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Abstract—Biometric recognition technology has made significant advances over the last decade and is now used across a number of
services and applications. However, this widespread deployment has also resulted in privacy concerns and evolving societal
expectations about the appropriate use of the technology. For example, the ability to automatically extract age, gender, race, and health
cues from biometric data has heightened concerns about privacy leakage. Face recognition technology, in particular, has been in the
spotlight, and is now seen by many as posing a considerable risk to personal privacy. In response to these and similar concerns,
researchers have intensified efforts towards developing techniques and computational models capable of ensuring privacy to
individuals, while still facilitating the utility of face recognition technology in several application scenarios. These efforts have resulted in
a multitude of privacy–enhancing techniques that aim at addressing privacy risks originating from biometric systems and providing
technological solutions for legislative requirements set forth in privacy laws and regulations, such as GDPR. The goal of this overview
paper is to provide a comprehensive introduction into privacy–related research in the area of biometrics and review existing work on
Biometric Privacy–Enhancing Techniques (B–PETs) applied to face biometrics. To make this work useful for as wide of an audience as
possible, several key topics are covered as well, including evaluation strategies used with B–PETs, existing datasets, relevant
standards, and regulations and critical open issues that will have to be addressed in the future.

Index Terms—Biometrics, face recognition, privacy, privacy–enhancing techniques.

✦

1 INTRODUCTION

FACE recognition, now in widespread use, provides an
excellent measure of security and convenience to users

— but at what cost to privacy? By definition, biometric data is
linked to distinct individuals and, consequently, contains a
considerable amount of personal information that can be
extracted and automatically inferred from the data itself.
While biometric data was traditionally collected, processed,
and stored by dedicated biometric systems, the widespread
availability of mobile devices, consumer cameras, and other
forms of imaging technology has made it easier than ever to
capture and share biometric data online. When it comes to
faces, billions of images (and videos) are being uploaded
to various social media platforms, such as Facebook, In-
stagram, Twitter, or YouTube, on a monthly basis, creating
massive image collections that can be processed and ana-
lyzed using sophisticated computer vision and biometric
recognition techniques. As these collections can easily be
used to infer sensitive information about individuals, to
profile selected users or even identify people and match
them against other existing databases (without their knowl-
edge and consent), such collections represent a considerable
privacy risk. [1].
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To illustrate the potential privacy–related pitfalls associ-
ated with image collections gathered by existing platforms,
consider the 2020 news coverage of Clearview AI, a private
company that scraped facial images from social media sites
and created large–scale face recognition technology capable
of matching images of subjects to their social media accounts
and linking individuals across various databases and ser-
vices [2]. The fact that Clearview AI monetized personal
(biometric) data without people’s consent made headlines
across news media and raised social awareness about the
capabilities of existing face recognition technology and the
privacy intrusions the technology can cause. Examples like
this clearly demonstrate the need for (privacy–oriented)
mechanisms that can efficiently protect biometric data and
limit the amount of information that can be inferred from it
using (semi–)automatic recognition techniques.

Privacy concerns over biometric recognition systems are,
however, not limited only to social media. Similar con-
cerns can also been voiced for other areas, such as smart
phones, mobile applications, smart camera networks, IoT,
e–commerce sites, health services, and related application
domains. In fact, face recognition technology and its use
by law enforcement have recently become so controversial
(due to fairness and privacy concerns) that major soft-
ware companies, such as Microsoft, Amazon, and IBM,
are currently considering putting a moratorium on their
face recognition programs [3]. These developments and the
associated societal expectations about the appropriate use of
biometric recognition technology have resulted in a growing
interest of the research community in technological solutions
capable of balancing the benefits of biometric systems on
the one hand, and the privacy of individuals on the other.
Such solutions could, for instance, facilitate the use of face
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(a) Original (b) Blurred (c) Pixelated (d) Deidentified

Fig. 1: Examples of the visual effect of different biometric privacy enhancing techniques (B–PETs) applied to face images.
B–PETs aim to remove sensitive information from facial images to protect privacy. In the presented examples, both (b)
blurring and (c) pixelation try to conceal identity information, but do so unselectively – all information about the subject
is concealed. The more recent deidentification procedure (based on face swapping) in (d), on the other hand, conceals
identity information, but preserves other relevant information contained in the data, such as gender, facial expression,
pose, and other similar visual attributes. The goal of this paper is to present a comprehensive review of the field of privacy
enhancement in the context of biometric systems – with a focus on face biometrics.

recognition in criminal cases that involve large collections
of face images from the Internet, e.g., human trafficking, sex
crimes, and war crimes, but do so in a manner that does not
compromise the privacy of innocent subjects in recovered
photos.

Issues related to privacy in biometric recognition sys-
tems are also being addressed by governments around the
globe, which are starting to regulate the collection, use,
processing, and storage of biometric data. The European
Union (EU), for example, in 2016 passed the General Data
Protection Regulation (GDPR)1, which defines rules for data
protection (including biometric data) and security across
Europe and foresees heavy fines for noncompliance. GDPR
considers biometric data within a special category of per-
sonal data that requires the highest level of protection and
allows processing of such data only in a limited number of
scenarios and only with appropriate privacy–related safe-
guards in place. Similar legislative developments are also
underway in the United States. In California, for example,
the California Consumer Privacy Act (CCPA) came into
effect in 2018 and is considered by many the potential model
for a US–wide data privacy law [4]. Similarly to GDPR,
CCPA includes provisions that affect access to, storage, and
handling of biometric data. Illinois, Washington, and Texas
all have similar legislation already in place, with other US
states expected to follow. While the goal of these laws and
privacy acts is to provide a legal framework for the use of
biometric systems, they also capitalize on the importance
(and expectations of legislators) of addressing biometric
privacy from a technological perspective.

A considerable amount of research has been done over
recent years to address the privacy–related issues, needs,
and legislative requirements (associated with biometric
data) discussed above, including work on imaging sensors
with built–in privacy protection [5], [6], deidentification

1. Accessible from: https://gdpr-info.eu/

techniques for biometric data [7], [8], [9], [10], adversarial
approaches capable of confounding (automatic) recognition
techniques [11], [12], [13], schemes that allow for privacy–
preserving data sharing [14], [15], template protection tech-
niques [16], cancelable biometrics [17], [18], and others. A
significant portion of this work share a common characteris-
tic in that they try to mitigate privacy concerns by reducing
the biometric utility of the captured data. In other words,
they attempt to remove (or conceal) certain (sensitive) infor-
mation from the biometric data, while leaving other useful
information unchanged. Techniques that follow this idea
are related to the data minimization principle set forth in
GDPR, which suggests that the amount of personal data that
needs to be processed for a specific purpose must be kept
minimal. Since different terminology is used in the literature
to describe such techniques, we refer to them collectively
as Biometric Privacy–Enhancing Techniques (B–PETs) in this
survey [12], [19], [20], [21], [22].

A few examples of B–PETs applied to facial images are
presented in Fig. 1. Here, the input face image in Fig. 1 (a) is
processed with a blurring and pixelation operation in Fig. 1
(b) and (c), respectively. While such an approach contributes
towards privacy protection, it also renders all other informa-
tion contained in the image more or less useless. The more
recent B–PET in Fig. 1 (d) conceals identity information, but
also preserves other visual attributes, such as gender, facial
expression, pose, and the like. Thus, it offers a compromise
between privacy and the biometric utility of the data. Re-
search in biometric privacy enhancement is today focused
on such selective techniques, able to remove (or conceal)
specific biometric attributes, while not affecting others, on
solutions that offer provable privacy guarantees, on tech-
niques that confound automatic recognition approaches and
related privacy challenges applied not only to visual data,
but also other components and data representations within
biometric recognition systems. While the interest in privacy
enhancing technniques is growing and substantial research

https://gdpr-info.eu/
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effort has been directed towards solutions in this area, a
broad and well–structured overview on this important and
timely research topic is still missing from the literature.

In this paper we aim to fill this gap and present a com-
prehensive overview on privacy enhancement in the context
of facial biometrics. We focus on facial imagery because of
the popularity and widespread deployment of face recog-
nition technology, wide scope of applications facilitated
by facial images and broad spectrum of privacy concerns
associated with facial biometrics. However, the discussion
across a significant portion of the paper is intentionally kept
general, as many of the concepts addressed apply not only
to facial data, but also to other types of biometric data.
The survey is meant to be more than just a summary of
existing privacy–enhancing techniques and aims to i) intro-
duce the reader to the main concepts, characteristics, and
challenges associated with privacy enhancement (and pro-
tection) of biometric data, ii) define a taxonomy for existing
biometric privacy–enhancing techniques, iii) outline issues
associated with quantifying performance, and iv) point the
reader to important regulations and standards. As such,
the goal of the survey is to serve as a reference document
for researchers from the biometrics and computer vision
communities, but also for privacy scholars, legislators, and
practitioners interested in the topic of biometric privacy.

Existing surveys related to biometric privacy address
important topics, such as template protection [16]2, dei-
dentification [7], [8], [23], visual privacy in the context of
social media [24], and related areas [25], privacy in video
surveillance systems [26], [27], [28] and video redaction [29],
This work complements the listed surveys and makes the
following distinct contributions:

• It presents a comprehensive introduction into the
field of privacy enhancement as applied to facial
imagery and introduces a taxonomy of existing bio-
metric privacy enhancing techniques (B–PETs).

• It present a review of over 200 references related to
B–PETs, and provides an in–depth analysis of the
surveyed methods.

• It identifies open issues and challenges that need to
be addressed in the future.

