
25th Computer Vision Winter Workshop
Domen Tabernik, Alan Lukežič, Klemen Grm (eds.)
Rogaška Slatina, Slovenia, February 3–5, 2020

Segmentation and Recovery of Superquadric Models using Convolutional
Neural Networks

Jaka Šircelj1,2, Tim Oblak2, Klemen Grm1, Uroš Petković1,
Aleš Jaklič2, Peter Peer2, Vitomir Štruc1 and Franc Solina2

1 Faculty of Electrical Engineering, UL, Tržaška 25, Ljubljana, Slovenia
2 Faculty of Computer and Information Science, UL, Večna pot 113, Ljubljana, Slovenia

jaka.sircelj@fe.uni-lj.si

Input image

Instance Segmentation

Isolated segments

Reconstructed
superquadrics

Scene reconstruction

Parameter
prediction

Segmentation and Parameter Recovery

Figure 1: We study the problem of segmenting and recovering superquadric models from depth scenes. Our
approach uses instance segmentation with Mask-RCNNs followed by superquadric-parameter estimation from
incomplete data with a standard CNN (left part of the figure). Using the recovered superquadric models we are
able to efficiently reconstruct the original depth scene (right part of the figure).

Abstract. In this paper we address the problem of
representing 3D visual data with parameterized vol-
umetric shape primitives. Specifically, we present
a (two-stage) approach built around convolutional
neural networks (CNNs) capable of segmenting com-
plex depth scenes into the simpler geometric struc-
tures that can be represented with superquadric mod-
els. In the first stage, our approach uses a Mask-
RCNN model to identify superquadric-like structures
in depth scenes and then fits superquadric models
to the segmented structures using a specially de-
signed CNN regressor. Using our approach we are
able to describe complex structures with a small
number of interpretable parameters. We evaluated
the proposed approach on synthetic as well as real-
world depth data and show that our solution does
not only result in competitive performance in com-
parison to the state-of-the-art, but is able to decom-
pose scenes into a number of superquadric models

at a fraction of the time required by competing ap-
proaches. We make all data and models used in the
paper available from https://lmi.fe.uni-lj.si/

en/research/resources/sq-seg.

1. Introduction

Representing three-dimensional visual data in
terms of parameterized shape primitives represents
a longstanding goal in computer vision. The inter-
est in this problem is fueled by the vast number of
applications that rely on concise descriptions of the
physical 3D space in various sectors ranging from au-
tonomous driving and robotics to space exploration,
medical imaging and beyond [13, 21, 14].

Past research in this area has looked at different
models that could act as volumetric shape primitives,
such as generalized cylinders [28] or cuboids [27, 17,
11], but superquadrics established themselves as one
of the most suitable choices for this task [1, 26, 10,

https://lmi.fe.uni-lj.si/en/research/resources/sq-seg
https://lmi.fe.uni-lj.si/en/research/resources/sq-seg

25, 18, 20] due to their ability to represent a wide
variety of 3D shapes, such as ellipsoids, cylinders,
parallelopipeds and various shapes in between. For-
mally, superquadrics are defined by an implicit 3D
closed surface equation, i.e.:((

x− x0
a1

) 2
ε2

+

(
y − y0
a2

) 2
ε2

) ε2
ε1

+

(
z − z0
a3

) 2
ε1

= 1 (1)

where a1, a2, a3 define the bounding box size of
the superquadric, ε1 and ε2 define it’s shape and
(x0, y0, z0)

ᵀ represent the center of the superquadric
in a reference coordinate system [10]. Existing tech-
niques for recovering superquadric models typically
involve costly iterative parameter-estimation proce-
dures that further increase in complexity if more
than a single superquadric needs to be fitted to a
scene [12, 10]. With complex scene geometries, su-
perquadric recovery must necessarily be combined
with segmentation techniques capable of partition-
ing the scene into simpler superquadric-like struc-
tures. This, however, puts a considerable compu-
tational burden on the fitting procedure as state-of-
the-art techniques for recovery-and-segmentation of
multiple superquadric models are typically extremely
resource demanding.

