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Abstract
The paper presents a summary of the 2020 Sclera Seg-

mentation Benchmarking Competition (SSBC), the 7th in
the series of group benchmarking efforts centred around
the problem of sclera segmentation. Different from previ-
ous editions, the goal of SSBC 2020 was to evaluate the
performance of sclera-segmentation models on images cap-
tured with mobile devices. The competition was used as a
platform to assess the sensitivity of existing models to i) dif-
ferences in mobile devices used for image capture and ii)
changes in the ambient acquisition conditions. 26 research
groups registered for SSBC 2020, out of which 13 took part
in the final round and submitted a total of 16 segmentation
models for scoring. These included a wide variety of deep-
learning solutions as well as one approach based on stan-
dard image processing techniques. Experiments were con-
ducted with three recent datasets. Most of the segmentation
models achieved relatively consistent performance across
images captured with different mobile devices (with slight
differences across devices), but struggled most with low-
quality images captured in challenging ambient conditions,
i.e., in an indoor environment and with poor lighting.

1. Introduction

Ocular biometrics represent a branch of biometric recog-
nition technology that exploits various eye characteristics
for identity inference. Recognition techniques based on
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Figure 1: The quality of ocular images captured by mobile
devices depends heavily on the imaging sensor used and the
ambient acquisition conditions present during the capturing
process - as illustrated by the sample images above. The
goal of SSBC 2020 is to evaluate the performance of dif-
ferent sclera segmentation models across different captur-
ing devices and acquisition conditions in the largest group
benchmarking effort in this problem domain so far.

ocular traits are particularly important for authentication
schemes on mobile devices, where reliable (and convenient)
mechanisms for ascertaining the identity of users are of
paramount importance. While the field has long been domi-
nated by iris recognition techniques, recent research is in-
creasingly looking at alternative traits that can either be
used as stand-alone modalities or, alternatively, in combi-
nation with the iris. Among the different ocular traits avail-
able, the sclera region is particularly appealing due to desir-



able characteristics [1], such as high discriminability, per-
manence and robustness to presentation attacks [2, 3].

An increasing amount of research directed towards ex-
ploring sclera as a biometric trait has been presented in the
literature in the last few years. This includes techniques
for recognition [4, 5, 6, 7, 8, 3], segmentation [2, 9, 10],
presentation attacks detection [2, 3, 6], adaptability of the
trait [11, 12], information fusion with the iris [13, 14] and
synthetic sclera generation [15]. However, despite this re-
search effort, comprehensive studies investigating the char-
acteristics of sclera biometrics in mobile scenarios are still
limited in the literature. As illustrated in Figure 1, the qual-
ity of images captured in such scenarios very much depends
on the specific device (and consequently imaging sensors)
used and the external conditions present during the acquisi-
tion step. It is important to understand how these sources of
variability affect various components of sclera-based recog-
nition techniques and what kind of performance degradation
can be expected due to changes in the mobile device used
and ambient conditions present during image capture.

To explore these issues, the 2020 Sclera Segmentation
Benchmarking Competition (SSBC) was organised as part
of the International Joint Conference on Biometrics (IJCB
2020). The competition focused on the task of sclera seg-
mentation, which is a key component and typically the first
step in sclera biometric pipeline. Improper segmentation
affects the performance of all downstream tasks, includ-
ing image normalisation, feature extraction and recogni-
tion. Consequently, the competition was organised around
a novel dataset the Mobile Ocular Biometrics in Uncon-
strained Settings (MOBIUS), that features challenging oc-
ular/sclera images captured in unconstrained settings with
three mobile devices and in three acquisition conditions.
The dataset allowed to explore a number of research ques-
tions within SSBC 2020, such as: How do contemporary
segmentation models perform with challenging images cap-
tured with mobile devices? What impact do changes in
imaging sensors have on segmentation performance? How
does the external imaging conditions affect segmentation
accuracy? To answer these questions 16 segmentation mod-
els were contributed to the competition from 13 different
research groups and analysed for their performance.