2 THE FACETS OF BIOMETRIC PRIVACY

2.1 Privacy and Biometric Systems

The topic of privacy has historically been studied across
multiple disciplines, including social, legal, and political
sciences, philosophy, ethics, and more recently in the context
of information technology and biometric systems. Since the
concept of privacy is relevant to several fields, no univer-
sally applicable definition exists and the exact meaning of
the term “privacy” very much depends on the context in
which it is studied. Clarke [48], for example, suggests to
avoid the common notion of privacy as some sort of (moral
or legal) right, but to rather think of it as an “interest that in-
dividuals have in sustaining personal space, free from interference
by other people and organizations”. Alongside this definition,

2. Note that this topic is not covered by our definition of B–PETs, as
it follows different assumptions.

Clarke also provides a categorization of the different types
of privacy [48], [49]:

• Privacy of the person (or bodily privacy), which is related
to the integrity of a person’s body. Threats to this
type of privacy include physical intrusions, such as
torture or compulsory medical treatment, immuni-
sation, and, as noted by Finn et al. [50], also forced
biometric measurement.

• Privacy of personal behaviour (or media privacy), which
is concerned with sensitive behavioral information,
such as political activities, sexual habits, or religious
practices, but also with the personal space (private or
public) needed to facilitate such behaviour [49].

• Privacy of personal communications (or interception pri-
vacy), which is associated with the ability to commu-
nicate freely using various means (e.g., verbal, writ-
ten, gestured, electronic) without being monitored by
third parties [48].

• Privacy of personal data (or data privacy), which is
related to the general availability of personal data
and the ability to execute control over one’s personal
data and its use by third parties. This type of privacy
is (often jointly with privacy of personal communica-
tions) also referred to as information privacy [48], [50].

Modern biometric systems are, in general, able to extract
a considerable amount of information about multiple at-
tributes (e.g., identity, soft biometric attributes, health–
related attributes, behavioural attributes) from biometric
data and can, therefore, impact privacy across all categories
listed above. However, they are most often associated with
risks related to data or information privacy. Data privacy is
usually the main type of privacy regulated within existing
data–protection legislation and various privacy laws (e.g.,
GDPR).

Clarke’s definition of privacy as an interest of individuals
implies that it has to be balanced against other interests (e.g.,
personal interests, third party interests, societal interests),
which may be of economical, political, societal (e.g, national
security, crime investigations), or technological nature [48].
The process of balancing privacy against such competing
interests is called privacy protection.

The literature on privacy protection in the context of
biometrics is split between two main research directions:

• Data security: Solutions from this group are usually
concerned with data encryption schemes and aim to
mitigate risks associated with unauthorized data ac-
cess or interception of data during transmission. Ex-
amples of solutions from this group include template
protection schemes and cancelable biometrics [16],
[17], [18], [51], [52], [53]. Such solutions typically aim
to secure the data, but not necessarily the information
that can be extracted from the data. Thus, if the bio-
metric matching (or classification) is not conducted
in the encrypted domain, sensitive information may
still get exposed during decryption.

• Privacy enhancement: Solutions from this group
(which are also at the heart of this paper) try to
modify the biometric data or elements of biometric
systems to limit the amount of information that
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TABLE 1: Overview of the main terminology used in the literature to describe techniques that try to contribute towards
privacy protection by reducing the biometric utility of biometric data. In this survey we use Biometric Privacy Enhancing
Techniques (B–PETs) as an umbrella term to describe such approaches.

Process (technique) Explanation and examples Observation, specifics

Deidentification Ribaric et al. [8] define deidentification as “the process of concealing or removing personal
identifiers (information that can be used for identification), or replacing them with surrogate
personal identifiers in biometric data, in order to prevent the disclosure and use of data for
purposes unrelated to the purpose for which the data was originally collected.” Examples of
deidentification technique applied to biometric data include [15], [30], [31], [32], [33].

Most often used to describe tech-
niques that try to remove (or con-
ceal) identity from biometric data,
but sometimes also target other at-
tributes, such as soft–biometrics.

Anonymization In the context of biometrics the term anonymization is used in multiple contexts. The term
is often considered to relate to anynomization of identity and describe an irreversible
form of deidentification [8], [23]. However, it is also used to indicate the reduction of
biometric utility in terms of soft–biometrics – e.g., [13]. In [34] anonymization is defined
as “a process which enhances privacy by reducing the uniqueness of an identity.”

The term is not used consistently in
the biometric literature, but is often
considered to be close to (or a syn-
onym for) deidentification.

Redaction In the computer vision literature the term redaction refers to technology that can remove
certain privacy–sensitive aspects of visual data [29], [35]. It describes techniques that go
beyond solely (human–centric) biometrics and may apply to processing of other visual
categories, such as text, license plates, images of identity documents, etc.

When applied to biometric data
(such as faces) redaction techniques
use simple processes such as blur-
ring or masking to reduce utility.

Obfuscation The term obfuscation is often used to describe techniques that alter biometric data in a
way that causes miss detections, or in other words, helps individuals to avoid biometric
recognition, but also in the context of privacy protection [36]. Obfuscation techniques
have been studied across different biometric modalities, including speech [37], finger-
prints [38], irises [39], and facial images [40].

Similarly to deidentification reduces
biometric utility, but commonly with
the goal of evading biometric recog-
nition.

Obscuration Obscuration tries do reduce biometric utility by obscuring certain aspects of biomateric
data. The term appears in the literature as a synonym for techniques that conduct
deidentification and is often used interchangeably with deidentification. It is popular
mostly with face–related research, e.g., [41], [42], [43].

An alternative term for deidentifica-
tion used mainly to describe tech-
niques that try to obscure identity
information in facial images.

Soft–biometric
privacy enhancement

Soft–biometric privacy enhancement refers to a group of methods that tries to remove or
suppress information about soft–biometric attributes in biometric data – see e.g., [20],
[44], [45], [46]. Techniques from this group are sometimes also called deidentification
techniques for soft–biometric identifiers [8].

Describes techniques that reduce the
utility of biometric data by target-
ing soft–biometric attributes, such as
age, gender, and ethnicity.

Controllable privacy The concept of controllable privacy, introduced in [47], characterizes targeted privacy
enhancing techniques that allow to control which specific aspects (and to what extend)
of the biometric data should be removed or concealed. Techniques in line with this
concept allow the user to explicitly define, which attributes of the biometric data to
conceal and which to preserve.

The concept is related to the char-
acteristics of privacy enhancement
and applies to different attributes of
the biometric data, e.g., identity, age,
gender, ethnicity.

can be extracted automatically. Thus, they try to
balance privacy against the biometric utility of the
data. Examples include data masking approaches,
various obfuscation schemes, deidentification tech-
niques, solutions ensuring so–called soft–biometric
privacy and other related approaches [7], [8], [11],
[45], [54].

Note that solutions from the two groups are by no means
mutually exclusive and can in practice be combined to im-
prove both security as well as privacy in biometric systems.

Research on the topics discussed above is critical for
addressing potential privacy risks originating from biomet-
ric recognition systems. As noted by Solove [55], privacy
threats can in general arise during i) data collection, ii)
storage, and processing as well as during iii) data dissemi-
nation. In the context of biometric systems these (direct and
indirect) threats most often relate to [55], [56]:

• Linkage (direct): Biometric data can be matched across
different datasets (e.g., social media, police records,
financial services, health databases), linking vari-
ous sources of information and generating aggre-
gated data that is often greater than the sum of its
parts [57]. Such linked data may disclose personal
information not available in any of the individual
datasets, posing considerable privacy risks to indi-
viduals.

• Secondary use or function creep (direct): When biometric
data is collected, consent is typically given for the
data to be used for a specific purpose (e.g., authenti-
cation, time–and–attendance monitoring). However,

the data may also be used for alternative purposes,
such as for the extraction of sensitive information
(e.g., health status, ethnic origin, age estimation) that
enables secondary use cases, such as user profiling,
targeted advertising, and other unsolicited applica-
tions that intrude on individuals’ privacy [58]. Sec-
ondary use in the context of biometrics is also related
to unsolicited information disclosure – the disclosure
of true facts about individuals. For example, health
information or other sensitive information extracted
from biometric data can raise serious privacy con-
cerns when shared with third parties.

• Insecurity (indirect): Biometric data needs to be kept
secure to avoid data breaches that may eventually
lead to privacy threats either through data linkage
or function creep effects. Data insecurity in biometric
systems may result in unauthorized access to finan-
cial services, social media, mobile phones, and per-
sonal computers, and impact privacy across different
privacy categories discussed above.

• Exclusion (indirect): Third parties collecting, process-
ing, or storing biometric data sometimes fail to in-
form individuals about the fact that they have access
to individuals’ biometric data. This exclusion poses
privacy threats with respect to unauthorized use of
the data, disclosure of sensitive information, or link-
age and is therefore also often addressed by privacy
laws.

For a more comprehensive coverage of existing privacy
threats, the reader is referred to the work of Solove [55].
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2.2 Biometric Privacy Enhancement

Privacy protection in datasets containing structured data
(e.g., medical, school, or government records) is usually
addressed by data anonymization or redaction techniques
that selectively remove (replace, conceal) sensitive informa-
tion and only retain information needed for a particular
purpose [23]. While such techniques have been found useful
tools for privacy protection, they are not easily applicable to
biometric data.

Biometric data is by default non–deterministic (and
unstructured) and commonly processed using automated
machine learning techniques. It is, therefore, often not clear
what part (and particular aspect) of the data is used to
extract or infer potentially sensitive information. Consider
facial images, for example. A classifier aiming to extract
gender or ethnicity information may use spatially local
information, such as the shape of the eyes or mouth, but
also global characteristics, such as facial appearance, face
geometry or skin–tone. Removing (or concealing) sensitive
information is therefore not a straight forward task. This
process becomes even more challenging when derived data
representations are considered, i.e., templates. As shown by
recent work [59], [60], contemporary biometric templates
encode a variety of information that is entangled in the
features and, therefore, difficult to remove or hide in a
selective manner.