With recent advances in computer vision and more
importantly deep learning, it is possible to design so-
lutions for simultaneous segmentation and recovery
of superquadrics that are much more efficient than
existing solutions. In this paper, we, therefore, revisit
the problem of representing complex depth scenes
with multiple superquadrics and develop an efficient
solution for this task around convolutional neural net-
works (CNNs). Specifically, we assume that small
superquadric-like structures in range images can be
modeled as instances of a specific class of objects,
and, therefore, train a Mask-RCNN [7] model to seg-
ment the scene, as illustrated in Fig. 1. The results of
this instance segmentation are then used as input to a
second CNN that recovers superquadric parameters
for each of the identified superquadric-like objects.
Because the identified superquadric-like objects may
be partially occluded, we account for this fact during
training and learn the parameters of the second CNN
in a robust manner. We evaluate the performance of
our approach on simulated, but also real-world range
images. We achieve segmentation and recovery re-
sults comparable to the state-of-the-art, but achieve
a considerable speed-up, which makes the developed
solution suitable for a much wider range of applica-

tions. We note that in this paper we approach a con-
strained superquadric recovery problem, where we
assume that the depth scene can be approximated by
a number of unrotated superquadric models.

Our main contributions in this paper are:

• We present a novel solution for segmenta-
tion and recovery of multiple (unrotated) su-
perquadric models from range images built
around CNNs and evaluate it in experiments
with simulated and real-world depth data.

• We show that existing Mask-RCNNs may be
used for identifying superquadric-like structures
in range images in an efficient manner.

• We demonstrate that superquadrics can be re-
covered from partial depth data using a simple
CNN-based regressor and the parameter estima-
tion errors are comparable to the error produced
by state-of-the-art techniques used for this task.

2. Related work

Existing techniques to scene segmentation with
superquadrics can in general be divided in one of two
groups: i) techniques that approach the problem by
segmenting the scene and recovering superquadrics
at the same time (segment-and-fit), and ii) techniques
that first segment the scene and then fit superquadric
models to the segmented parts (segment-then-fit). In
this section we briefly review both groups of tech-
niques with the goal of providing the necessary con-
text for our work. For a more comprehensive cover-
age of the subject, the reader is referred to [10].

Segment-and-fit. Techniques from this group
typically combine the segmentation and superquadric
recovery stages and often rely on superquadric mod-
els to guide the segmentation [5, 12, 10, 9]. Due to
the fact that segmentation is performed with the final
scene representations (i.e., the superquadric) meth-
ods from this group are considered highly robust.
However, on the down side, they often also induce
a considerable computational burden on the segmen-
tation procedure. Recently, a CNN-solution [20] that
falls into this group was proposed, but unlike the ap-
proach presented in this paper, was limited to seg-
mentation of predefined classes of objects.

Segment-then-fit. Techniques from this group
follow a two-stage procedure, where the data is
first segmented up front and independently of su-
perquadric recovery [10]. Thus, the entire procedure
is broken down into two independent parts. Exam-
ples of techniques from this group include [6, 22, 2,

Figure 2: Example images from the generated dataset. The top row shows examples of the rendered images
with different numbers of superquadric in the scene. The lower row shows examples of the corresponding
segmentation masks. The figure is best viewed in color.

23]. The solution described in this work also fol-
low the segment-then-fit paradigm, but as we show in
the experimental section result in competitive perfor-
mance compared to a state-of-the-art approach from
the segment-and-fit group that is in general consid-
ered to be more robust.

3. Dataset

In order to train our instance segmentation and pa-
rameter estimation models, we require a large dataset
of depth scenes with appropriate ground truth labels.
Since no such datasets are publicly available, we gen-
erate our own and make it publicly available for the
research community. In this section we present the
dataset creation procedure and discuss the character-
istics of the generated data.

3.1. Prerequisites

In this work we follow the methodology of Oblak
et al. [18] and focus on unrotated superquadric mod-
els. Thus, we only try to recover the 8 open parame-
ters from Eq. (1) for each superquadric model and
omit rotations, which introduce ambiguities in the
superquadric-recovery process [18]. The main goal
of this work is to extend the superquadric recovery
method from [18] to depth scenes with complex ge-
ometry that need to be represented with multiple su-
perquadrics. Consequently, we fix the rotation of the
objects in our dataset and render them in an axono-
metric projection that ensures that three sides of the
objects are always visible in the rendered images.

