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APPENDIX

In this section, we present some additional results to further
highlight the characteristics of the C-SRIP model. Similarly
to the main part of the paper, we use LR images from
the LFW [68], HELEN and CelebA datasets generated by
smoothing and sub-sampling the original HR images. The
inputs for all experiments are all of size 24× 24 pixels.

A. Comparison to the state-of-the-art - additional results

In the main part of the paper, we present numerical re-
sult and visual examples of 8× super-resolved images when
comparing C-SRIP with competing models. Here, we show
additional hallucination results (in Fig. 16) for all 9 FH models
tested in the main part of paper. We again observe that the
proposed C-SRIP model ensures the most convincing results
among the tested models.

To get additional insight into the performance of the eval-
uated FH models we present in Fig. 17 Cumulative Score
Distribution (CSD) curves of the PSNR, SSIM and VIF scores
generated during the comparative experiments. Since SR mod-
els are increasingly focusing on learning-based techniques,
which are expected to perform inconsistently across images of
different characteristics, CSD curves provide a reasonable way
of visualizing this performance variability. From the curves
in Fig. 17 we see that all tested methods vary significantly
in PSNR, SSIM and VIF scores across the LFW, Helen and
CelebA datasets, with a large fraction of images producing
sub-average performance scores. The `p and the proposed C-
SRIP models are superior to other models and appear to have
very similar performance in terms of the CSD curve for the
PSNR score. However, the difference becomes significantly
more apparent on the CSD curve for the SSIM and especially
the VIF scores, where C-SRIP is clearly the top performer.

To further highlight the performance of C-SRIP compared
to competing SR models, we show in Fig. 18 a couple of
visual examples of the SR results for the top three performing
SR models from our comparative assessment. As can be
seen, the perceptual-loss-based SR model, `p, amplifies high-
frequency noise, while the CARN model generates overly
smooth results. C-SRIP, on the other hand, results in sharp
images, but as expected is not able the recover all of the
high frequency information (e.g., hair strains, wrinkles, beard
details, etc.). Consequently, the subjects appear younger in the
super-resolved images compared to the HR ground truths.

B. Generalization to smaller faces

Our model has a fully convolutional structure and, while
it was trained to super-resolve 24 × 24 pixel images, it can
in general process images of arbitrary input size. In the next
series of experiments we, therefore, evaluate the ability of C-
SRIP to upsample low-resolution facial images smaller than
the 24 × 24 pixel images used for training. Specifically, we
explore input image sizes of 20 × 20, 16 × 16, 12 × 12 and
10×10 pixels. We conduct experiments on the LFW data and
down-sample the ground-truth images to 8× the size of the
query images to be able to quantify performance. We compare

our model against those capable of accepting input images of
arbitrary size - i.e., SRCNN, VDSR and CARN.

From the results in Fig. 19 and Table XI we see that the C-
SRIP model is only able to generalize well at the 20×20 pixel
input size. Below this size, it works similarly to other models
- only super-resolving general geometric features in the image
(as shown in Fig. 19), although it is still the top performer in
terms of the average PSNR, SSIM and VIF scores.

C. Results for intermediate magnification factors
Because of space constraints in the main part of the paper,

we show here additional results generated by the C-SRIP
model for lower magnification factors, i.e., 2× and 4×, that
produce images of size 48 × 48 pixels and 96 × 96 pixels,
respectively, given 24 × 24 pixel LR inputs. Note again that
these images correspond to the intermediate results of the C-
SRIP model and are generated by the first and second SR
module of C-SRIP. A few illustrative SR examples generated
for the 2× and 4× the input scale are presented in Fig. 20.

We observe that our model achieves realistic SR results even
for small magnification factors. That is, even when the images
are upscaled to a (still modest) size of 48 × 48 or 96 × 96
pixels, the hallucinated images preserve the identity of the
subjects reasonably well, despite the limited performance of
the SqueezNet models at these scales and, consequently, the
relatively weak identity constraint applied during training. It
needs to be noted that none of the presented subjects has been
included in our training data.