The joint effort of all participating groups resulted in the
following contributions that are presented in this paper:

• A rigorous evaluation of several contemporary (sclera)
segmentation models using images captured in chal-
lenging mobile scenarios.

• A comprehensive sensitivity analysis of the segmen-
tation models to variations in acquisition device and
external capturing conditions.

• A novel dataset of ocular images designed for research
into segmentation models for ocular biometrics in mo-
bile scenarios.

2. Related Work
SSBC 2020 represents the 7th edition of the annual

sclera segmentation competition started initially in 2015 as
part of the BTAS 2015. The series of competitions had a
considerable impact on the state of technology in sclera seg-
mentation and over the years provided popular benchmarks
for the community.

The 1st and 3rd iteration of SSBC introduced a novel
dataset for sclera segmentation [16]. The 2nd iteration (SS-
RBC 2016) also studied sclera recognition techniques in
addition to segmentation models [17]. The 4th iteration,
SSERBC 2017, focused on sclera segmentation and eye
recognition with different gaze directions [18]. The 5th,
SSBC 2018, explored the impact of cross senor image cap-
ture on sclera segmentation, and the 6th iteration, SSBC
2019, investigated the performance of segmentation mod-
els in cross-resolution settings [19, 20].

The current edition of SSBC aims to continue the series
of competitions with a new segmentation problem relevant
in the context of mobile biometrics. By introducing a novel
dataset for this task, it also makes an important contribution
to the community.

3. Benchmarking methodology
This section presents the benchmarking methodology

used for SSBC 2020. It first describes the datasets used
in the challenge and then elaborates on the logistics of the
competition and performance metrics utilised for the final
comparative evaluation.

3.1. SSBC 2020 datasets

Three datasets were used for SSBC 2020: i) the Multi-
Angle Sclera Dataset (MASD) [21], ii) the Sclera Mobile
Dataset (SMD) [22] and iii) the Mobile Ocular Biomet-
rics in Unconstrained Settings (MOBIUS) dataset. MASD
and SMD were made available to the participants together
with the ground truth segmentation masks at the start of
challenge and served as the main training data for the chal-
lange. However, using additional (external) dataset for the
training process was also allowed. A small sample of 36
images from the MOBIUS dataset was also released. The
MOBIUS dataset acted as the testing data for the compe-
tition. This dataset was sequestered and made available
(without the ground truth masks) three weeks before the
result-submission deadline. A few sample images from the
datasets are shown in Figure 2 and a summary of the main
characteristics of the datasets is provided in Table 1. A de-
tailed description of the competition data is provided below.

MASD. The first dataset used in SSBC 2020 contains
high-quality ocular images acquired with a DSLR camera,
i.e., a NIKON D 800 with 28-300mm lenses. The dataset
features 2624 RGB images taken from 82 subjects. The
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Figure 2: Sample images and ground truth masks for the datasets used in the competition. The figure displays images and
sclera ground truth masks from (a) MASD and (b) SMD, as well as image examples from the segmentation part of (c)
MOBIUS along with the ground truth segmentation masks for the sclera and other eye parts available with the dataset. Note
the variability across image qualities and gaze directions present in the datasets.

MASD images were collected from both eyes of each sub-
ject, so there are 164 different eyes in the dataset in total.
For each subject, four gaze directions were captured (look-
ing straight, left, right and up) and for each direction 4 im-
ages were taken. The subjects in the dataset comprise both
male and female subjects, some subjects are wearing con-
tact lenses. Images were acquired at different times of the
day, which affected the ambient illumination conditions and
consequently the quality of the captured images. Some of
the images were acquired while blinking and with closed
eyes. Images in the MASD dataset are stored in JPEG for-
mat and are 7500 × 5000 pixels in size. Ground truth seg-
mentation masks of the sclera region were generated manu-
ally for all images in the dataset.