3.2. Dataset creation

We synthesize our dataset by rendering range im-
ages with multiple superquadrics in the scene. To
construct the range images we create a custom ren-
dering tool that accepts multiple superquadric pa-
rameter sequences. The renderer then constructs the

range image of a scene by finding the surface points
of the superquadrics and choosing the closest point to
the viewport, if there are overlapping superquadrics
in the line of sight. The scene is constrained inside
a 256 × 256 × 256 grid, where the first two dimen-
sions represent the width and height of the resulting
image, while the last dimension represents the depth.
The scene is then mapped to the zero depth plane, re-
sulting in a 256 × 256 range image, where its pixel
indexes i, j correspond to the x, y coordinates in the
3D scene, while the pixel intensity relates to the z
depth in the scene.

To generate a dataset with representative su-
perquadric objects, we uniformly sample the su-
perquadric parameters similarly to [18]. How-
ever, uniformly sampling the position and size of
superquadrics independently from their neighbors
causes dramatic overlaps and intersections in the
scene, which hides a large number of objects. We
solve this by constraining the allowed intersection-
over-union volume between pairs of superquadrics
in each scene, where the volume is approximated
using the superquadrics bounding-box. Following
this requirement we first sample the number of su-
perquadrics in the scene from the discrete uniform
distribution U(1, 5). Then, for each scene, we iter-
atively sample superquadric parameters. If the new
superquadric intersects with the superquadrics al-
ready in the scene, we discard it and sample again.
This procedure continues until there are as many su-
perquadrics on the scene as determined in the initial
sampling step. Each superquadric has its size param-
eters sampled from a continuous uniform distribution
U(25, 76) and the shape parameters from U(0.01, 1)
limiting the appearance of the rendered models to
convex shapes, which are also more representative
of the real world. We sample the x0 and y0 center
coordinates from U(88, 169) while the z0 coordinate

Table 1: Dataset summary.

#Superquadrics 1 2 3 4 5 Any
#Train Images 15882 16108 15930 15983 16097 80000
#Validation Images 3989 3944 4020 3948 4099 20000
#Test Images 3949 4023 3996 4059 3973 20000

is sampled from a tighter region U(100, 150). This
is done to constrain the vertical overlap between the
superquadrics in the scene.

Along with the range image we also render a
ground truth segmentation mask image of the scene,
by coloring the different visible parts of the su-
perquadrics with a different shade of gray. This
ground truth information is used for training and
evaluating the segmentation model.

3.3. Dataset totals

The complete dataset contains 120000 rendered
scenes and corresponding segmentation masks. We
also store range images of individual superquadrics
in each scene in the dataset along with their param-
eters. For the experiments we split the dataset into
three disjoint parts: for training, validation and test-
ing. We use the training set to learn the parameters of
our models, the validation set to observe over-fitting
issues during training and the test for the final perfor-
mance evaluation. A few illustrative examples from
the generated dataset together with the correspond-
ing segmentation masks are shown in Fig. 2 and a
high-level summary of the dataset and experimental
setting is given in Table 1.

4. Superquadric recovery methodology

In this section we now present our approach to
segmentation and recovery of multiple superquadrics
using CNN models.

4.1. Segmentation

As our range images contain multiple objects of
the same class (i.e., superquadric-like objects), we
resort to instance segmentation to identify parts of
the range images belonging to structures that can be
represented with superquadrics. One of the most
popular models for instance segmentation is Mask
R-CNN [7], which operates in a two-stage fashion.
In the first stage, it uses a region proposal network
(RPN) that finds candidate regions in the image.
In the second stage, the final predictions are made.
Here, three model heads are used: one for detection
(two-class classification: object present or not), one

Table 2: Architecture of the CNN regressor used for
superquadric parameter estimation.

Output size Layer operation #kernels, size, stride
1 128× 128 Conv2D+BN+ReLU 32, 7× 7, s2
2 128× 128 Conv2D+BN+ReLU 32, 3× 3, s1
3 128× 128 Conv2D+BN+ReLU 32, 3× 3, s1
4 64× 64 Conv2D+BN+ReLU 32, 3× 3, s2
5 64× 64 Conv2D+BN+ReLU 64, 3× 3, s1
6 64× 64 Conv2D+BN+ReLU 64, 3× 3, s1
7 32× 32 Conv2D+BN+ReLU 64, 3× 3, s2
8 32× 32 Conv2D+BN+ReLU 128, 3× 3, s1
9 32× 32 Conv2D+BN+ReLU 128, 3× 3, s1
10 16× 16 Conv2D+BN+ReLU 128, 3× 3, s2
11 16× 16 Conv2D+BN+ReLU 256, 3× 3, s1
12 16× 16 Conv2D+BN+ReLU 256, 3× 3, s1
13 8× 8 Conv2D+BN+ReLU 256, 3× 3, s2
14 16384 Flatten N/A
15 8 Dense N/A

for regression of the bounding boxes, and one for
prediction of the binary segmentation mask.