D. Improving the visual quality of the hallucinated images
It is possible to further improve on the (perceived) visual

quality of the SR images produced by the C-SRIP model (for
large magnification factors of 8×) by utilizing simple image
enhancement techniques. In Fig. 21 and Fig. 22 we show
some examples, where a standard 3× 3 sharpening filter (i.e.,
[0,−1, 0;−1, 5,−1; 0,−1, 0]) is applied on the SR outputs
to amplify the high frequency components of the generated
images. The result of applying such post-processing steps are
significantly sharper and crisper SR images. However, in terms
of summary statistics (i.e., average PSNR, SSIM and VIF
scores) these are not competitive to the results reported in the
main part of the paper - the sharpening operation deteriorates
(quantitatively measured) performance. These results are in
line with recent findings that suggest that there is a trade-
off between the capability of SR models to either minimize
distortion measures (i.e., maximize SSIM, PSNR or VIF
scores) or to produce perceptually convincing results [76].
In Fig. 21 and Fig. 22 we show some sample images post-
processed with a sharpening filter and include results for a
couple of example images that were already presented in the
main part of the paper to facilitate implicit comparisons with
competing methods.

Interestingly, after the post-processing some of the SR
images appear sharper than the original HR targets. This
can be partially explained by the presence of noise in the
target images that is not present in the SR reconstructions and
the higher image contrast after enhancement that contributes
towards the perception of higher-quality images.
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LR input SICNN SRCNN VDSR p CARN

LapSRN SRGAN URDGN EDSR C-SRIP (ours) Groundtruth

LR input SICNN SRCNN VDSR p CARN

LapSRN SRGAN URDGN EDSR C-SRIP (ours) Groundtruth

Fig. 16. Qualitative comparison of the evaluated SR models on two sample images with highlighted image details. Note the image details C-SRIP is able to
recover compared to the competing models. The figure is best viewed zoomed in.
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Fig. 17. Cumulative Score Distribution (CSD) curves for the PSNR (left), SSIM (middle) and VIF (right) scores over the LFW (top), Helen (middle) and
CelebA (bottom) datasets generated using a magnification factor of 8×. Curves further to the right represent better performance on the given dataset. Note that
C-SRIP is the top performer considering any of the performance measures and achieves by far the best VIF scores on all three datasets. The distribution of
the performance measures (PSNR, SSIM and VIF) is relatively consistent across the datasets and across the tested super-resolution models. While all methods
exhibit considerable score variability, the graphs still show that C-SRIP is able to achieve the highest performance for the majority of test images.
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p CARN C-SRIP (ours) Target

p CARN C-SRIP (ours) Target

Fig. 18. Comparison of super-resolution results produced by the three best performing models of our assessment at a magnification factor of 8×. Bigger
images are shown to better highlight the reconstructed image details. Best viewed zoomed in.

Target

C-SRIP

CARN

SRCNN

VDSR

Fig. 19. Sample SR results generated with smaller input images. The left part
of the figure shows the HR ground truth and the images on the right represent
results for 8× uscaling from (left to right): 10×10, 12×12, 16×16, 20×20
and 24× 24 pixel images. Note that none of the models generalizes well to
image sizes different from 24× 24 pixels that was used for training.

E. Quantitative results on the impact of the SSIM loss

Next, we present some (additional) quantitative results re-
lated to the proposed SSIM loss. Our SSIM formulation uses
convolutions with a discrete Gaussian kernel, g - see Eq.
(3), to approximate the local averages used with the original
SSIM and is, therefore, easily implementable using standard
deep learning frameworks. As emphasized in the main part of
the paper, the result of using the proposed SSIM-based loss
instead of the MSE-based loss are significantly better training
characteristics in terms of faster convergence and lower PSNR
and SSIM scores on the training data as shown in Table XII.
Here, the results are presented for the simplest architecture
from the ablation study (Section 4.3), where i) the images are
processed through a series of 21 residual blocks, ii) all three
upscaling layers are placed at the end of the SR network, and
iii) supervision is applied only at the output of the model.

The proposed SSIM-based loss ensures significantly better

TABLE XI
RESULTS FOR DIFFERENT INPUT IMAGE SIZES. THE BEST AND

SECOND-BEST RESULTS ARE SHOWN IN RED AND BLUE, RESPECTIVELY.