SMD. The second dataset of the competition, SMD, was
captured by a mobile phone (with a 8-mega pixel rear cam-
era) and consists of 500 RGB images of both eyes of 25
individuals (in other words, 50 different eyes). For each
eye, 10 sample images were captured. The dataset contains
blurred images and images with blinking eyes. The sub-
jects in the dataset comprise both male and female subjects
(12 males and 13 females) of different ages and different
skin colours. Two subjects have contact lenses. Similarly to
MASD, the images from SMD were also taken at different
times of the day. Different acquisition conditions were (in-
tentionally) considered when capturing the dataset to gen-
erate variations in image quality (blur, lighting condition,
etc.) and facilitate investigations into the performance of
(sclera) segmentation models in non-ideal conditions. The
images in SMD are stored in JPEG format with a resolution
of 3264 × 2448 pixels. The dataset also contains manually
generated ground truth segmentation masks.

MOBIUS. The third dataset used for SSBC 2020 repre-
sents a recent dataset designed for research in mobile ocular

Table 1: Overview of the datasets used for SSBC 2020. In-
formation on the number of images, number of subjects, the
image resolution (in pixels), main sources of variability and
purpose in the competition is provided.

Dataset #Images #IDs Resolution Variability Purpose
MASD 2624 82 7500× 5000 GZ, BL Training
SMD 500 25 3264× 2448 BL, CN Training
MOBIUS 3542 35 3000× 1700 MD, CN, GZ, BL Testing
†GZ - gaze, BL - blur, CN - acquisition condition, MD - mobile device.

biometrics. The complete MOBIUS dataset contains over
16,000 RGB ocular images of 100 subjects. However, only
the segmentation part of the dataset is utilised for SSBC
2020. This part consists of 3542 manually annotated RGB
images belonging to 35 subjects (70 eyes). Images from
the MOBIUS dataset were captured at four different gaze
directions (straight, left, right and up) using three differ-
ent mobile phones, i.e,. Sony Xperia Z5 Compact, Apple
iPhone 6s, Xiaomi Pocophone F1 (shown in this order in
the columns in Figure 1), and in three different acquisition
conditions, i.e., under good lighting inside (Indoor), under
good lighting outside (Neutral), and under bad lighting in-
side (Poor). The effect of the acquisition conditions on the
image quality (in the order listed above) is shown in the
rows of Figure 1. The MOBIUS images correspond to male
and female subjects of Caucasian origin and vary consid-
erably in terms of quality (blur, noise, etc.) both due to
the changes in mobile devices used as well as due to dif-
ferences in the acquisition conditions. All images in the
dataset were manually annotated with segmentation masks
for the sclera, iris and pupil, as illustrated in Figure 2. Im-
perfections in the annotated masks were then corrected us-
ing a semi-automatic post-processing procedure. For SSBC
2020, only masks for the sclera region were considered.
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Figure 3: Distribution of images in the segmentation part of
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genders, and (f) eye colours. Best viewed in colour.

To allow for an appropriate interpretation of the results
of SSBC 2020, the distribution of images across various
sources of data variability (i.e, left or right eye, gaze di-
rection, acquisition conditions, mobile device used, gender
and eye colour) is presented in Figure 3. Note that the num-
ber of image samples across the different categories is not
always balanced perfectly, as some samples had to be dis-
carded during the quality check when finalising the dataset.
The segmentation part of the MOBIUS dataset is currently
publicly available on request1.

3.2. Evaluation protocol

SSBC 2020 was held in two separate stages. During
the first stage participants were given the training datasets,
MASD and SMD, including the ground truth segmentation
masks and were asked to design and train their segmentation
models. In the second stage, the complete MOBIUS data
(without the ground truth segmentation masks) was pro-
vided to the participants, who then had another three weeks
to generate the final segmentation results. The three-week
time constraint was put in place to limit the time available
for experiments with

To facilitate a detailed analysis, the SSBC participants
were asked to submit two types of results for scoring: i) bi-
nary segmentation masks (with non-zero valued pixels rep-
resenting the sclera and zero valued pixels representing ev-
erything else), and ii) grayscale segmentation maps (with
pixel intensities representing probabilities of the pixels be-
longing to the sclera region). Results had to be submitted
for all 3542 test images from the MOBIUS dataset. Exam-

1For details, visit: sclera.fri.uni-lj.si.