One possibility to address these issues is to completely
remove all information that could be used by biometric
recognition techniques. At the image–level, for example,
early privacy protection methods tried to hide sensitive
information by placing black patches over individuals or
replacing image regions corresponding to individuals by
uninformative surrogate images [10], [15], [61]. While such
approaches ensure perfect privacy protection, they also
completely destroy the utility of the data. No useful infor-
mation remains in such “privacy protected” data, not even
information that bears no privacy risks at all.

To overcome this limitation, more recent techniques try
to strike a balance between privacy protection and the
biometric utility of the data. Here, the term biometric util-
ity is used in the broadest possible sense, to describe the
usefulness of the data for automatic extraction of various
attributes, including identity information, soft–biometrics,
health indicators, behavioural cues, and other similar char-
acteristics. The main idea behind these techniques is to se-
lectively remove (or conceal, suppress, replace) information
about specific (potentially sensitive) attributes3, while pre-
serving information on attributes not critical from a privacy
perspective. While considerable research has been directed
towards such techniques in recent years, the terminology
used in the literature differs from paper to paper. Table 1
provides a summary of the main terminology used in this
field and a brief explanation of the most important terms.

For the sake of consistency, we refer to the techniques
listed in Table 1 collectively as Biometric Privacy Enhanc-
ing Techniques (B–PETs). Thus, we use the term B–PETs to
describe techniques that weigh privacy against biometric

3. Which attributes are targeted for removal (concealment, suppres-
sion) is defined by the application domain and purpose, for which the
data were initially collected.

Biometric Utility

Privacy Enhancement

Complete privacy
protection

No biometric
utility

Biometric
Data

No biometric attribute
can be inferred

Biometric
Data

Some biometric
attributes can be inferred

Biometric
Data

No privacy
protection

Complete
biometric utility

Any biometric attribute
can be inferred

Fig. 2: Biometric data (e.g., facial images) contains a consid-
erable amount of potentially sensitive personal information
that can be inferred from the data automatically using mod-
ern machine learning techniques. Biometric privacy enhanc-
ing techniques (B–PETs) try to address privacy concerns
associated with such data by reducing its biometric utility,
i.e., by removing sensitive information from the data, while
preserving other useful information.

utility and illustrate this trade–off in Fig. 2. On one end
of the trade–off we have raw (Fig. 2 right) unprocessed
biometric data. Such data has complete biometric utility,
but also poses the highest privacy risk. On the other end
of the trade–off (Fig. 2 left) is biometric data that has no
biometric utility (e.g., masked facial images) but, therefore,
offers the highest level of privacy protection. In between
the two ends is data, from which some biometric attributes
can been inferred, while others cannot. Such data offers
a compromise between biometric utility and privacy and
is typically generated using biometric privacy–enhancing
techniques.

2.3 Characteristics of B–PETs
Existing B–PETs can be grouped according to a number
of different criteria, including i) the data they apply to, ii)
the type of mapping they use, iii) the biometric attributes
they target, iv) the way biometric utility is addressed, v)
the guarantees they provide regarding the possibility of
reconstructing information from the privacy enhanced data,
and vi) whether biometric attributes are concealed from hu-
mans and/or machines. An overview of this categorization
is presented in Fig. 3.

2.3.1 Input data
The first categorization of B–PETs relates to the type input
data that is used as the basis for privacy enhancement. Here,
B–PETs can be applied to either videos or still images. The
type of input data affects a number of aspects that B–PETs
need to consider.

With video sequences, for example, it is crucial that
(all) biometric data in every frame is subjected to privacy
enhancement. If only a single instance of the data (e.g., a
face) is not processed, the video still poses a privacy risk
and may still allow to extract sensitive information about
individuals. Due to this characteristic, simple techniques
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Facets of B-PETs

Guarantees

Provable
privacy

Empirically
validated

Mapping

Reversible

Irreversible

Data
Still images

Video

Attributes

Other
attributes

Identity

Utility

Reduction

Retention

Target
Human

Machine

Fig. 3: The facets of biometric privacy enhancing techniques
(B–PETs). Existing B–PETs exhibit different characteristics
and can be categorized according to various criteria – cri-
teria are shown in grey (best viewed in color).

such as blurring and masking (e.g., [62], [63]) are most often
used in conjunction with robust object detectors for privacy
enhancement in videos, as opposed to still images, where
typically higher quality data is available that facilitates
more elaborate B–PETs relying, for example, on different
statistical models [10], [64], [65], generative deep–learning
models [32], [33], or adversarial examples [11], [13].

Furthermore, if privacy enhancement is applied on de-
rived representations (e.g., on templates) the type of input
data may affect how these representations are defined. For
static images, for example, a single feature representation
(template) may be available, whereas videos may be rep-
resented using multiple feature representations, which war-
rants a different approach to privacy enhancement [20], [66].

2.3.2 Mapping

Privacy enhancement may at the coarsest level be defined
as a mapping f that takes a biometric datum x as input
and returns a privacy enhanced version xE with possibly
reduced biometric utility, i.e., xE = f(x). Depending on the
type of mapping, B–PETs can be categorized as:

• Irreversible: B–PETs from this group usually apply a
mapping that is difficult to invert. Once privacy en-
hancement is applied to biometric data, the original
data is hard (or ideally impossible) to reconstruct.
Note, however, that the irreversiblity is often not
guaranteed, as for example, with template protection
methods, because of the requirement to preserve
some of the biometric utility of the original data.

• Reversible: B–PETs from this group incorporate mech-
anisms that allow them to invert the mapping used
for privacy enhancement. A common approach here
is to encode information about the privacy enhance-
ment process or the original data using cryptography
and then reverse the mapping if needed using data
decryption, see e.g., [36], [67]. Because it is possible
to reverse the privacy enhancement, reversible B–
PETs depend heavily on the security of the adopted
cryptographic solutions.

2.3.3 Biometric Attributes
The primary goal of biometric recognition systems is to link
biometric traits to individuals. Consequently, the focus of
the majority of existing B–PETs is on removing (or con-
cealing) identity information from biometric data with the
goal of privacy protection. This is also evidenced by the
vast body of work on deidentification techniques, which
mostly targets so called personal identifiers for deidentifica-
tion, e.g., [10], [64], [65], [68]. Here, the term personal identifier
is used in the privacy literature to characterize (any and all)
information that can be used to link data to individuals.

More recently, researchers also started looking at privacy
enhancement approaches that target and try to obfuscate
soft–biometric attributes, such as gender, age, or ethnicity4

– e.g., [44], [45], [70]. B–PETs from this group are, for
example, relevant in the context of social media. People are
in general willing to share their images and selfies (revealing
their identity) online, but are less keen on the consequental
privacy intrusions, such as targeted advertising that is often
facilitated by an automatic analysis of the demographic
attributes of the shared images. Attributes, such as soft–
biometrics, are often referred to as quasi–identifiers by pri-
vacy scholars, because they provide partial information on
individuals, but cannot be linked to a specific person in an
unambiguous manner.

While other types of attributes, such as behavioural cues
or health indicators could also be targeted by B–PETs, work
in this direction is limited in the literature – see [71] for one
of the few exceptions.

2.3.4 Biometric Utility
There are two different strategies used with existing B–PETs
with respect to data utility:

• Utility reduction: The first strategy aims to modify the
biometric data in such a way that sensitive infor-
mation is removed, while other aspects of the data
are preserved. Consider adversarial face deidentifi-
cation techniques, such as [72], as an example. These
techniques introduce minute changes to face images,
so that automatic identity recognition is impaired,
whereas other tasks (e.g., gender or age recognition)
are still feasible. Earlier techniques that follow this
strategy often reduce utility unselectively through
blurring or masking, which typically makes it chal-
lenging to extract any meaningful information from
the data. Regardless of whether this strategy is used
in an attribute–selective manner or not, it produces
privacy enhanced data with reduced biometric util-
ity.

• Utility retention: The second strategy aims to gener-
ate surrogate data that corresponds to the original
biometric data in a number of preselected attributes.
This strategy is usually used with generative models,
such as Generative Adversarial Networks (GANs),

4. The terms gender and sex have been used interchangeably in the
biometric literature. Note that gender is a social or cultural construct,
while sex is based on biological characteristics. Similarly, the terms race
and ethnicity have also been used interchangeably in the literature. An
exact definition of either of these two terms appears to be a subject of
debate [69].
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Fig. 4: Possible application points of biometric privacy enhancing techniques (B–PETs) in the context of biometric
recognition systems. B–PETs can be applied at either the image level, representation level, or at the inference level. The
main functional steps of a biometric system are shown in blue and the application points of B–PETs are depicted in orange.
The figure is best viewed in color.

that are capable of generating synthetic data with
predefined characteristics, e.g., [33]. With this strat-
egy, specific attributes of the data are retained, while
others are typically artificially generated.

2.3.5 Guarantees
One of the most important issues associated with B–PETs
is how to quantify privacy–protection performance. This
issue is related to the risk of inferring information about
removed (or concealed) attributes5, which is notoriously
difficult to estimate in an objectively manner. One possibility
used regularly in the literature is to empirically validate that
information on certain attributes cannot be inferred from the
privacy–enhanced data. This approach typically involves
biometric recognition experiments with preselected match-
ers (or classifiers) using standard biometric datasets – see
Section 4 for more information on performance evaluation.