Method Input size [px] PSNR SSIM VIF
SRCNN [15] 20× 20 23.658 0.6438 0.2791
VDSR [12] 20× 20 24.072 0.6642 0.2845
CARN [38] 20× 20 24.174 0.7291 0.3127
C-SRIP (ours) 20× 20 25.498 0.7751 0.3325

SRCNN [15] 16× 16 22.088 0.6074 0.2659
VDSR [12] 16× 16 22.315 0.6266 0.2705
CARN [38] 16× 16 23.326 0.6854 0.2843
C-SRIP (ours) 16× 16 23.674 0.7170 0.3206

SRCNN [15] 12× 12 20.765 0.5351 0.2236
VDSR [12] 12× 12 20.835 0.5297 0.2258
CARN [38] 12× 12 21.931 0.6178 0.2631
C-SRIP (ours) 12× 12 22.002 0.6540 0.2587

SRCNN [15] 10× 10 19.947 0.4889 0.2414
VDSR [12] 10× 10 20.041 0.5017 0.2128
CARN [38] 10× 10 20.127 0.5624 0.2545
C-SRIP (ours) 10× 10 20.935 0.6115 0.2387

TABLE XII
PSNR AND SSIM SCORES OBTAINED ON THE TRAINING DATA WITH THE

MSE- AND SSIM-BASED LOSSES.

MSE-based loss SSIM-based loss
PNSR [dB] 28.3275 29.0227
SSIM 0.9189 0.9325

TABLE XIII
COMPARISON OF THE PSNR AND SSIM SCORES ON THE TEST DATA

OBTAINED WITH THE MSE- AND SSIM-BASED LOSSES.

MSE-based loss SSIM-based loss
PSNR [dB] 26.1748 26.0251
SSIM 0.7547 0.7579

performance scores during training. Even though the MSE-
based loss is directly proportional to the PSNR score, our
SSIM-based loss results in a lower average PSNR score on the
training data, which suggests that a better optimum is found
by the backpropagation-based learning procedure. On the test
data the proposed loss still improves on the average SSIM and
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Fig. 20. Qualitative results for the intermediate scales generated by the C-SRIP model. The columns correspond to (from left to right): the 24 × 24 pixel
input image, bicubic interpolation, results generated by C-SRIP (at a 2× or 4× upscaling factor) and the ground truth (GT) at either 48 × 48 or 96 × 96
pixels. Note how more detail is added as the upscaling factor gets larger.

VIF scores on all three experimental dataset, LFW, HELEN
and CelebA, but offers no improvements in terms of PSNR

value on LFW and HELEN, as shown in Table XIII - this fact
is already highlighted in the ablation study of the main part
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LR Input C-SRIP Enhanced Target LR Input C-SRIP Enhanced Target

LR Input C-SRIP Enhanced Target LR Input C-SRIP Enhanced Target

LR Input C-SRIP Enhanced Target LR Input C-SRIP Enhanced Target

Fig. 21. Qualitative results for SR outputs post-processed with a standard image enhancement technique (i.e., with a sharpening filter). For each 24× 24 LR
input image (on the far left of each quadruplet) the following columns correspond to (from left to right): C-SRIP, C-SRIP with image enhancement, and the
target HR image. Best viewed in high resolution.

LR Input C-SRIP C-SRIP Enhanced HR Target

Fig. 22. Qualitative results for SR outputs post-processed with a standard image enhancement technique (i.e., with a sharpening filter) with highlighted image
details. For each 24× 24 LR input image (on the far left of each quadruplet) the following columns correspond to (from left to right): C-SRIP, C-SRIP with
image enhancement and the target HR image. Best viewed in high resolution.

of the paper.

F. Reconstruction vs. recognition loss

To evaluate the importance of using both learning objectives
(reconstruction and recognition) when training the SR network
of C-SRIP, we train the SR network of C-SRIP in this section
without the data-fidelity term and use only the recognition

loss. The goal of this experiment is to assess whether good
quality reconstruction could be generated by the supervision
with the recognition networks alone. From the example results
in Fig. 23 we see that the optimization procedure finds an
optimum for the SR network parameters that does not result
in meaningful HR reconstruction. We therefore conclude that
the both learning objectives are important and are needed to
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Fig. 23. Importance of using the reconstruction and recognition losses when
training the SR network of C-SRIP. The figure shows (from left to right): the
input LR image, the HR reconstruction generated by the SR network trained
with both losses, the HR reconstruction generated by the SR network trained
only with the recongition loss, the target HR image.

generate good quality HR images with C-SRIP.