Figure 4: Illustration of results to be submitted (from left to
right): original image, generated binary segmentation mask,
probabilistic (grey-scale) segmentation prediction.

ples of the requested results for a sample image are shown
Figure 4. The submitted binary masks were used to deter-
mine the performance scores for the final ranking (as de-
scribed in the next section), while the probability maps al-
lowed for more detailed analysis of the approaches and gen-
eration of performance curves.

3.3. Performance metrics

The segmentation performance of the participating mod-
els was evaluated by the organisers of SSBC 2020 based
on the submitted segmentation predictions. Specifically, the
following performance metrics were computed based on the
binary segmentation masks for each model:

• Precision, which is defined as the fraction of correctly
retrieved sclera pixels w.r.t. the overall number of re-
trieved sclera pixels ( TP

TP+FP ). In other words, pre-
cision measures how many of the pixels identified are
relevant for the segmentation task [23, 24, 25, 26].

• Recall, which is defined as the fraction of correctly re-
trieved sclera pixels by the segmentation model w.r.t.
the overall number of actual sclera pixels ( TP

TP+FN ).
Recall, hence, measures how many of the relevant pix-
els are retrieved [23, 24, 25, 26].

• F1 score, which is defined as the harmonic mean be-
tween precision and recall (2 · precision·recall

precision+recall ). The score
is computed to have a single performance metric for
the competition and balance the trade-off between pre-
cision and recall. The F1 score is used as the primary
metric for ranking participants in SSBC 2020.

• Intersection over union (IoU) – or Jaccard index,
which is defined as the ratio between i) the size of the
intersection of the retrieved and ground truth sclera re-
gions, and (ii) the size of the union of the retrieved and
ground truth sclera regions ( TP

TP+FP+FN ).

In the above equations TP denotes true positives, i.e., the
number of correctly retrieved sclera pixels, FP denotes
false positives, i.e., the number of background pixels incor-
rectly retrieved as sclera pixels, and FN denotes false neg-
atives, i.e., the number of sclera pixels incorrectly retrieved
as background pixels.

Because the results computed based on the binary masks
only show a partial picture of the performance of the seg-
mentation models, complete precision-recall curves were

sclera.fri.uni-lj.si


Table 2: Summary of participants and list of submitted ap-
proaches to SSBC 2020. The table lists the abbreviations of
the models, as used in the experimental section.

No. Group Model Acronym DL/Other
1. Hochschule Darmstadt (HDA) Multi-Deeplab DL
2. Hochschule Darmstadt (HDA) Multi-FCN DL
3. Chinese Academy of Sciences (CAS) SaSSNet DL
4. Bennett University (BU) SSIP Other
5. Warsaw University of Technology (WUT) MU-Net DL
6. Fraunhofer Institute for Computer Graphics Research (IGD) RGB-SS-Eye-MS DL
7. Fraunhofer Institute for Computer Graphics Research (IGD) Y-SS-Eye-MS DL
8. Universidad de Santiago, Chile (USACH) Mask2020CL DL
9. Universidad de Santiago, Chile (USACH) CGANs2020CL DL

10. Couger Inc. AB Sclera Net DL
11. Norwegian University of Science and Technology (NTNU) ScleraMaskRCNN DL
12. University of Engineering and Management (UEM) UNet-P DL
13. Federal University of Paraná (UFPR) FCN8 DL
14. Democritus University of Thrace (DUTH) ScleraU-Net DL
15. Indian Institute of Technology Ropar (IIT-RPR) Color RITNet DL
16. Maulana Abul Kalam University of Technology (MAKAUT) S-Net DL
†For details on the participants from the institutions see the author list.

generated from the submitted probabilistic (grey-scale) seg-
mentation predictions [27, 28]. An optimal F1 score (F opt

1 )
was determined on the computed performance curves and
the Area Under the precision-recall Curve (AUC) was also
calculated as another performance indicator [29].