However, since different types of biases may be involved
in empirical evaluations, researchers are increasingly look-
ing into privacy enhancing techniques that offer formal
(quantifiable) privacy guarantees. B–PETs that offer such
guarantees are usually referred to as techniques with prov-
able privacy. While initial attempts using the concept of ϵ–
differential privacy were recently presented, e.g., [73], [74], to
ensure provable privacy with biometric data, most of the
existing work on this topic centers around k–anonymity.

Here, k–anonymity [14], [15] is commonly used with B–
PETs that aim to conceal identity information and has, to the
best of our knowledge, not yet been extended to other visual
attributes. With the k–anonymity model, privacy enhance-
ment is defined over a closed set of N data samples, i.e.,
X = {x1, x2, . . . , xN}, from which a new, privacy enhanced
set of data XP is generated, i.e., f : X 7→ XP ∈ RN .
To provide anonymity guarantees, the mapping is typically
implemented in such a way that groups of k samples from
X are replaced by one and the same sample in XP . As a
result, only N/k distinct data samples are present in XP

5. We refer to this risk as attribute recovery risk in this work.

and the probability of linking any privacy enhanced sample
from XP to the originals in X equals 1/k. Note that this
probability bound is only valid if the samples in X belong
to exactly N distinct identities.

Existing incarnations of the k–anonymity model differ
mostly in the definition of the surrogate samples that pop-
ulate XP . The seminal k–Same algorithm [15], for example,
used centroids of clusters of k facial images as surrogate
faces for XP . Since the cluster centroids preserve visual
elements of all k images of any given cluster, the surrogate
faces retain some of the utility of the original raw facial
images. Later techniques extended this idea beyond pixel
averaging and defined cluster centroids on the parameters
of generative models, moved beyond clusters and incor-
porated various strategies to preserve the biometric utility
of the data. Examples of such extensions are, for instance,
presented in [31], [64], [65], [75], [76].

We also note that for the task of deidentifying en-
tries in relational databases the concept of k–anonymity
was already extended to other provable privacy schemes,
such as L–diversity [77], t–closeness [78], p–sensitive k–
anonymity [79], and others. However, these privacy models
have seen limited application on visual data so far.

2.3.6 Target
B–PETs can also be categorized based on the target of the
privacy enhancement, i.e., humans or machines. While some
algorithms are designed to ensure privacy from human
observers, others are targeting automated machine learning
models only. Deidentification techniques, such as [15], [31],
[33], for example, typically change the visual appearance
of facial images and, primarily target human observers.
Conversely, privacy–enhancing techniques that use adver-
sarial noise as a privacy mechanism, e.g. [13], introduce
minor (often imperceivable) visual changes into the images
and, hence, aim to make only automatic attribute inference
infeasible, while not affecting human perception. Both types
of B–PETs are designed to meet specific requirements and
address distinct application scenarios. However, it needs to
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to the functional structure of biometric recognition systems and partitions B–PETs into image–level, representation–level,
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be noted that B–PETs targeting human observers also ensure
privacy with respect to automatic recognition techniques (in
most cases), while this is not necessarily the case the other
way around.

Human–targeted B–PETs commonly operate directly on
image (or video) data and try to alter facial appearances
for privacy protection. Similarly, machine–targeted B–PETs
also often operate at the image level. However, machine–
targeted techniques can also be applied at the later stages of
a biometric recognition system, e.g., on the representation
or inference levels, as discussed in the following section.

2.4 Algorithmic Taxonomy
For our algorithmic taxonomy, we consider possible applica-
tion points of B–PETs within biometric recognition systems,
as illustrated in Fig. 4. Thus, we classify existing B–PETs
into techniques that operate at: i) the image level, ii) the
representation level, and iii) the inference level. The main
characteristics of these three groups are summarized below:

• Image–level techniques: Most of the existing work on
privacy enhancement in biometrics focuses on the
problem of visual privacy and is, therefore, concerned
with B–PETs that operate at the image–level. We use
the term image–level to account for techniques that
process either still images or videos, but manipulate
image-level data for privacy enhancement. Image–
level techniques aim to enhance privacy by altering
visual data using either obfuscation, adversarial, or
synthesis techniques, as illustrated in Fig. 5. So-
lutions from this group include a wide variety of
techniques, ranging from simple low-level B–PETs
typically deployed on the onboard processing logic
of contemporary imaging sensors, such as smart
cameras [5], [6], [54], [80], to more elaborate tech-
niques capable of ensuring better trade–offs between
data utility and privacy protection, but at the cost of
higher computational complexity. A few application
examples of image-level B–PETs are shown in Figs. 6,
7, and 8.

• Representation–level techniques: With deployed bio-
metric systems access to the raw (image–level) data
is usually not possible. Once users enroll in a system
their biometric data is stored in the form of compact
templates – descriminative representations derived
from the enrollment data. Representation–level tech-
niques try to ensure that no sensitive information can
be extracted from these templates and, consequently,
that the data stored is only used for the intended pur-
pose. As shown in Fig. 5, techniques from this group
can in general be partitioned into transformation and
elimination based methods, where the former aim to
suppress some targeted aspect of the data by trans-
forming the original templates into another form,
while the latter try to remove elements (i.e., features)
of the templates that are most informative with re-
spect to the targeted attribute. Representation–level
B–PETs also include solutions based on homomor-
phic encryption, which operate at the intersection
between data security and privacy enhancement and
use cryptographic solutions to ensure that the stored
representations (i.e., biometric templates) are used
only for a predefined purpose.

• Inference–level techniques: Privacy enhancement may
also be applied during the matching or classifica-
tion stages in a biometric system, a.k.a, during in-
ference. Here, some properties of the matching or
classification procedure are commonly exploited to
ensure that the data is only used for the intended
purpose, see e.g., [22]. Thus, inference–level B–PETs
typically modify the biometric template as well as the
comparison/classification procedure used to derive a
similarity/comparison score in the biometric system
with the goal of privacy enhancement. Unlike image–
level B–PETs, techniques from this group exclusively
target automatic machine learning models and not
humans. The value of inference–level B–PETs is to
two–fold: i) privacy-by-design: such techniques may
be used during the design of biometric recognition
systems to add another layer of privacy and ensure
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that biometric data is used only for the intended pur-
pose, e.g., identity recognition/authentication, and
ii) retrofitting: for retrofitting existing biometric sys-
tems that may not have been designed with pri-
vacy assurances in mind. With such legacy systems,
inference–level B–PETs can be utilized to improve the
level of privacy with minimal intervention into the
deployed components. In this regard, inference–level
techniques share characteristics with representation–
level B–PETs that can also be applied on top of ex-
isting installations by training/building/introducing
an additional privacy–oriented layer in the overall
system design [81].
Inference–level techniques were only recently pre-
sented in the literature and are, therefore, signif-
icantly less represented than B–PETs operating at
other levels.

A high–level comparison of some of the characteristics of
the three categories of B–PETs discussed above is presented
in Table 2. In the table we provide our view on the B–
PET categories in terms of i) computational complexity, ii)
suitability of the different groups for removal (or suppres-
sion) of different attributes, iii) the possibility to incorporate
formal privacy schemes with privacy guarantees, iv) the
level of privacy enhancement that can be achieved, and
v) the amount of biometric utility that can be preserved
when applying privacy enhancement. Note that image-level
techniques include a broad range of techniques, so a range
of values is provided for this group.

The taxonomy presented above considers functional as-
pects of biometric systems and the corresponding data
representations, where privacy enhancement can be applied.
Another important aspect of privacy protection in the con-
text of biometric systems is database privacy, where the
number and type of queries that can be issued to a database
is limited. The purpose is to mitigate the possibility of
deducing sensitive attributes of an individual while still
permitting the extraction and computation of aggregate
statistics. A number of differential privacy schemes have
been developed in other fields for this purpose [82], [83],
[84], [85]. In this survey, we do not discuss this topic
since it has been sparingly used in the biometrics literature
compared to other schemes.

3 SURVEY OF B–PETS FOR FACE BIOMETRICS

Biometric privacy enhancing techniques (B–PETs) are in
general applicable to different biometric characteristics, as
evidenced by the vast body of research on this topic
e.g., [32], [86], [87], [88], [89], [90], [91], [92], [93], [94],
[95]. However, a considerable portion of the existing work
is focusing on facial biometrics, mainly because of the
multitude of (sensitive) information that can be inferred
automatically by analyzing facial appearances and the fact
that the analysis can be done without the cooperation and
consent of individuals. In this section, we review different
approaches to privacy enhancement with facial data. We
discuss in detail each of the categories introduced in the
previous section, i.e., image–level, representation–level, and
inference–level techniques, and provide examples of B–PETs
for each of these categories.

3.1 Image–level techniques

Image–level techniques represent the broadest category of
B–PETs in our taxonomy and at the coarsest level can be
grouped into: i) obfuscation, ii) adversarial, and iii) synthesis
approaches, as also illustrated in Fig. 5. Details on the three
groups are provided in the following sections.

3.1.1 Obfuscation techniques
The first group of image–level B–PETs, i.e., obfuscation
techniques, is based on computationally simple privacy
mechanism that are commonly applicable to both still im-
ages as well video data. Technique from this group typically
degrade the quality of the original images (and videos) to
such a degree that face recognition or attribute classification
becomes unfeasible or (at least) impaired. As a result, the
obfuscated data offers higher levels of privacy protection,
but at the expense of reduced biometric utility. Many of the
existing obfuscation techniques also utilize cryptography to
secure the original data and incorporate mechanisms to in-
vert the privacy enhancements. A few illustrative examples
of the application of obfuscation techniques are presented
in Fig. 6. In our taxonomy we further partition obfuscation
techniques into three sub-groups that use either: i) masking,
ii) filtering, or iii) image transformations for biometric privacy
enhancement. The three subgroups are discussed in the
sections below.