In our implementation, we use a ResNet-101 [8]
backbone as the feature extractor along with a fea-
ture pyramid network (FPN) that makes it possi-
ble to exploit multiple scales of the feature maps.
These features get fed trough a region proposal net-
work which predicts object scores and their bounding
boxes at each feature position. The predictions are
then filtered by a non-maximum suppression algo-
rithm, which removes overlapping bounding boxes.

The RPN bounding boxes and the FPN features
get combined using the RoIAlign operator and fed
into the three network heads to obtain the final class
(object present or not), bounding box, and binary
mask for each region proposal. Here the classifica-
tion scores are used for the elimination of any back-
ground instances. For more information on Mask R-
CNNs, the reader is referred to [4, 3, 24, 15, 7].

4.2. Parameter estimation

Once the scene is segmented and superquadric-
like objects are identified in the input images, we
feed the predictions into a CNN regressor for param-
eter estimation. We follow the work of [18] and use a
regression model derived from the popular VGG ar-
chitecture [19]. The model is designed as a 13 layer
CNN with a fully-connected layer of size 8 on top.
Each conv layer is followed by batch normalization
and a ReLU activation, which reduces overfitting and
allows the model to better generalize. The model is
summarized in Table 2.

The input to the CNN regressor is a range im-

(a) 100% (b) 93.8% (c) 93.3% (d) 86.9% (e) 80% (f) 76.7% (g) 55.7% (h) 52.5% (i) 40%

Figure 3: Predicted segmentation masks from the Mask R-CNN model. The images are ordered in columns
of three. Three good predictions (left), three average predictions (middle) and three bad predictions (right). In
the first row we show range images with overlaid ground truth masks. The second row shows masks obtained
with our segmentation model. Under the images we also report the mAP value for the segmentation. Most of
the predictions are sufficient, even in the average subsection of the predictions. We observe that fine details are
elusive to the model, such as disconnected masks (h) or narrow subparts of masks (e,f). Best viewed in color.

age containing a single superquadric-like instance
and the output is a prediction of 8 parameters de-
scribing the size, shape and position, of the su-
perquadric representing the input data, i.e., y =
[a1, a2, a3, ε1, ε2, x0, y0, z0]. Different from [18], the
inputs to our model are not necessarily complete su-
perquadrics, but automatically segmented range data,
where parts of the object may be occluded due to
overlap with other objects in the scene. Thus, we
account for this in our training procedure and learn
the parameters of our regressor by utilizing occluded
data. As we show in the experimental section this
allows us to quite efficiently estimate superquadric
parameters even if part of the data is missing either
due to occlusions or errors in the segmentation steps.

5. Experiments and results

5.1. Instance segmentation

The Mask R-CNN backbone is initialized with
a ResNet-101 structure [8], pre-trained on the MS
COCO dataset [16]. The training is split into two
stages. In the first stage, we lock the training of the
backbone and set the learning rate to 10−3, with mo-
mentum of 0.9. In the second stage we unlock the
backbone and fine-tune the network with a smaller
learning rate of 10−4. We present the standard mean
average precision (mAP) scores of the instance seg-
mentation in Table 3, as used in the COCO challenge.
The model is trained on 80k training range-images of
superquadric scenes, with a batch size of 2. We use
an additional 20k images for validation and 20k im-
ages for testing. The model is trained on an NVIDIA
GTX TITAN X GPU.

Table 3: Instance segmentation results. mAP50 and
mAP75 denote scores computed at 50% and 75% IoU
respectively, while mAP denotes the mean average
precision averaged over IoU values from 50% up to
95%, taken at 5% steps.

mAP mAP50 mAP75

85.57 97.33 95.95

In Table 3 we report the segmentation results using
our Mask R-CNN model. We can see that average
precision at Intersection-over-Union (IoU) thresh-
olds 50% and 75% are higher than the averaged mAP
over multiple IoU thresholds. This indicates that the
model fail only at the highest intersections, segment-
ing the objects with good detail and precision.