4. Summary of submitted approaches
Thirteen groups entered SSBC 2020 and submitted 16

segmentation models for scoring. The majority of submit-
ted models (15 in total) relied on deep learning and only
one used standard image processing techniques. Table 2
presents a summary of the participating groups, while a
brief description of the submitted models is provided below.

Multi-Deeplab (HDA) represents a variant of the
Deeplab v3+ model from [30]. It is trained for multi-class
segmentation (different eye parts) on the MCIS dataset [31]
and samples from the MASD and SMD dataset that were
manually annotated with additional eye components.

Multi-FCN (HDA) exploits a Fully Convolutional Neu-
ral Network (FCN) and is designed for multi-class eye seg-
mentation. The model is initialised with weights provided
by fcn8s-at-once for the Pascal 2012 VOC dataset [32] and
then fine-tuned on the MCIS, MASD and SMD datasets.

SaSSNet (CAS) or Shape-aware Sclera SegNet is a deep
learning solution that uses Deeplab v3+ [30] for its back-
bone model. During training, SaSSNet utilises heavy data
augmentation [33] and a pixel-wise cross-entropy loss com-
bined with a shape-aware loss to better preserve the shape
of the segmented sclera.

SSIP (BU) is the only model from SSBC 2020 that em-
ploys standard image processing techniques for segmen-
tation. It first processes input images with a single-scale
retinex technique [34, 35] and then analyses image intensi-
ties for segmentation. A sequence of morphological opera-
tions is used to generate the final segmentation results.

MU-Net (WUT) represents a U-Net inspired model [36]
conditioned on MobileNetV2 [37] class features to segment
the sclera region from the background in an eye. A two-
stage fine-tuning procedure is utilised with MobileNetV2
using the SSBC training data. To avoid overfitting different
techniques are used for data augmentation.

RGB-SS-Eye-MS (IGD) is based on the Multi-scale
segmentation solutions (Eye-MS) from [38]. The model is
a simple CNN that refines the segmentation results across
different image resolutions and is trained with an IoU loss.
The model processes three channel RGB image.

Y-SS-Eye-MS (IGD) is identical conceptually to the
RGB-SS-Eye-MS model described above, but processes
only a single channel of the input images, i.e., the luma
component (Y) of the YUV representation. Thus, differ-
ently from RGB-SS-Eye-MS, Y-SS-Eye-MS does not rely
on colour information during segmentation.

Mask2020CL (USACH) is a modified Mask R-CNN
[39, 40], extended from Faster-R-CNN by adding a branch
for predicting segmentation masks on each Region of Inter-
est (RoI), in parallel with the existing branch for classifi-
cation and bounding box regression. The mask branch is a
small fully connected network applied to each RoI, predict-
ing a segmentation mask in a per pixel manner.

CGANs2020CL (USACH) formulates the segmentation
problem as a patch-to-patch translation task and uses a Con-
ditional Generative Adversarial Network [41] for the seg-
mentation process. A Resnet-101 model is utilised as the
backbone of the solution and trained from scratch. Aggres-
sive data augmentation is used during training.

AB Sclera Net (Couger) is inspired by the recent
(encoder-decoder) EyeNet model from [42]. Efficient Net
B4 [43] is used as the encoder in the model. The decoder
consists of two residual blocks and an upsampling layer,
the output of which is passed to a CBAM attention layer
[44]. The model is trained using a combination of categori-
cal cross entropy and dice losses.

ScleraMaskRCNN (NTNU) uses a MaskRCNN model
for instance segmentation. A ResNet-101 model is used as
the backbone. The segmentation procedure involves two
stages, where the first generates region proposals, while
the second predicts the class of the objects and refines the
bounding box needed for generating segmentation masks.

UNet-P (UEM) is a modified version of U-Net [36]. At
the core of this submission is a novel pre-processing proce-
dure that normalises the input RGB images before feeding
them to the segmentation model. The pre-processing proce-
dure helps with the model convergence during training and
enhances performance by reducing data variability.

