size 256 × 256 pixels belonging to 5749 subjects. We use
the dataset for our super-resolution experiments by down-
sampling the images to smaller sizes, thus, simulating lower
resolutions. The entire dataset is progressively down-sampled
to 24×24, 32×32, 48×48, 64×64, 96×96, 128×128, 160×
160 and 192 × 192 pixels using area-rule interpolation,
and the down-sampled images are blurred using a Gaussian
kernel with width 5 and standard deviation of 0.5. The
down-sampled images are then restored to the appropriate
input size for the face recognition models using various
super-resolution algorithms (using an upscaling factor of 2×
followed by bicubic interpolation). We follow the so-called
“unrestricted outside data” protocol in our experiments that
defines 6000 image pairs for which verification has to be
performed. The validation pairs are split into 10 folds, and
each fold is partitioned equally between genuine and im-
postor pairs, where the held-out folds are used to determine
the decision threshold for the similarity function. For the
experiments, the target (gallery) images are kept unchanged,
whereas the probe (test, query) images are down-sampled
and then super-resolved for the evaluation. We measure
the performance of the experiments with the verification
accuracy over 10 folds, as defined by the LFW protocol.

SCface: The dataset [22] contains images of 130 dis-
tinct subjects. The available images are split between a
gallery set, containing 130 high-resolution frontal mugshots
(1 per subject), and a larger probe set of surveillance-camera
images. The daylight camera set, which we use for our
experiments, consists of images from 5 different security
cameras, as shown in Fig. 3. Each subject is recorded by
each camera at 3 different distances, resulting in a total of

Fig. 3. Sample SCface images. The images on the left show probes captured
with different cameras (columns) and at different distances of the subject to
the camera (rows). The right image shows a HR gallery image. The labels
cMdN denote images recorded with camera M at distance N .

130 × 5 × 3 = 1950 probe set images. The average size of
the facial area used for the experiments recorded at distance
d1 is 21 × 21, at distance d2 is 36 × 36, and at distance
d3 is 62× 62 pixels. The evaluation protocol of the SCface
dataset defines a series of identification experiments, where
the goal is to identify the subjects in the probe set using
the HR images in the gallery set. For the evaluation, we
pre-process all images of the dataset by cropping the facial
area using the provided eye, nose and mouth coordinates. We
then upsample the probe images from the database using
various super-resolution algorithms at a 2× magnification
setting, and perform identification accuracy tests against the
gallery as proposed by the authors of the dataset. We report
the recognition performance in the form of the identification
accuracy (or rank one recognition rate). We report the results
separately for each category of probe images, which are
grouped in the dataset by camera and distance of subject
to camera (see labels at the top of the images in Fig. 3).

IV. EXPERIMENTS AND RESULTS

LFW results: The results of the experiments on the LFW
dataset are presented in Fig. 4 in the form of box plots of
the verification accuracy (VA) computed over 10 folds. As
can be seen, most of the SR methods ensure performance
improvements (in terms of median VA) over the baseline
bicubic interpolation with the synthetically down-sampled
LFW images at the lowest two image resolutions for all
tested methods. However, the improvements are increasingly
insignificant as the size of the down-sampled image ap-
proaches the original image size. Note also that results for
image sizes between 48 × 48 and 192 × 192 pixels are not
included in the figure to keep it uncluttered and because the
performance plateaued for image sizes beyond 48×48 pixels.
From Fig. 4 we see that for the AlexNet model, NBSRF
and VDSR offer the highest improvements in performance
at low resolutions. Among the face recognition models we
tested, AlexNet is also the least affected by the decrease
in image resolution with the verification performance still
reaching more than 80% at the smallest image size. This
may be explained by the large convolutional filters and
strides at the lowest layers of the AlexNet architecture.
The GoogleNet results on LFW demonstrate the greatest
differences between super-resolution methods, with NBSRF
improving the performance by over 10% at the lowest
image size and maintaining a significant advantage over the
remaining methods even beyond 48 × 48 pixels. From the
SqueezeNet results we see that the performance of this model

3
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Fig. 4. Results of the experiments on the LFW dataset with synthetically down-sampled images. The box plots show the effect of different super-resolution
algorithm on the LFW verification performance at different image sizes, e.g., 24px stands for a size of 24×24 pixels. The results are best viewed in color.
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(a) AlexNet
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(b) GoogLeNet
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(c) SqueezeNet
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(d) VGG-FACE

Fig. 5. The results of the experiments on the SCface database. Here, the data points cMdN correspond to the probe image series shot with camera M
at distance N . Only VDSR marginally improves on the performance of the bicubic interpolation, SRCNN and NBSRF have mostly a detrimental effect.

is only affected by image SR algorithms up to a relatively
small size, since the effect of different SR algorithms is
negligible past an image size of 48 × 48 pixels. The VGG-
FACE model shows similar behaviour and is also affected
by the SR techniques only to a limited extent.