Masking techniques

The first subgroup of obfuscation-based B–PETs tries to
reduce the biometric utility of facial data by masking infor-
mative regions in the facial imagery. The main idea behind
such masking techniques is to conceal either facial parts or
the entire face region using masks or other abstract shapes
with the goal of hiding identity information – illustrated in
Fig. 6 (a). However, as a result of the masking operation,
information on other biometric attributes is also concealed
and the generated privacy enhanced data is usually consid-
ered to have only limited (or no) biometric utility. Because
masking is a simple operation from a computational point
of view, techniques from this subgroups are highly suitable
for implementation on embedded devices, smart cameras,
and other low-resource platforms.

An example of a masking–based B–PET was presented
by Chinomi et al. in [96], [97]. Here, the authors describe
PriSurv, a surveillance system that contributes towards pri-
vacy protection in video footage by replacing image regions
corresponding to people (or their faces) with various types
of masks, shapes, or even background pixels. Background
subtraction is used to identity subjects in video and an
adaptive masking procedure is employed to mask out faces
in accordance with a predefined privacy policy. The policy
defines the amount of utility to preserve and determines the
type of visual abstraction (e.g., semi–transparent or opaque
mask) to use to conceal people in the surveillance data.

Another solution that relies on masking for privacy en-
hancement was proposed by Zhang et al. [54] in the form of
the Anonymous Camera. The presented camera features built–
in CCD (RGB) and IR imaging sensors, a cold mirror, and a
liquid crystal on silicon (LCoS) device. It performs accurate
real–time masking of human faces based on information
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TABLE 2: High–level comparison of existing categories of biometric privacy enhancing techniques (B–PETs). The table
compares the computational complexity of B–PETs, the suitability for removing (suppressing) information on either identity
or soft–biometrics, the possibility to devise provable privacy schemes, the level of privacy enhancement achieved and the
level of biometric utility the techniques are able to ensure when suppressing other attributes. Image– and representation–
level techniques cover a broad spectrum of conceptually different techniques with diverse characteristics, a range of values
is, therefore, provided for these categories.

B–PET category Complexity
Suitability for removal of information on

Guarantees Privacy enhancement Utility preservation
Identity Soft biometrics

Image–level L–H M–H M–H L–M M L–M
Representation–level L–M M H L–M M M–H

Inference–level L L M M H H
∗Symbol explanation: L – low, M – medium, H – high.

from the thermal image – captured by the IR part of the
camera. Because faces usually appear as warmer objects in
the data, heat signatures are used to identify image regions
for masking. A similar idea was also described by Shiff et
al. in [98] with their Respectful camera design. Here how-
ever, visual color–markers are used to find sensitive image
regions with faces for masking instead of heat signatures.

Chen et al. [99] described an automatic face masking
technique for obscuring human faces in video. In this work,
a privacy enhancing technique is presented that detects
faces and the video and then tracks them across the entire
video sequence. To enhance privacy, obfuscation masks are
created and applied on the detected face locations at the
detected scales with the goal of obfuscating identity in-
formation. Robustness of the privacy enhancing procedure
is ensured through the use of an efficient face detection
approach that relies on simple background subtraction and
a head–shoulder detector.

In [100], Wang et al. demonstrated how face masking
(and blurring) techniques can be used for privacy enhance-
ment in real-world applications. The authors describe the
so-called RTFace system, which consists of two components:
a Face Trainer and a Privacy Mediator, and supports face de-
tection, tracking, path–based anonymization, and whitelist-
ing of enrolled users. The first component of RTFace, the
Face Trainer (OpenFace [101] based), is used to recognize
faces and enroll new users, whereas the second component,
the Privacy Mediator, is utilized to determine whether de-
tected faces should be visible (whitelisted) or not (masked
with patches). In [102], Das et al. applied the idea of RTFace
to IoT–based infrastructures and provided users with the
explicit option to choose whether or not they want their
faces to be masked (a.k.a. denatured) in the video streams.

An interesting (reversible) masking–based B–PET was
presented by Yuan and Ebrahimi [36], [103]. The technique is
based on JPEG transmorphing and supports arbitrary visual
manipulations of selected image regions (i.e., typically faces)
– not only masking. In the first step, selected image regions
are masked or otherwise abstracted to conceal sensitive
information. A binary mask, corresponding to the concealed
image regions, is created next and used to extract the
original (unmasked) regions from the input image. Finally,
the original image regions are secured using a symmet-
ric encryption scheme with a secret key. The process of
transmorphing is completed when the mask and encrypted
sub–image are inserted into the obfuscated JPEG image.

To reconstruct the original content from the transmorphed
image, data decryption is used.

Masking techniques are in general easy to implement
and are, hence, often used as baselines in various privacy–
related performance evaluations, e.g., [104], [105], [106].

Filtering techniques

The second subgroup of obfuscation-based B–PETs pro-
cesses regions of interest (ROIs) in video frames or still im-
ages by applying selected (linear or non–linear) filtering op-
erations on the input data. The filtering operation typically
degrades the quality of the imagery, which, in turn, affects
its biometric utility. Typical filters used include blurring and
averaging filters as well as gradient operators. B–PETs from
this subgroup also often incorporate additional processing
steps (such as binarization) to further degrade the quality
of the source images. The privacy enhancement is typically
targeting identity information, but in general impacts other
biometric attributes as well. While some implementations
include face detection techniques that drive the privacy
enhancement towards specific image regions, others simply
filter the entire image and do not rely on the identification of
specific privacy–sensitive ROIs. A few illustrative examples
of filtering techniques are presented in Fig. 6 (b). We note
that in the privacy–related image processing literature, the
term privacy filter6 is often used to describe any privacy pro-
tection approach even if the underlying mechanism includes
data transformations, scrambling, masking, and other simi-
lar approaches. In our taxonomy, on the other hand, we only
consider filtering techniques that utilize standard image
filters, defined with some sort of convolutional kernel.

A typical example of a B–PET relying on such a filtering
technique is deployed in the Deidentification camera, de-
scribed in [80]. The camera aims to ensure real–time privacy
protection in videos by implementing a deidentification
pipeline that consists of five steps: background subtrac-
tion, person detection, person tracking, segmentation, and
deidentification. The near real–time deidentification process
(10–11 frames per second) is based on Gaussian blurring and
binarization, and is implemented entirely on a low-resource
(OMAP4–based) embedded platform.

Wang et al. [41] introduced an obfuscation technique
that again exploits blurring for privacy protection. The pro-
cedure uses a tracking approach based on mean–shift and

6. The term is most often used in relation to privacy enhancement in
the area of video surveillance.
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(a) Masking (left to right): Das et al. [102], Zhang et al. [54], and Yuan and Ebrahimi [36], [103].

(b) Filtering (left to right): Erdélyi et al. [107], Winkler and Rinner [6], and Fradi et al. [108].

(c) Image transformations (left to right): Ruchaud and Dugelay [109], Kobayashi et al. [110], and Korshunov and Ebrahimi [111].

Fig. 6: Visual examples of the application of obfuscation-based B–PETs relying on: (a) masking, (b) filtering, and (c)
image transformations. As can be seen, obfuscation techniques commonly use (computationally) simple privacy enhancing
techniques that usually aim at hiding identity information. Only limited biometric utility (if any) is preserved with such
B–PETs.

active contours that makes it applicable to video sequences.
An AdaBoost–based face detector is utilized to initiate the
tracking and a background subtraction procedure is devised
to constrain the face search region. Due to the design of
the procedure, the algorithm exhibits robustness to changes
in scale, pose, and partial occlusion of the facial regions.
Several conceptually similar techniques, exploiting blurring
to achieve privacy enhancement have also been presented
in the literature, e.g., [112], [113].

To address privacy concerns in crowd monitoring ap-
plications, while still preserving utility, Fradi et al. [108]
introduced the concept of context–enhanced filters. The idea
here is to use crowd–density information to define the level
of privacy enhancement that should be applied to different
parts of the input data. To this end, a crowd–density esti-
mation procedure is designed around (local) FAST features
and optical flow. A HOG–based (head) detector is utilized to
identify sensitive regions in the input images. The computed
information (ROI positions and crowd–density maps) is
then used with blurring and pixelation for adaptive privacy
enhancement, enabling higher–levels of privacy protection
in less crowded areas and lower–levels in areas with many
people. A similar adaptive scheme was also proposed by
Letournel et al. [114] in the form of a face deidentification
technique with expression preservation capabilities. The
technique is based on variational adaptive filtering, where

the filtering preserves key facial features (i.e., the eyes, the
lips, and their corners) but conceals facial identity.

Another notable technique from this subgroup, based on
adaptive cartooning, was presented by Erdélyi et al. in [107].
The technique converts original input images (or selected
regions) into abstract representations with cartoonish ap-
pearance and, consequently, decreased biometric utility. The
cartooning process includes blurring, edge detection, mean–
shift filtering, and in the final step a (edge–intensity based)
weighted superposition of the generated cartoon image and
the corresponding original. Because of the computation-
ally simple steps involved with this technique, it is suited
for deployment in embedded smart cameras. The authors
also suggest that privacy enhancement with the cartooning
approach retains some utility because it allows to infer
behavioural information, i.e., actions remain perceptible.

A filtering approach, designed around gradient opera-
tors, was implemented as the privacy mechanism of choice
in the TrustCam – a privacy–preserving smart camera, intro-
duced by Winkler and Rinner in [6]. TrustCam uses edge
detection with standard gradient operators to generate sur-
rogate ROIs for privacy protection in visual data. To ensure
confidentiality (i.e., data security), the ROIs are encrypted
using cryptographic keys. This process limits access to the
encrypted data only to camera operators with suitable cre-
dentials. Representing faces with edge information ensures
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a certain level of privacy protection, but also preserves the
biometric utility of the data to some extent, as evidenced by
existing work building on gradient information for recogni-
tion, e.g. [115], [116], [117], [118], [119].