In Figure 3 we present some examples of predicted
masks for the training set. Most of the objects have
been segmented with sufficient precision. On aver-
age, the model only misses smaller and highly oc-
cluded objects (Figures 3e and 3f). It also struggles
with objects visually cut in half because of overlaps
(Figure 3h). In these cases we either get multiple sep-
arate instance segments or the model fails to detect
one of the parts completely. We suspect this might be
caused by significant bounding box overlap between
the foreground and background objects. The latter
causing the former to get suppressed by the Mask R-
CNN non maximum suppression algorithm.

5.2. Parameter prediction

We initialize the parameter prediction model with
the weights from [18], as the same neural network
architecture was used in that work. To train the pa-

Table 4: Parameter-prediction performance. The table shows MAE scores for each of the 8 superquadric
parameters. The rows show results on different subsets of segmented range images test set, defined by the
number of superquadrics the parent scene. The “All” row shows scores averaged over the entire set.

#sq Dimensions [0-256] Position [0-256] Shape [0-1]
a1 a2 a3 x0 y0 z0 ε1 ε2

All 1.134 1.187 1.248 1.953 1.864 2.639 0.017 0.017
1 0.515 0.555 0.537 0.957 0.925 2.154 0.009 0.008
2 0.681 0.736 0.728 1.165 1.093 2.181 0.011 0.010
3 0.930 0.984 1.036 1.528 1.448 2.386 0.013 0.013
4 1.580 1.646 1.708 3.066 2.966 3.110 0.026 0.025
5 1.201 1.241 1.357 1.776 1.669 2.685 0.017 0.017

rameters of the model we use the ADAM minibatch
stochastic gradient descent optimisation algorithm,
which minimizes the MSE loss. We set the learn-
ing rate of the algorithm to 10−3 and keep the rate
constant during training. As already indicated above,
we use the segmentations produced by our Mask R-
CNN model as the basis for the training to make the
model robust to missing data. We only train on seg-
mentations with an IoU higher than 50% compared
to the ground truth masks. The model is trained for
63 epochs, with varying batch sizes constructed al-
ways from batches of 4 scene range images, giving
us a maximum batch size of 20 segmented range im-
ages. We report performance for the CNN regressor
in terms of the Mean Absolute Error (MAE) between
the predicted and ground truth parameters. This mea-
sure was sufficient for our problem, since we predict
superquadric parameters for superquadric visualiza-
tions, where the matching of parameters correlates
with the 3D matching of the objects.

In Table 4 we present the MAE scores for each pa-
rameter on a test set of 20000 images. In addition to
the MAE score for the entire test set, we also show
separate MAE scores for scenes with different num-
bers of superquadrics. On average the model per-
forms very well, predicting position and size in the
order of one pixel accuracy compared to the [0, 256]
range of possible values. The shape parameters ε0
and ε1 also achieve about 0.017 mean absolute error
which is also small compared to the [0, 1] range of
possible values. The model performs better in scenes
with a smaller number of superquadrics since more
superquadrics in the scene typically result in greater
intersections and occlusions. Table 4 shows an al-
most monotonous increase in MAE as the number
of superquadrics is increased, the only disparity is a
larger error in scenes with 4 objects than in scenes
with 5.

a1 a2 a3 x0 y0 z0 1 2
0.10

0.05

0.00

0.05

0.10

Re
la

tiv
e

er
ro

r

Figure 4: Box-and-whiskers plots of the relative error
for each parameter.

In Figure 4 we show box-and-whiskers plots of
the relative errors between ground truth and the pre-
dicted parameter values over the entire test set of seg-
mented range images. We see that most of the error
mass is close to the mean. The positional parame-
ters are predicted with especially small variance in
their errors. We also observe that the z axis size pa-
rameters are on average slightly overestimated. This
seems to get compensated by an underestimation of
the z axis position, thus aligning the top surface of
the ground truth and the predicted superquadrics.