G. Face hallucination performance on training identities

As described in Section IV-C, the parameters of the SR
network of C-SRIP are learned with the help of a number of
recognition networks, which are trained using the identities
from the CASIA WebFace dataset. All experiments in the
main part of the paper use images from datasets that have no
overlap in terms of identities with the training data and, hence,
demonstrate how the model generalizes to unseen identities.
Nonetheless, these experiments leave an interesting research
question unanswered, i.e.: Has the model learned to better
upsample identities included in the training data compared to
identities not seen during training?

To explore this question we collect a small dataset of 100
images (corresponding to 10 subjects) from the internet and
make sure the images come from subjects also present in
the CASIA WebFace dataset. We avoid duplicates with the
training data by collecting only images that were captured and
posted on the web after the WebFace data has been published.
With this collection procedure we ensure that the collected
dataset features the same identities as our training data, but
not the same exact images. We denote this set of images as
TRI when presenting results. Next, we randomly select a set
of 100 images (of 10 subjects) from the LFW dataset and a
set of 100 images (of 10 subjects) from the training data itself
and denote these test sets as TRS and LFW, respectively. The
created test sets exhibit different characteristics that allow us
to evaluate the difference in face-hallucination performance
when using images of subjects included in the training data
and images of subjects that were not used during training, i.e.:
i) TRS has been part of the training material, ii) TRI has the
same subjects, but not the same images as used for training,
and iii) LFW has no overlap in terms of images or subjects
with the training data. We again perform experiments with
24× 24 pixels inputs and the 8× upscaling task.

From Table XIV we observe that images that were part
of the training data (TRS) result in the best performance
scores. This result is expected, as these images were directly
involved in the optimization of the parameters of the SR
network of C-SRIP. Images from the TRI set are reconstructed
slightly worse, but still better than images of subjects that
were not included in the training data. While the results for
all three test sets are relatively close there is a consistent trend
across the PSNR, SSIM and VIF scores that suggests that
the performance of C-SRIP is somewhat better for images of
identities that were part of the training data as opposed to
images of subjects not seen during training.

TABLE XIV
MEAN PSNR, SSIM AND VIF SCORES GENERATED FOR THREE TEST

SETS: i) A SET OF IMAGES THAT WAS PART OF THE TRAINING DATA (TRS),
ii) A SET OF IMAGES THAT FEATURE THE SAME IDENTITIES AS THE

TRAINING DATA, BUT NOT THE SAME SAMPLES/IMAGES (TRI), AND iii) A
SET OF IMAGES FROM LFW (LFW) THAT HAS NO OVERLAP WITH THE
TRAINING DATA IN TERMS OF IDENTITIES. C-SRIP SUPER-RESOLVES

IMAGES OF TRAINING IDENTITIES SLIGHTLY BETTER THAN IMAGES OF
IDENTITIES NOT SEEN DRUING TRAINING.

Method PSNR SSIM VIF
Training samples (TRS) 27.565 0.8525 0.6503
Training identities (TRI) 27.382 0.8250 0.6419
LFW images (LFW) 27.091 0.8136 0.6245

A few visual examples of the face hallucination results for
the three test sets are shown in Fig. 24. Here, the first row
presents images from TRS, the second row shows images from
TRI and the third row shows images from LFW. Note again
how the quality of the reconstructions decreases slightly from
the top to the bottom row examples.

H. Usefulness for recognition

The C-SRIP model is trained using a learning objective that
combines (multi-scale) data-reconstruction and recognition-
oriented losses. While we show in the main part of the
paper that this contributes to better HR reconstructions, it
should intuitively also contribute to improved recognition
performance when the C-SRIP super-resolved images are used
for recognition purposes.