FCN8 (UFPR) uses a Fully Convolutional Network
(FCN) for segmentation and is, hence, applicable to
arbitrarily-sized input images [45]. It relies on ideas from
[46] and uses a VGG-16 model (without the FC layers) in



Table 3: Comparative assessment on the MOBIUS dataset. The results are ordered according to the achieved F1 scores.
The F1, Precision, Recall and IoU scores were computed from the submitted binary masks. The optimal F1 score on the
precision-recall curve (F opt

1 ) and AUC values were calculated from the probabilistic segmentation predictions.

Segmentation Model
From binary masks From probabilistic predictions

F1 Precision Recall IoU F opt
1 AUC

UNet-P 0.868± 0.003 0.909± 0.004 0.831± 0.003 0.868± 0.003 0.870± 0.003 0.930± 0.003

FCN8 0.854± 0.004 0.820± 0.004 0.890± 0.004 0.853± 0.003 0.865± 0.004 0.936± 0.003

RGB-SS-Eye-MS 0.836± 0.004 0.917± 0.002 0.769± 0.005 0.841± 0.003 0.842± 0.004 0.872± 0.003

Y-SS-Eye-MS 0.823± 0.005 0.930± 0.004 0.738± 0.006 0.830± 0.004 0.836± 0.005 0.868± 0.005

SaSSNet 0.821± 0.004 0.885± 0.004 0.765± 0.006 0.827± 0.003 0.818± 0.004 0.893± 0.004

Multi-Deeplab 0.806± 0.005 0.915± 0.001 0.719± 0.008 0.816± 0.004 0.821± 0.004 0.896± 0.004

CGANs2020CL 0.803± 0.006 0.771± 0.009 0.838± 0.003 0.810± 0.005 0.803± 0.006 0.828± 0.006

ScleraU-Net 0.795± 0.005 0.941± 0.002 0.689± 0.007 0.809± 0.003 0.805± 0.004 0.848± 0.003

AB Sclera Net 0.786± 0.008 0.785± 0.016 0.787± 0.007 0.797± 0.006 0.793± 0.008 0.878± 0.005

Color RITNet 0.774± 0.007 0.898± 0.006 0.680± 0.011 0.791± 0.005 0.783± 0.006 0.793± 0.012

ScleraMaskRCNN† 0.763± 0.011 0.828± 0.008 0.707± 0.015 0.782± 0.008 n/a n/a
Multi-FCN 0.760± 0.007 0.941± 0.003 0.638± 0.009 0.782± 0.005 0.716± 0.006 0.786± 0.007

Mask2020CL† 0.717± 0.010 0.833± 0.013 0.629± 0.007 0.749± 0.006 n/a n/a
MU-Net 0.651± 0.013 0.638± 0.012 0.665± 0.014 0.698± 0.008 0.659± 0.013 0.554± 0.014

SSIP 0.595± 0.007 0.762± 0.009 0.489± 0.008 0.672± 0.005 0.596± 0.007 0.524± 0.007

S-Net 0.462± 0.008 0.348± 0.008 0.687± 0.019 0.552± 0.005 0.598± 0.010 0.662± 0.011
† F opt

1 and AUC scores are not reported for Mask2020CL and ScleraMaskRCNN because of issues with the submitted probabilistic results.

the encoder and a three-layer decoder for upsampling.

ScleraU-Net (DUTH) is a modified U-Net [36] en-
hanced with regularisation and normalisation layers. Com-
pared to the original U-Net, the model has a light-weight
architecture. Along the encoding path of the ScleraU-Net,
2D-dropout and batch-normalisation is applied in selected
locations to facilitate training and improve generalisation.

Color RITNet (IIT-RPR) represents a variant of the re-
cent RITNet model [47] applied to colour images. The
model is trained using a boundary-aware loss and heavy
data augmentation over the MASD and SMD datasets.

S-Net (MAKAUT) is a light-weight variant of U-Net
[36] trained with a cross entropy loss. Prior to training im-
ages from MASD and SMD are processed through a noise
removal filter and augmented via rotation and flipping.