Scenes with larger numbers of superquadrics are
harder to segment, occasionally giving our param-
eter prediction model highly corrupted segmenta-
tion masks, that can either blend range information
from multiple objects into one segmented range im-
age or return smaller subsets of the actual masks.
On such corrupt segmented range images our pre-
diction model naturally performs much worse than
on cleaner segmentations, resulting in a somewhat
heavy-tailed error distribution. We show this in Fig-
ure 5 where we plot the error distribution for all
parameter predictions and subsets over the number
of superquadrics in the scene. We also show how
our segmentation model performs on each subset by
showing the distribution of IoU values for its pre-

10 1

101
#sq = 1

10 1

101

#sq = 2

10 1

101

PD
E

#sq = 3

10 1

101

#sq = 4

0.20.0 0.2

a1 error

10 1

101

0.20.0 0.2

a2 error
0.20.0 0.2

a3 error
0.150.000.15

x0 error
0.150.000.15

y0 error
0.150.000.15

z0 error
0.250.000.25

1 error
0.250.000.25

2 error
0.50 0.75 1.00

IoU

#sq = 5

Figure 5: Our methods error distribution for each parameter. Each row shows results obtained from the 5
subsets scene images, each with a different number of superquadrics in its scenes. We also add the last column
showing the IoU distribution of the predicted masks with Mask R-CNN.

Figure 6: Qualitative comparison with the state-of-the-art: Input range images of (scanned) real-world objects
(first column), Our reconstructions (second column), Absolute difference between the ground truth and our re-
construction (third column), Reconstructions by Leonardis et. al. [12, 10] (fourth column), Absolute difference
between the ground truth and reconstruction by Leonardis et. al. [12, 10] (last column).

dicted segmentations. The distributions move away
from a Gaussian shape quickly when more than one
superquadric is present in the scene. The tails be-
come larger when we increase the number of ob-
jects in the scene. As mentioned earlier, this can
be explained by the inefficiency of the segmentation
model, as the model also performs worse with greater
numbers of objects in the scene - the IoU distribution
becomes more and more skewed, with a heavier tail.

We also compare our approach to the state-of-the-
art segmentation and superquadric recovery method
from [12, 10] on range-images of real objects. For
this experiment, we used range-image scans of real

objects taken by Oblak et. al. for their work in [18].
We constructed range image scenes of multiple ob-
ject by shifting the original images in pixel space
and combining them using the max operator. The
original range images, and their superquadric recon-
structions using our approach and the state-of-the-art
method from [12, 10] are shown in Figure 6. The it-
erative method from [12, 10] performs comparably to
our solution, as we can see from the examples. Our
method achieved 2.79 MAE calculated over all pixels
differences from all pairs of ground truth and recon-
structed images while [12, 10] scored 1.78. However,
we note that the iterative algorithm of the original

method results in much higher processing times. Our
method performs similarly in terms of reconstruc-
tion quality, but computes the segmentations and pa-
rameter predictions with a 100× speed up over the
state-of-the-art approach. Specifically, the iterative
method converges in about 10 s on one image while
our method needs 0.11 s on a GPU. While our meth-
ods advantage against [12, 10] is that we can paral-
lelize its computations, it still performs faster on a
single threaded CPU with about 5 s per image.

6. Conclusion

We have presented a CNN-based solution for seg-
mentation and recovery of multiple superquadrics
from range images. We have shown that the designed
solution is able to efficiently decompose complex
depth scenes into smaller parts that can be modelled
by superquadric models. Our approach was shown to
produce scene reconstruction on par with a state-of-
the-art method from the literature, while ensuring a
significant speed up in processing times. As part of
our future work, we will extend the solution to ac-
count for rotated superquadrics as well.

Acknowledgements

This research was supported in parts by the ARRS (Slovenian

Research Agency) Project J2-9228 “A neural network solution

to segmentation and recovery of superquadric models from 3D

image data”, ARRS Research Program P2-0250 (B) “Metrology

and Biometric Systems” and the ARRS Research Program P2-

0214 (A) “Computer Vision”.

References
[1] R. Bajcsy and F. Solina. Three dimensional object repre-

sentation revisited. In ICCV, pages 231–240, 1987.
[2] F. P. Ferrie, J. Lagarde, and P. Whaite. Darboux frames,

snakes, and super-quadrics: geometry from the bottom up.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 15(8):771–784, Aug 1993.

[3] R. Girshick. Fast R-CNN. In ICCV, Dec 2015.
[4] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic
segmentation. In CVPR, pages 580–587, June 2014.

[5] A. Gupta and R. Bajcsy. Volumetric segmentation of range
images of 3d objects using superquadric models. CVGIP:
Image Understanding, 58(3):302 – 326, 1993.