To evaluate this hypothesis, we perform recognition exper-
iments using the Labeled Faces in the Wild (LFW) dataset.
We use the hallucinated images generated for the comparative
assessment in Table III (see Fig. 6) in the main part of
the paper for this experiment. Note that these images were
generated from small 24× 24 pixel inputs by upscaling them
using a magnification factor of 8×. This setup allows us
to directly evaluate the impact of the SR models on the
recognition performance and to compare the performance
achieved with the HR reconstruction with that ensured by the
original HR images. The setup is also in line with standard
evaluation methodology used with SR models [33].

We perform the recognition tests according to the standard
LFW experimental protocol [68], which defines a 10-fold
cross-validation experimental setup with 600 identity com-
parisons in each fold - equally balanced between genuine
and impostor comparisons. We report the results in terms
of verification accuracy in the form: µ ± σ, where µ is the
average accuracy computed over the 10 experimental folds
and σ is the corresponding standard deviation. We use the
state-of-the-art ResNet-101 face recognition model trained
with the large-margin cosine loss to extract 512-dimensional
descriptors from each image and compare descriptors using
the cosine similarity.

From the results in Table XV we see that the recognition
model achieves competitive recognition performance with an
average accuracy of 0.9806. The baseline bicubic interpolation
is the worst performer among all tested methods with an av-
erage recognition accuracy of 0.8355, which shows that basic
interpolation methods cannot recover much of the identity
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Fig. 24. Visual examples of hallucination results for the three test images sets. The figure shows face hallucination results for i) images from the training
data (TRS, top row), ii) images that were not part of the training, but belong to subjects seen during training (TRI, middle row), and iii) images that have no
overlap in terms of subjects with the training material (LFW, bottom row). Observe the slight decrease in hallucination quality from top to bottom.

TABLE XV
RESULTS OF THE LFW RECOGNITION EXPERIMENT. IMAGES

SUPER-RESOLVED WITH C-SRIP ACHIEVE THE BEST OVERALL RESULT,
SIGNIFICANTLY OUTPERFORMING THE NINE COMPETING MODELS. THE

SR MODELS ARE ORDERED IN TERM OF INCREASING RECOGNITION
PERFORMANCE.

Method Verification accuracy (µ± σ)
Bicubic 0.8355± 0.0077
LapSRN 0.8513± 0.0138
VDSR 0.8625± 0.0110
SRCNN 0.8627± 0.0134
SICNN 0.8802± 0.0107
URDGN 0.8875± 0.0116
EDSR 0.8904± 0.0129
`p 0.8917± 0.0105
CARN 0.8952± 0.0107
SRGAN 0.8990± 0.0107
C-SRIP 0.9217± 0.0099
HR images 0.9806± 0.0066

information from the LR input images. The super-resolution
models, on the other hand, improve on this by a significant
margin. Especially the SICNN, URDGN, EDSR, `p, CARN,
SRGAN and C-SRIP model seem to be particularly effective.
Interestingly, SICNN does not seem to have an advantage
over competing face hallucination models, such as URDGN,
EDSR, `p, CARN or SRGAN, despite the fact that it relies
on identity information when learning to super-resolve faces.
Overall, C-SRIP is the top performer in this experiment and
ensures the highest recognition performance with an average
verification accuracy of 0.9217. Nevertheless, a considerable
gap still remains to the performance achieved with the original
HR images, which suggests that not all of the useful identity
information is recovered by the best performing model, C-
SRIP.

I. Usefulness for facial landmarking

Another useful application of face hallucination models
often advocated in the literature is facial landmarking (or
alignment) of low-resolution facial data [4], [21], [77]–[79].
The idea here is to enhance the semantic content of the LR

face images using face hallucination models with the goal of
enabling more effective localization of salient facial features.

To demonstrate the usefulness of C-SRIP for this task,
we perform a series of landmarking experiments using the
landmarker from [79]. The landmarker aims to locate the
standard set of 68 fiducial points in the face images and is
trained on the training part of the Helen dataset that contains
2000 images with labelled locations of facial features. We use
the 300 images from the Helen test set for the evaluation
and first apply the landmarker on the original HR images
to have a baseline for later comparisons. Next, we down-
sample the HR images to a size of 24× 24 pixels and finally
upsample them using C-SRIP. To put the generated results
into perspective, we repeat this procedure for all competing
FH models already included in our previous experiments. We
report all results in terms of the standard point-to-point error
between the predicted and ground truth facial feature locations
normalized by the inter-ocular distance [78].