Due to privacy concerns over videos captured by Micro
Aerial Vehicles (MAVs or mini drones), researchers also
started looking at obfuscation-based filtering techniques
depoyable on onboard cameras of MAVs. Bonetto et al. [63],
for example, studied the efficiency of different privacy filters
for privacy protection in video footage captured by mini–
drone based video surveillance systems. Sarwar et al. [120],
on the other hand, presented an approach that filters facial
regions in video footage captured by MAVs adaptively as
a function of image resolution. The proposed privacy filter
is applied only if the input resolution is high enough to be
used with a face matcher. The approach is designed to be
robust to reconstruction attacks aimed at reversing the effect
of the privacy filter and presents an extension of the authors’
earlier work, relying on adaptive Gaussian blurring [121].

While a vast majority of work related to filtering-based
B-PETs focuses on video data and an unselective reduction
of biometric utility [122], [123], more recent research also
started investigating filtering techniques capable of pre-
serving information on specific biometric attributes. To this
end, Ye et al. [124], for example, studied various privacy
enhancement techniques (including blurring) that protect
privacy, on the one hand, but also allow for reliable age
estimation, on the other.

Image transformations

The last subgroup of obfuscation-based B–PETs re-
lies on various image transformations to conceal (remove
or obscure) sensitive regions in facial images or video.
These transformations include image subsampling [134],
scrambling [136], [139], [152], [153], [161], mosaicing [110],
[160], warping [142], morphing [111], foveation [151], half–
toning [159], image puzzling [147], steganography, and
others. Techniques from this group are often tied to var-
ious compression standards [145] and exploit selected
characteristics of the standards for privacy enhancement.
Transformation–based techniques, like filtering approaches,
try to reduce the biometric utility of facial data by altering
its visual characteristics. This process is typically not selec-
tive and affects all biometric attributes to a similar extent.
Existing techniques often focus on data security aspects (en-
cryption and data hiding) and mechanisms for reversing the
effect of privacy enhancement. A few application examples
of transformation–based B–PETs are presented in Fig. 6 (c).

One of the early solutions utilizing image transforma-
tions for privacy enhancement was presented by Cucchiara
et al. in [134]. In this work, the authors present an active,
privacy–aware surveillance system built around Pan–Tilt–
Zoom cameras. The system included a privacy enhanc-
ing mechanism that pixelated (subsampled) detected faces,
while still allowing to monitor large areas and observe
information on the number of surveilled people, their in-
teractions, and behaviour as well as other information less
critical from a privacy perspective.

Another transformation–based solution, called Privacy-
Cam, was presented by Chattopadhyay and Boult in [5]. The
privacy enhancement used by PrivacyCam is implemented

on a digital signal processor (DSP) and relies on simple
computer vision techniques and encryption of the quan-
tized DCT (Discrete Cosine Transform) coefficients used in
compression standards, such as JPEG [135]. The mechanism
implemented in PrivacyCam reduces the biometric utility
of facial data, but also incorporates cryptographic means to
ensure that the enhancement procedure is reversible.

Building on the idea of manipulating DCT coefficients,
Kobayashi et al. [110] proposed the Privacy Protection Surveil-
lance Camera System (PPSCS) that allows users to request
to be hidden from surveillance. At the core of PPSCS is
a privacy enhancing technique that combines reversible
mosaicing with reversible watermarking. Detected faces are
first divided into 8 × 8 pixel blocks (similar to a JPEG
processing) and quantized DCT coefficients are computed
for each of the blocks. The values of low–frequency pixels
are encrypted by AES and embedded in the high–frequency
pixels. Finally, a reversible watermarking procedure is used
to embed the encrypted data in the DCT domain of the
mosaic image. The camera system was later extended by
Hoshino et al. [160] into the improved PPSCS (IPPCS) design
addressing some of the shortcomings of PPSCS. Several
other notable works on privacy enhancement relying on
the manipulation of JPEG–like DCT–coefficients, were also
presented in the literature, e.g., [132], [133], [151]. Many of
these operate with specific compression standards, such as
H.264/AVC, e.g., [109], [136], [139], [145], [146].

Another representative approach from the subgroup of
transformation–based B-PETs was presented by Korshunov
and Ebrahimi in [142]. Here, privacy protections is achieved
through a warping procedure that distorts facial appear-
ances and in turn reduces the biometric utility of facial
images. The authors demonstrate that face detection is still
feasible with the warped images, while face recognition
performance (with a selected classifier) is degraded signif-
icantly. In [111], Korshunov and Ebrahimi report similar
findings, when morphing is used for privacy protection
instead of warping.

Ruchaud and Dugelay [150] proposed a privacy protec-
tion technique that obfuscates regions–of–interest (ROIs) in
images (e.g., faces) using surrogate ROIs that only encode
shape information. The technique relies on a combination
of steganography and scrambling. Once the scrambling is
applied on the pixels of the ROI, their most significant
bits are hidden in the least significant bits of the target
image. The privacy enhancement procedure is designed
to be reversible, while ensuring suitable levels of privacy
protection through the surrogate images.

Chriskos et al. [156] described an transformation–based
B–PET designed for hindering automatic face detection. The
proposed face–detection hindering technique (as called by the
authors) introduces artifacts into face images (e.g., noise and
projections) that impair face detection, but still preserves
enough information, so that faces remain intelligible for
human observers.

Dadkhah et al. [159] studied possibilities for applying
different half–toning algorithms with the goal of avoiding
unwanted (automated) face detection and recognition. Half–
toning transforms the standard grey–level pixel intensities
of the input images into black and white dots in a way that
preserves the intelligibility of images for human observes,
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TABLE 3: High–level comparison of the surveyed obfuscation privacy–enhancing techniques. The table summarizes the
techniques in terms of the type of input data they were applied to, the targeted attribute to be concealed and the targeted
attribute to be preserved (if any), reversibility (Rev.) and privacy guarantees (Gua.), the privacy mechanism applied,
the strategy used with respect to biometric utility, the target of the privacy enhancement, and the test data selected for
experimentation. Techniques are listed in chronological order for each sub–group.

Group Techniques
Applied to Attribute

Rev. Gua. Mechanism Utility Target Test dataset
Video Stills Concealed Preserved

Masking

Schiff et al., 2007 [98] ✓ ✓ ID NSA ✗ ✗ Opaque masks RD H IHD
Chinomi et al. (PriSurv), 2008 [96] ✓ ✓ ID NSA ✗ ✗ Adaptive masks RD H IHD
Chen et al. (EMHI), 2009 [99] ✓ ✗ ID NSA ✗ ✗ Opaque masks RD H IHD
Zhang et al., 2014 [54] ✓ ✓ ID NSA ✗ ✗ Opaque masks RD H IHD
Yuan and Ebrahimi, 2017 [36], [103] ✗ ✓ ID NSA ✓ ✗ Arbitrary masks RD H PIPA [125]
Wang et al. (RTFace), 2017 [100] ✓ ✓ ID NSA ✗ ✗ Denaturing masks RD H LFW [126]
Das et al., 2017 [102] ✓ ✓ ID NSA ✗ ✗ Opaque masks RD H IHD

Filtering

Zhao and Stasko, 1998 [112] ✓ ✓ ID NSA ✗ ✗ Various filters RD H IHD
Boyle et al., 2000 [113] ✓ ✓ ID NSA ✗ ✗ Blurring/pixelation RD H IHD
Wang et al., 2008 [41] ✓ ✓ ID NSA ✗ ✗ Blurring RD H IHD
Mrityunjay and Narayanan, 2011 [80] ✓ ✓ ID NSA ✗ ✗ Blurring, binarization RD H IHD
Agrawal et al., 2010 [122] ✓ ✗ ID NSA ✗ ✗ Various filters RD H CAVIAR; BEHAVE [127]
Winkler and Rinner, 2010 [6] ✓ ✓ ID NSA ✓ ✗ Gradient (edge) filtering RD H IHD
Korshunov and Ebrahimi, 2012 [123] ✓ ✓ ID NSA ✗ ✗ Various filters RD H IHD
Fradi et al., 2013 [108] ✓ ✗ ID NSA ✗ ✗ Blurring, pixelation RD H PETS2009 [128] and others
Erdélyi et al., 2014 [107] ✓ ✓ ID NSA ✗ ✗ Cartooning RD H PEViD [129]
Letournel et al., 2015 [114] ✓ ✓ ID NSA ✗ ✗ Adaptive filtering RD H LFW [126]
Bonetto et al., 2015 [63] ✓ ✓ ID NSA ✗ ✗ Various filters RD H IHD (Mini–drone)
Sarwar et al., 2016 [121] ✓ ✓ ID NSA ✗ ✗ Adaptive blurring RD H Dataset from [130]
Ye et al., 2018 [124] ✗ ✓ ID Age ✗ ✗ Various filters RD H Adience [131]
Sarwar et al., 2019 [120] ✓ ✓ ID NSA ✗ ✗ Adaptive blurring RD H LFW [126], IHD