Overall, the common theme we observe with synthetic
down-sampling with all tested face recognition models is
that, depending on the face recognition network architecture,
we see some performance gains from SR algorithms at very
low image sizes (or resolutions), but these fade away quickly
with an increase of the probe image size.

SCface results: From the SCface results in the Fig. 5
we observe that SR algorithms also affect face recognition
performance with real-life LR images. However, here the
results suggest that the best performing SR algorithm, i.e.,
VDSR, is always very close and on average (across all
cameras, distances and models) only slightly better than
bicubic interpolation. The remaining two SR algorithms have
almost always a detrimental effect on performance.

We observe that different cameras result in large changes
in performance even at the same distance, which is expected
given the different image quality each of the cameras pro-
duces - see Fig. 3 for some visual examples. We also see that
the performance gains due to image super-resolution are most
noticeable at large distances to the camera (i.e., at low image
resolution). On top of that, however, we notice that in better-
quality images, for example, at the distance 2 and distance 3
series of images, SR methods degrade performance compared
to interpolation in several cases, most prominently in the case
of GoogLeNet, as seen in Fig. 5 (b). This is in stark contrast

to the experiment with artificially degraded LFW images,
where interpolation and example-based SR methods tended
to converge to the same performance.

Discussion: Several important findings can be made from
the presented results: i) There is discrepancy between the
results obtained on synthetically down-sampled images and
real surveillance data. This suggest that better models for
approximating the image capturing process at large distances
(and consequently low-resolutions) are needed. Given the
success of deep learning in various areas recently, the down-
sampling transforms could be learned from data as well [45].
ii) Super-resolution algorithms aim only at reconstructing
plausible HR data that adequately explains the LR input
(perceptual improvements), which may not necessarily aid
recognition. To make SR algorithms suitable for recognition
models, recognition constraints need to be incorporated into
the reconstruction step itself, as for example in [46], [47].

V. CONCLUSION

We have evaluated the effects of different super-resolution
algorithms with several face recognition models in cross-
resolution recognition experiments, and found them to im-
prove performance over interpolation on synthetically down-
sampled images of very low-resolution (24×24 and 32×32
pixels). On real-life low-resolution images the effect of
super-resolution was limited. This makes a strong case for
continued research into the interaction between the fields
of face recognition and image super-resolution. Our future
work will, therefore, be focused on the joint training of
super-resolution and face recognition models, as well as face-
specific super-resolution algorithms, i.e., face hallucination.
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[8] Z. Lei, T. Ahonen, M. Pietikäinen, and S. Li, “Local frequency
descriptor for low-resolution face recognition,” in FG, 2011, pp. 161–
166.

[9] E. Saad and K. Hirakawa, “Defocus blur-invariant scale-space feature
extractions,” IEEE Transactions in Image Processing, vol. 25, no. 7,
pp. 3141–3156, 2016.

[10] S. Lee, J. Park, and S. Lee, “Low resolution face recognition based
on support vector data description,” Pattern Recognition, vol. 39, no.
9, pp. 1809–1812, 2006.

[11] B. Gunturk, A. Batur, Y. Altunbasak, M. Hayes, and R. Mersereau,
“Eigenface-domain super-resolution for face recognition,” IEEE
Transactions in Image Processing, vol. 12, no. 5, pp. 597–606, 2003.

[12] L. Chen, R. Hu, Z. Han, Q. Li, and Z. Lu, “Face super resolution
based on parent patch prior for VLQ scenarios,” Multimedia Tools
and Applications Journal, vol. 76, no. 7, pp. 10231–10254, 2017.

[13] J. Yang, J. Wright, T. Huang, and Y. Ma, “Image super-resolution as
sparse representation of raw image patches,” in CVPR, 2008, pp. 1–8.

[14] C. Dong, C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Transaction on Pattern Analysis
and Machine Intelligence, vol. 38, no. 2, pp. 295–307, 2016.

[15] J. Kim, K. Jung Lee, and K. Mu Lee, “Accurate image super-resolution
using very deep convolutional networks,” in CVPR, 2016, pp. 1646–
1654.

[16] C. Ledig, L. Theis, F. Huszár, et al., “Photo-realistic single im-
age super-resolution using a generative adversarial network,” arXiv
preprint 1609.04802, 2016.