As the results in Table XVI show, all hallucination models
improve upon the baseline bicubic interpolation. Overall, C-
SRIP again results in the best overall performance, followed
closely by `p, SRGAN, EDSR and CARN. The ramaining
models are less competitive. Interestingly, the order of the
models is slightly different from the order in the recognition
experiments in the previous section, which suggests that dif-
ferent aspects of the super-resolved images are important for
the recognition and landmarking tasks.

In Fig. 25 some landmarking results are presented for
images upsampled with different face hallucination models as
well as for the baseline HR face images. Here, the ground
truth facial feature locations are shown in green and the
predicted landmarks are shown in red. The examples show that
bicubic upsampling often leads to misdetected facial features,
especially around the mouth area and facial outline, which are
not clearly visible in the LR images. The face hallucination
models, on the other hand, provide more semantic content
and produce sharper edges around specific facial components,
which is beneficial for the landmarking procedure.
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Bicubic SICNN SRCNN VDSR p CARN

LapSRN SRGAN EDSR URDGN C-SRIP HR

Bicubic SICNN SRCNN VDSR p CARN

LapSRN SRGAN EDSR URDGN C-SRIP HR

Fig. 25. Example landmarking results generated with super-resolved images produced by different face hallucination models. The ground truth landmarks are
marked green and the predicted landmarks are shown in red. Observe how upsampling with bicubic interpolation often leads to misdetected fiducial points,
especially along the facial outline and around the mouth area. The face hallucination models improve on this by recovering more facial details which helps
with the landmarking performance. The figure is best viewed electronically.

TABLE XVI
RESULTS OF THE LANDMARKING EXPERIMENT ON THE HELEN DATASET.

C-SRIP ENSURES THE OVERALL BEST LANDMARKING PERFORMANCE
AMONG THE TESTED FACE HALLUCINATION MODELS. THE SR MODELS

ARE ORDERED IN TERM OF DECREASING LANDMARKING ERROR.

Method Error
Bicubic 0.0531
SRCNN 0.0502
VDSR 0.0502
URDGN 0.0487
LapSRN 0.0449
SICNN 0.0431
CARN 0.0417
EDSR 0.0409
SRGAN 0.0405
`p 0.0396
C-SRIP 0.0380
HR images 0.0344

J. More real-life examples

In Fig. 26 we show an additional example of faces super-
resolved from a real-word image from the internet. The image
presents a comparison with nearest neighbor and bicubic
interpolation techniques and shows the added level of detail
that can be recovered from the LR input images when using
the proposed C-SRIP model.

As can be seen, C-SRIP is able to recover more facial
detail from the tiny input images than the nearest neighbour
and bicubic interpolation-based baselines and produces con-
siderably crisper results. Note also that the size of the face
(the sample face on the bottom left is cropped much tighter
than the face on the top) does no effect the reconstruction
quality to a significant extent. The presented results also
point to the generalization abilities of C-SRIP to unseen
down-sampling models.As can be seen, C-SRIP is able to
recover more facial detail from the tiny input images than the
nearest neighbour and bicubic interpolation-based baselines
and produces considerably crisper results. Note also that the
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Fig. 26. Application of C-SRIP on a real-world image taken from the web. The image shows a crowd with several real-life LR faces. On the right side are
super-resolution results generated with C-SRIP and two interpolation baselines for an upsacling factor of 8×. To illustrate the difficulty of the task, the LR
input faces are also shown in the original size (marked “Original”). Note that C-SRIP is able to recover significantly more detail from the input LR images
than the nearest neighbour and bicubic interpolation-based upsampling methods.

size of the face (the sample face on the bottom left is cropped
much tighter than the face on the top) does no effect the
reconstruction quality to a significant extent. The presented
results also point to the generalization abilities of C-SRIP
to unseen down-sampling models.As can be seen, C-SRIP is
able to recover more facial detail from the tiny input images
than the nearest neighbour and bicubic interpolation-based
baselines and produces considerably crisper results. Note also
that the size of the face (the sample face on the bottom left is
cropped much tighter than the face on the top) does no effect
the reconstruction quality to a significant extent. The presented
results also point to the generalization abilities of C-SRIP
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