Transforms

Dufaux and Ebrahimi, 2004 [132] ✓ ✓ ID NSA ✓ ✗ Scrambling RD H IHD
Martínez–Ponte et al., 2005 [133] ✓ ✓ ID NSA ✗ ✗ Masking RD H IHD
Cucchiara et al., 2006 [134] ✓ ✗ ID NSA ✗ ✗ Pixelation RD H IHD
Chattopadhyay and Boult, 2007 [5], [135] ✓ ✓ ID NSA ✓ ✗ Scrambling RD H IHD
Dufaux and Ebrahimi, 2008 [136] ✓ ✗ ID NSA ✓ ✗ Scrambling RD H VTM [137]
Xuan and Jiang, 2009 [138] ✓ ✓ ID NSA ✓ ✗ Color watermark RD H VTM [137]
Tong et al., 2010 [139] ✓ ✗ ID NSA ✓ ✗ Scrambling RD H VTM [137]
Cichowski and Czyzewski, 2011 [140] ✓ ✓ ID NSA ✓ ✗ Pixel relocation RD H IHD
Rahman et al., 2012 [141] ✓ ✓ ID NSA ✓ ✗ Scrambling RD H IHD
Korshunov and Ebrahimi, 2013 [142] ✓ ✓ ID NSA ✗ ✗ Warping RD M Yale Faces [143]
Korshunov and Ebrahimi, 2013 [111] ✓ ✓ ID NSA ✗ ✗ Morphing RD H FERET [144]
Wang et al., 2013 [145] ✓ ✗ ID NSA ✓ ✗ Scrambling RD H VTM [137]
Su et al., 2013 [146] ✓ ✗ ID NSA ✓ ✗ Partial scrambling RD H VTM [137]
Kobayashi et al., 2014 [110] ✓ ✓ ID NSA ✓ ✗ Reversible mosaicking RD H IHD
Bhattarai et al., 2014 [147] ✗ ✓ ID NSA ✗ ✗ Noise overlay RD M LFW [126]
Melle and Dugelay, 2014 [148] ✓ ✓ ID NSA ✓ ✗ Scrambling RD H ORL [149]
Ruchaud and Dugelay, 2015 [150] ✓ ✓ ID NSA ✓ ✗ Edge image, binarization RD H Mini–drone [63]
Alonso–Pérez et al., 2016 [151] ✓ ✓ ID NSA ✗ ✗ Foveation RD H FERET [144]
Jiang et al., 2016 [152], [153] ✓ ✓ ID NSA ✓ ✗ Scrambling RD H ORL [149], PIE [154], PUBFIG [155]
Ruchaud and Dugelay, 2017 [109] ✓ ✓ ID NSA ✓ ✗ Adaptive scrambling RD H FERET [144], VTM [137]
Chriskos et al., 2017 [156] ✓ ✓ ID NSA ✗ ✗ Noise, SVD transform RD M XM2VTS [157], dataset from [158]
Dadkhah et al., 2018 [159] ✓ ✓ ID NSA ✗ ✗ Half–toning RD M IHD
Hoshino et al., 2018 [160] ✓ ✓ ID NSA ✓ ✗ Reversible mosaicking RD H IHD
Liu et al., 2018 [161] ✓ ✓ ID NSA ✓ ✗ Scrambling RD H IHD
Fan, 2018 [73] ✓ ✓ ID NSA ✗ ✓ Pixelation RD H ORL [149], MOT [162], PETS [128]
Fan, 2019 [163] ✓ ✓ ID NSA ✗ ✓ SVD transform RD H PIPA [125], ORL [149]

Symbol explanation: ID – identity, NSA – no specific attribute (information removed on all attributes), RD – reduction, IHD – In–house dataset, VTM – Video Test Media, H – Human, M – Machine.

but not necessarily for machine learning techniques. The
work investigates the impact of multiple half–toning tech-
niques for privacy enhancement, including Floyd–Steinberg
dithering for RGB images, and Stucki dithering, Bayern
half–toning and Jarvis half–toning for graycale images.

An interesting approach to privacy enhancement based
on watermarking was proposed by Xuan and Jiang in [138].
The approach treats detected facial regions as characteristic
watermark information and embeds them into a target im-
age using a (large capacity) watermarking algorithm. After
face detection, compression, and recoding are used to gen-
erate a bipolar watermark sequence that can be embedded
into the target image for privacy protection. The approach
is reversible and, hence, allows to extract the original facial
“watermark” from the bipolar watermark sequence.

A solution for video–based privacy enhancement with
image transformations was proposed by Cichowski and
Czyzewski in [140]. Here, the authors introduce a reversible
and perceptually lossless algorithm for anonymizing video
streams. The algorithm uses a dedicated (reversible) pixel

relocation technique for ROI hashing and a semi–blind wa-
termarking procedure for data embedding. Pixel relocation
changes pixels locations within a ROI and ensures that
visual information within the ROI is obscured. The semi–
blind watermarking, on the other hand, is employed to hide
the coordinates of the anonymized ROI in the target image.

Liu et al. [161] introduced an approach to privacy en-
hancement in video that relies on skin color information
to detect face–region candidates and an SVM–based clas-
sifier to refine candidate regions and determine final face
locations. (Reversible) scrambling procedures are utilized to
modify both spatial positions of pixels within a face region
as well as their values. This process effectively conceals
identity information but, as suggested by the authors, still
allows to recognize actions in the processed videos. This
characteristic comes as a side effect of the obfuscation step,
which only targets facial regions and not full body ROIs.

Rahman et al. [141] developed a privacy enhancing
obfuscation procedure targeting surveillance videos. The
procedure uses chaos cryptography for data scrambling of
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sensitive ROIs in an image and is fully reversible. According
to the authors, the proposed procedure supports multiple
levels of abstraction in data hiding and therefore allows
for the implementation of various privacy policies (i.e., ob-
fuscation of different ROIs in the image) depending on the
credentials of the person examining the surveillance video.
The procedure is computationally efficient and, therefore,
highly suitable for video–based privacy enhancement.

Melle and Dugelay [148] devised a reversible scrambling
technique applicable to both image and video data. The
technique processes privacy sensitive ROIs using an adap-
tive codebook that consists of a set of background patches
(image regions without sensitive information) processed
with affine transformations. The main idea of this work is
to exploit image self–similarities to encode the image and
combine the encoding scheme with a scrambling procedure
for privacy enhancement. The authors demonstrate that
different trade–offs between privacy–protection and intelli-
gibility can be achieved by varying the scrambling strength.

While the techniques discussed above rely on privacy
mechanisms without privacy guarantees, a formal obfus-
cation technique based on the concept of differential pri-
vacy was recently presented in the literature, i.e., [73].
This work showed that it is possible to develop efficient
privacy enhancing algorithms (sanitizers) based on the basic
differential privacy framework [164] that are able to conceal
sensitive information from input images by adding con-
trolled randomness to the data. Based on this observation,
the authors of [73] developed a differentially private pix-
elization scheme for CCTV–based image data with the goal
of protecting individuals, objects, as well as their features.
The proposed method was shown to reduce the success rate
of re–identification attacks and was later extended to other
obfuscation schemes in [163].

3.1.2 Comparison of obfuscation techniques
A high–level summary of the surveyed obfuscation tech-
niques is presented in Table 3. The table compares the
reviewed techniques in terms of i) input data the meth-
ods were applied to, ii) the biometric attribute targeted
for removal and preservation, iii) whether the techniques
are reversible or not, iv) whether they provide privacy
guarantees, v) the mechanism used for privacy enhance-
ment, vi) the utility preservation strategy utilized, vii) the
target of the privacy enhancement, and viii) the datasets
the techniques were tested on. As can be seen, obfusca-
tion techniques mostly target identity information during
privacy enhancement and typically do not try explicitly
to preserve any specific biometric attribute. Any utility
preserved after privacy enhancement (if at all) is commonly
a side effect of the selected mechanism utilized and not a
targeted characteristic of the B–PETs from this group. How-
ever, because many of the reviewed techniques are designed
specifically for concealing facial regions in video data, they
are commonly advertised in the literature as being able
to preserve behavioral information. Various mechanisms
have been used in the literature with obfuscation–based B–
PETs, but they share a common characteristic in that they
are computationally simple and (for the most part) do not
come with provable privacy guarantees. Many solutions in
this group are also reversible and allow to reconstruct the

Fig. 7: Visual example of an adversarial approach to biomet-
ric privacy enhancement, i.e., FlowSAN from [12]. As can be
seen, adversarial approaches introduce small perturbations
into facial images, so that certain biometric attributes are
suppressed (in this case gender), while others are preserved
(e.g., identity in the example above).

original visual content from the obfuscated data. In terms of
experimental evaluations, these are typically conducted on
in–house datasets (IHD), but also on standard face datasets
used regularly in the face recognition literature.

3.1.3 Adversarial approaches

The second group of image–level privacy enhancing tech-
niques uses adversarial approaches to reduce the biometric
utility of facial images and impair recognition of biometric
attributes with selected classifiers. Techniques from this
group rely on various strategies from the field of adversarial
machine learning (i.e., adversarial perturbations, adversarial
examples, adversarial noise, etc.) to alter facial data, so that
the privacy enhanced imagery retains some utility, but has
an adverse effect on the performance of automatic classi-
fication models. An illustrative example of an adversarial
privacy enhancing technique is presented in Fig. 7.

Adversarial approaches represent a recent group of B–
PETs that was popularized mostly due to advances in deep
learning, even though similar ideas have been explored
before the deep learning era. Techniques from this group
are often designed to be highly selective, targeting a specific
attribute (or more) for suppression, while preserving oth-
ers. They typically require a pretrained classification model
during training, which raises questions with respect to the
generalization abilities of these techniques. Depending on
the strategy adopted, existing techniques from this group
either try to force the selected classifier to produce incor-
rect predictions (e.g., to flip labels for binary recognition
tasks [13]) or to generate low–probability classification re-
sults, e.g., [12]. A shortcoming of adversarial techniques is
their computational complexity, which makes them difficult
to apply to large scale data in a time–efficient manner.