[17] E. Bilgazyev, B. Efraty, S. K. Shah, and I. A. Kakadiaris, “Improved
face recognition using super-resolution,” in IJCB. IEEE, 2011, pp.
1–7.

[18] F. Lin, C. Fookes, V. Chandran, and S. Sridharan, “Super-resolved
faces for improved face recognition from surveillance video,” ICB,
pp. 1–10, 2007.

[19] J. Zhao, Y. Mao, Q. Fang, Z. Liang, F. Yang, and S. Zhan, “Het-
erogeneous face recognition based on super resolution reconstruction
by adaptive multi-dictionary learning,” in CCBR. Springer, 2015, pp.
143–150.

[20] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality
assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[21] G. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces
in the wild: A database for studying face recognition in unconstrained
environments,” Tech. Rep., University of Massachusetts, Amherst,
2007.

[22] M. Grgic, K. Delac, and S. Grgic, “SCface–surveillance cameras face
database,” Multimedia Tools and Applications Journal, vol. 51, no. 3,
pp. 863–879, 2011.

[23] J. D. Van Ouwerkerk, “Image super-resolution survey,” Image and
vision Computing, vol. 24, no. 10, pp. 1039–1052, 2006.

[24] J. Tian and K. Ma, “A survey on super-resolution imaging,” Signal,
Image and Video Processing, vol. 5, no. 3, pp. 329–342, 2011.

[25] K. Nasrollahi and T. B. Moeslund, “Super-resolution: a comprehensive
survey,” Machine Vision and Applications, vol. 25, no. 6, pp. 1423–
1468, 2014.

[26] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social LSTM: Human trajectory prediction in crowded
spaces,” in CVPR, 2016, pp. 961–971.

[27] J. Kim, K. Jung Lee, and K. Mu Lee, “Deeply-recursive convolutional
network for image super-resolution,” in CVPR, June 2016, pp. 1646–
1654.

[28] J. Salvador and E. Perez-Pellitero, “Naive bayes super-resolution
forest,” ICCV, vol. 11-18, no. 1, pp. 325–333, 2015.

[29] X. Yu and F. Porikli, “Hallucinating very low-resolution unaligned and
noisy face images by transformative discriminative autoencoders,” in
CVPR, July 2017.

[30] Y. Tai, J. Yang, and X. Liu, “Image super-resolution via deep recursive
residual network,” in CVPR, July 2017.

[31] W. Lai, J. Huang, N. Ahuja, and M. Yang, “Deep laplacian pyramid
networks for fast and accurate super-resolution,” in CVPR, July 2017.

[32] M. Sajjadi, B. Schölkopf, and M. Hirsch, “Enhancenet: Single image
super-resolution through automated texture synthesis,” in ICCV, 2017.

[33] X. Xu, D. Sun, J. Pan, Y. Zhang, H. Pfister, and M. Yang, “Learning
to super-resolve blurry face and text images,” in ICCV, 2017.

[34] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep
residual networks for single image super-resolution,” CoRR, vol.
abs/1707.02921, 2017.

[35] R. Dahl, M. Norouzi, and J. Shlens, “Pixel recursive super resolution,”
CoRR, vol. abs/1702.00783, 2017.

[36] A. Chakrabarti, A.N. Rajagopalan, and R. Chellappa, “Super-
resolution of face images using kernel pca-based prior,” IEEE
Transactions on Multimedia, vol. 9, no. 4, pp. 888–892, 2007.

[37] S. P. Mudunuri and S. Biswas, “Low resolution face recognition across
variations in pose and illumination,” IEEE Transaction on Pattern
Analysis and Machine Intelligence, vol. 38, no. 5, pp. 1034–1040,
2016.

[38] R. Keys, “Cubic convolution interpolation for digital image process-
ing,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 29, no. 6, pp. 1153–1160, Dec 1981.

[39] R. Timofte, V. De Smet, and L. Van Gool, “A+: Adjusted anchored
neighborhood regression for fast super-resolution,” in ACCV, 2014,
pp. 111–126.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR, 2016, pp. 770–778.

[41] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012, pp. 1097–
1105.

[42] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Re-
thinking the inception architecture for computer vision,” in CVPR,
2016, pp. 2818–2826.

[43] F. Iandola, S. Han, M. Moskewicz, K. Ashraf, W. Dally, and
K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and 0.5 mb model size,” arXiv 1602.07360, 2016.

[44] K. Grm, V. Struc, A. Artiges, M. Caron, and H.K. Ekenel, “Strengths
and weaknesses of deep learning models for face recognition against
image degradations,” IET Biometrics, 2017.
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