5. Benchmarking results with analysis and dis-
cussion

In this section the results of SSBC 2020 are presented. A
comprehensive analysis in conducted to analyse the perfor-
mance of the submitted models and study their sensitivity
w.r.t. the acquisition device used and ambient conditions
present during the acquisition process.
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Figure 5: Performance comparison of the submitted models
in terms of the F1 score achieved over all test images from
the MOBIUS dataset. Best viewed in colour.

5.1. Comparative assessment

To evaluate the submitted models, average performance
scores were computed over the submitted segmentation
masks. Confidence estimates for the reported averages were
also calculated for all experiments by partitioning the test
data into 5 data splits (in a subject disjoint manner) and
computing standard deviations over the five data splits.

Results on binary segmentation masks. Binary seg-
mentation masks are commonly produced by segmenta-
tion models through a thresholding procedure (may be inte-
grated in the model) that typically defines the trade-off be-
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dotted lines denote the standard deviation. The figure is best viewed in colour and zoomed in.

tween precision and recall and determines a fixed F1 score.
Such binary masks are typically the default output of con-
temporary (deep) segmentation models. The first analysis
in this section, therefore, compares the submitted models
based on scores from the binary masks. The results of the
comparison are presented in Table 3 and Figure 5.

As can be seen, UNet-P is the best performer of the com-
petition but with an overall result very close to FCN8 con-
sidering the F1 and IoU scores. Five more models result in
F1 scores above 0.8, i.e., RGB-SS-Eye-MS, Y-SS-Eye-MS,
SaSSNet, Multi-DeepLab and CGANs2020CL. The next
five solutions, i.e., ScleraU-Net, AB Sclera Net, Color RIT-
Net, ScleraMaskRCNN and Multi-FCN, still produce com-
petitive results with F1 scores above 0.76, but are somewhat
behind the top performers of SSBC 2020. Among the deep
learning models, Mask2020CL still achieves an F1 score of
0.717, whereas MU-Net and S-Net result in less competitive
performance indicators with F1 values of 0.651 and 0.462,
respectively. SSIP generates weaker results than most other
models with an F1 score of 0.595. However, SSIP is the
only SSBC 2020 approach not based on deep learning.

It is interesting to note that the performance of the mod-
els is not necessarily related to their size/complexity. UNet-
P, for example, is among the smaller models with close to 2
million parameters, whereas FCN8 and Multi-FCN are the
largest models with around 135 million parameters. The
former two of these models are the top performers of the
competition, while the latter is less competitive. In sum-
mary, the results show that most models produced solid re-
sults on the MOBIUS images, but also that there is consid-
erable variability in the results among the best and worst
performing models, even if similar model topologies were
considered for for the segmentation solutions.

Results on probabilistic segmentation predictions. To
get better insight into the performance of the submitted
models, the next analysis centres around the submitted
probabilistic segmentation predictions. From the right part

(a) (b) (c) (d) (e) (f) (g) (h) (i)

(j) (k) (l) (m) (n) (o) (p) (q) (r)

Figure 7: Qualitative comparison of the submitted models
(in terms of binary masks) on selected MOBIUS images.
Observe the difference in the segmentation quality across
the evaluated models. The figure shows (a) the original im-
age; (b) the ground truth mask; and the submitted binary
masks from: (c) AB Sclera Net, (d) CGANs2020CL, (e)
Color RITNet, (f) FCN8, (g) Mask2020CL, (h) MU-Net, (i)
Multi-Deeplab, (j) Multi-FCN, (k) RGB-SS-Eye-MS, (l) S-
Net, (m) SaSSNet, (n) ScleraMaskRCNN, (o) ScleraU-Net,
(p) SSIP, (q) UNet-P, (r) Y-SS-Eye-MS.

of Table 3 and the precision-recall curves in Figure 6 it can
be observed that the two top performing models, UNet-P
and FCN8, are now even closer together in terms of per-
formance than in the case when the binary segmentation
masks were considered. The precision-recall curves for the
two models in fact overlap considerably for the most part
of the curves. Most of the remaining models are also clus-
tered together tighter, with the optimal F1 scores ranging
from 0.841 for the third-place model, RGB-SS-Eye-MS,
and 0.783 for the Color RITNet model that ranked 10th.
The rest of the models, including the SSIP approach, per-
form similarly as with the binary masks and overall some-
what weaker than the top performers.