[6] A. Gupta, G. Funka-Lea, and K. Wohn. Segmentation,
Modeling And Classification Of The Compact Objects In
A Pile. In D. P. Casasent, editor, Intelligent Robots and
Computer Vision VIII: Algorithms and Techniques, volume
1192, pages 98 – 109. SPIE, 1990.

[7] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-
CNN. In ICCV, pages 2980–2988, Oct 2017.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In CVPR, pages 770–778, 2016.

[9] T. Horikoshi and S. Suzuki. 3D parts decomposition from
sparse range data using information criterion. In CVPR,
pages 168–173, June 1993.

[10] A. Jaklič, A. Leonardis, and F. Solina. Segmentation and
recovery of superquadrics. Kluwer, 2000.

[11] H. Jiang and J. Xiao. A linear approach to matching
cuboids in rgbd images. In CVPR, pages 2171–2178, 2013.

[12] A. Leonardis, A. Jaklič, and F. Solina. Superquadrics
for segmenting and modeling range data. IEEE TPAMI,
19(11):1289–1295, 1997.

[13] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held,
S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt,
M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Wer-
ling, and S. Thrun. Towards fully autonomous driving:
Systems and algorithms. In 2011 IEEE IV, 2011.

[14] R. Li, X. Jia, J. H. Lewis, X. Gu, M. Folkerts, C. Men, and
S. B. Jiang. Real-time volumetric image reconstruction
and 3D tumor localization based on a single x-ray projec-
tion image for lung cancer radiotherapy. Medical Physics,
37(6Part1):2822–2826, 2010.

[15] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and
S. Belongie. Feature pyramid networks for object detec-
tion. In CVPR, pages 936–944, July 2017.

[16] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft COCO:
Common Objects in Context. In ECCV, 2014.

[17] C. Niu, J. Li, and K. Xu. Im2Struct: Recovering 3D Shape
Structure from a Single RGB Image. In CVPR, 2018.

[18] T. Oblak, K. Grm, A. Jaklič, P. Peer, V. Štruc, and
F. Solina. Recovery of Superquadrics from Range Images
using Deep Learning: A Preliminary Study. In IWOBI,
pages 45–52. IEEE, 2019.

[19] O. Parkhi, A. Vedaldi, and A. Zisserman. Deep face recog-
nition. In BMVC, volume 1, page 6, 2015.

[20] D. Paschalidou, A. O. Ulusoy, and A. Geiger. Su-
perquadrics revisited: Learning 3D shape parsing beyond
cuboids. In CVPR, pages 10344–10353, 2019.

[21] L. Pedersen. Science target assessment for Mars rover in-
strument deployment. In IROS, volume 1, Sep. 2002.

[22] A. P. Pentland. Automatic extraction of deformable
part models. International Journal of Computer Vision,
4(2):107–126, 1990.

[23] N. Raja and A. Jain. Obtaining generic parts from range
images using a multi-view representation. CVGIP: Image
Understanding, 60(1):44 – 64, 1994.

[24] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-
CNN: towards real-time object detection with region pro-
posal networks. CoRR, abs/1506.01497, 2015.

[25] J. Slabanja, B. Meden, P. Peer, A. Jaklič, and F. Solina.
Segmentation and reconstruction of 3D models from a
point cloud with deep neural networks. In ICTC, 2018.

[26] F. Solina and R. Bajcsy. Recovery of parametric models
from range images: The case for superquadrics with global
deformations. IEEE TPAMI, 12(2):131–147, 1990.

[27] S. Tulsiani, H. Su, L. J. Guibas, A. A. Efros, and J. Ma-
lik. Learning shape abstractions by assembling volumetric
primitives. In CVPR, pages 1466–1474, July 2017.

[28] Y. Zhou, K. Yin, H. Huang, H. Zhang, M. Gong, and
D. Cohen-Or. Generalized cylinder decomposition. ACM
Trans. Graph., 34(6):171:1–171:14, Oct. 2015.

	. Introduction
	. Related work
	. Dataset
	. Prerequisites
	. Dataset creation
	. Dataset totals

	. Superquadric recovery methodology
	. Segmentation
	. Parameter estimation

	. Experiments and results
	. Instance segmentation
	. Parameter prediction

	. Conclusion