Qualitative comparison. Figure 7 presents a qualita-
tive comparison of the submitted models in terms of bi-
nary segmentation masks produced. Here, three challeng-



ing samples corresponding to the three ambient acquisition
conditions present in the MOBIUS dataset were selected to
demonstrate the varying segmentation performance of the
submitted models. Note that despite the solid performance
of most models in terms of scores (Table 3) there are no-
ticeable differences between the best and worst performing
models when looking at the quality of the segmentation.

5.2. Sensitivity analysis

The last set of investigations focuses on the impact of
different acquisition devices and ambient acquisition condi-
tions on the submitted segmentation models. The F1 scores
generated by the submitted submitted models across differ-
ent devices and conditions are presented in Figure 8.

Impact of acquisition device. The top graph in Figure 8
shows that there are observable differences in the segmen-
tation performance across the different acquisition devices
(and consequently imaging sensors). The majority of sub-
mitted models consistently performs best with images cap-
tured with the Xiaomi phone. The performance with im-
ages from the remaining two phones is comparable for most
models, except for Color RITNet and Multi-FCN, which
both favour images from one of the two other phones. No-
tably, the SSIP and S-Net approaches are the only ones,
where the Xiaomi phone did not result in the best perfor-
mance. Overall, these results show that there are notable
differences in the sensitivity of the segmentation models
w.r.t. different acquisition devices, but better performing
models typically also perform better with all devices.

Impact of acquisition conditions. As shown in the bot-
tom graph of Figure 8, the ambient conditions present dur-
ing acquisition have a considerable impact on the perfor-
mance of the evaluated models, much more so that the ac-
quisition devices used. It is interesting to note that most of
the performance differences between the models (observed
in Section 5.1) can be attributed to the performance in the
Poor setting, i.e., inside with poor lighting. All models (ex-
cept MU-Net, SSIP and S-Net) are relatively close in the In-
door setting and exhibit slight differences with the Natural
acquisition conditions - with F1 scores of all deep learning
models above 0.8. However, the differences are consider-
ably larger with the most challenging scenario, where the
best performing model, UNet-P, is the only one with an F1

score above 0.8. Interestingly, in the Poor setting, the SSIP
model is even able to outperform some of the deep mod-
els. In summary, the external acquisition conditions seem to
present a considerable challenge for many of the submitted
segmentation models, suggesting that more work is needed
to improve performance in such conditions.

6. Conclusion
The 2020 edition of the Sclera Segmentation Bench-

marking Competition (SSBC 2020) was organised in an ef-
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Figure 8: Sensitivity of the submitted models to differences
in the mobile device used during image capture (top) and
the ambient acquisition conditions (bottom). The graphs
show F1 scores generated based on the submitted binary
segmentation masks. Best viewed online and in colour.

fort to evaluate and benchmark the performance of contem-
porary sclera segmentation models with ocular image cap-
tured with mobile devices and explore the robustness of ex-
isting models w.r.t. to changes in the mobile devices used
for image acquisition as well as changes in the external ac-
quisition conditions (inside vs. outside, good vs. bad light-
ing). A total of 13 groups from 22 institutions participated
in the competition and contributed 16 segmentation mod-
els for the group evaluation. The submitted models ensured
solid segmentation results in most experimental scenarios.
The biggest performance differences across the tested mod-
els were observed with images captured in the most chal-
lenging conditions (inside and with bad lighting), suggest-
ing that changes in image quality due to ambient conditions
represent one of the biggest challenges for existing model
that will need to be addressed going forward.
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Peer. Pixel-wise ear detection with convolutional encoder-
decoder networks. IET Biometrics, 2017. 4
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