Several techniques have been proposed in the literature
recently following the idea of adversarial learning. Wu et
al. [166], for example, proposed an adversarial training frame-
work for privacy–preserving visual recognition. The main
idea of this work is to learn active degradations that can
be used to transform video inputs and generate privacy
enhanced data. The adversarial learning procedure is based
on two competing objectives, where one strives to preserve
data utility (actions in this work), while the second aims
to ensure privacy protection by removing information on
sensitive biometric attributes, such as face identity. A similar
solution was also presented in [71].
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TABLE 4: High–level comparison of existing image–level B–PETs relying on adversarial learning. The table compares the
surveyed techniques with respect to the data they were applied to, the attribute they are aiming to conceal and to preserve,
reversibility (Rev.) and privacy guarantees (Gua.), the privacy mechanism and utility preservation strategy utilized, the
target of the enhancement, and the test dataset(s) employed for evaluation. Techniques are listed in chronological order.

Adversarial techniques
Applied to Attribute

Rev. Gua. Mechanism Utility Target Test dataset
Video Stills Concealed Preserved

Mirjalili and Ross, 2017 [44] ✗ ✓ GD ID ✗ ✗ SAP RD M MUCT [165], LFW [126]
Wu et al. (Adversarial Privacy), 2018 [166] ✓ ✓ ID Behaviour ✗ ✗ LD RD H SBU [167], UCF101 [168], VISPR [169]
Huang et al. (GAP), 2018 [170] ✗ ✓ GD ID ✗ ✗ LD RD M GENKI [171]
Mirjalili et al. (SAN), 2018 [172] ✗ ✓ GD ID ✗ ✗ SAP RD M CelebA [173], MUCT [165], LFW [126], AR–face [174]
Mirjalili et al., 2018 [11] ✗ ✓ GD, A, ET ID ✗ ✗ SAP RD M CelebA [173], MORPH [175], LFW [126], MUCT [165], RaFD [176]
Chhabra et al., 2018 [13] ✗ ✓ Arbitrary ID ✗ ✗ AP RD M CelebA [173], MUCT [165], LFW [126]
Mirjalili et al. (FlowSAN), 2019 [12] ✗ ✓ GD ID ✗ ✗ SAP RD M CelebA [173], MORPH [175], MUCT [165], RaFD [176]
Chatzikyriakidis et al., 2019 [72] ✗ ✓ ID NSA ✗ ✗ AP RD M CelebA [173]
Mirjalili et al. (PrivacyNet), 2020 [69] ✗ ✓ GD, A, ET ID ✗ ✗ SAP RD M CelebA [173], MORPH [175], UTKFace [177], MUCT [165], RaFD [176]
Symbol explanation: GD – Gender, A – Age, ET – Ethnicity, ID – identity, RD – reduction, NSA – no specific attribute (information removed on all attributes), LD – Learned degradation
AP – Adversarial perturbation, SAP – Semi–adversarial perturbation, IDR – image degradation, H – Human, M – Machine.

In line with the idea discussed above, Huang et al. in
[170] introduced a privacy–enhancing techniques, named
Generative Adversarial Privacy (GAP). To ensure privacy, GAP
relies on two deep learning models, where the first, the
Privatizer, is a generator–style network that aims to alter
input images and the second, the Adversary, is a classifi-
cation model that tries to predict privacy–sensitive (in this
case gender) information from the images produced by the
Privatizer. Similarly to [166], the GAP model is learnt by
optimizing a training objective that takes both data utility
and privacy protection into account. Soft–biometric privacy
experiments on the GENKI dataset are presented to demon-
strate the feasibility of the approach.

Many existing adversarial techniques try to introduce
minute changes (adversarial perturbations) into facial im-
ages to confound selected classification models. Following
this idea, Mirjalili et al. [44] applied Delaunay triangulation
on facial landmarks and optimized pixel intensities (i.e.,
color information) within the triangulated facial mesh in
such a way that a pretrained gender classifier generates
incorrect predictions. Because the color changes are minute,
human observers can still correctly determine gender from
the images, but the considered gender classifier cannot. The
algorithm was not explicitly designed to preserve identity
information, but the recognition performance (identity) was
not significantly impacted as shown in the paper.

In their follow up work [172], the same authors proposed
so–called Semi–Adversarial Networks (SANs), deep learning
models that are again able to confound gender classifiers,
but also allow for the privacy enhanced data to be used for
identity verification – without significant loss in verification
performance. One shortcoming of SANs is that they do not
generalize well to unseen gender classifiers, i.e., classifiers
that were not incorporated in the training phase may still
accurately classify gender. To ensure generalizability to such
unseen classifiers, the authors proposed a SAN extension,
called FlowSAN. FlowSAN [12] applies multiple SAN trans-
formations sequentially to improve the ability to generalize.
An ensemble of SANs was also investigated in [11].

To fool soft–biometric classifiers, Chhabra et al. [13] pro-
posed a framework aiming to conceal a predefined set of facial
attributes. The privacy enhancement with this approach is
based on the Carlini–Wagner L2 attack that adds adversarial
noise to the input images, making it difficult for the selected
classifiers to automatically infer the attributes targeted with
the privacy enhancement. Similar to the SAN models dis-

cussed above, this approach yields promising results with
the classifiers considered when generating perturbations,
however, it does not generalize well to arbitrary classifiers.

A privacy enhancing technique built around Genera-
tive Adversarial Networks (GANs), called PrivacyNet [69],
was presented in 2020. PrivacyNet is a GAN–based semi–
adversarial network that targets multiple attribute classifiers
simultaneously and in turn suppresses multiple attributes
in facial images, while preserving identitiy information and,
hence, facilitates verification. The generator of PrivacyNet
is optimized to generate suitable adversarial noise, while
the discriminator aims to detect if an input image is real
or modified. The main contribution of PrivacyNet is the
extension of SANs to multiple attributes and the integration
into a GAN framework that ensures that the generated
privacy enhanced images appear as natural as possible.

Solutions from this group have also been applied for dei-
dentification techniques and not only soft–biometric privacy
problems. Chatzikyriakidis et al. [72], for instance, pro-
posed the Penalized Fast Gradient Value Method (P–FGVM),
and applied it conceal identity information in still images.
This idea of this work is similar to the idea used with
SAN models, as adversarial examples are created that are
able to retain most of the original facial appearance, while
producing images that are typically missclassified by se-
lected (pretrained) face recognition models. The deidenti-
fied face images using this adversarial approach yield high
misclassification rates, but can still be recognized by human
observers as they are visually very similar to the originals.

A high–level summary of the surveyed adversarial B–
PETs in presented in Table 4. Note that techniques from
this group have predominantly been applied to still images
and less so to video data. Unlike other types of B–PETs,
adversarial techniques have been applied for soft–biometric
privacy problems as well as for deidentification. However,
they are not designed to be reversible, even though defenses
to adversarial examples, e.g., [178], [179], may be exploited
to counteract privacy enhancement. Existing work in this
area has, to the best of our knowledge, so far not looked into
provable privacy schemes, and relied mostly of empirical
evaluation to establish the privacy protection level ensured
by the techniques.

3.1.4 Synthesis approaches
The last group of image–level privacy enhancing techniques
relies on image synthesis and typically generate synthetic
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facial data with predefined characteristics to be used as
surrogates for the original face images (or videos). A few
examples of the visual effect of synthesis–based B–PETs are
presented in Fig. 8. Synthesis techniques are among the
most widely studied B–PETs in the field of face biometrics
and are commonly implemented based on: i) standard image
processing techniques, ii) statistical models, and iii) deep learning
solutions. Below we provide an overview of existing work
from each of these three subgroups.

Image processing approaches

Techniques in this subgroup use standard image pro-
cessing approaches, such as blending, morphing, mosaicing,
or swapping, to generate synthetic images with enhanced
privacy and typically operate on raw image pixels (and
not parameterized models). The seminal k–Same–Pixel ap-
proach from Newton et al. [15], for instance, relies on the
formal k–anonymity model and generates surrogate faces
for deidentification of a subject–specific closed set of face
images by averaging groups of k faces that are found to
be similar (i.e., that appear within the same cluster of k
faces after applying a clustering procedure). Each face in
the input set is then replaced with the average face of
the cluster it belongs to. This procedure is illustrated in
Fig. 8 (b). Because faces in every given cluster are replaced
with the same surrogate image, it is impossible to link
the deidentified images to the original identities with a
probability higher than 1/k, where k is a hyper parameter
of this approach. Utility preservation with the k–Same–Pixel
approach is ensured by the surrogate–generation procedure,
which combines visual characteristics of all averaged faces.
We note that this approach is typically applied only to
tightly cropped facial areas (without hair, shoulders, and
other body parts that may appear in the image), so the
privacy guarantees only apply to the cropped part of the
image and not for others. Several extensions to the k–Same–
Pixel approach were presented in the literature and we
discuss these in later sections.

A similar approach, but without formal privacy guar-
antees, was also proposed by Bitouk et al. [181]. Here,
the authors create a large face library and then deidentify
images by swapping faces in the original input images
with the closest face candidate from the created library.
The replacement is based on similarities of different image
attributes, such as pose, resolution, blur, and the like. Facial
alignment is done by using six annotated fiducial points
(eye and mouth corners). Finally, recoloring and relightning
is applied to match the original illumination conditions on
the newly swapped face as much as possible. The procedure
is able to produce visually convincing deidentified faces and
can also preserve a certain level of data utility.

Following the same idea, Mosaddegh et al. [182] devel-
oped a part–based deidentification scheme by aggregating
facial components from different donors. Different from the
approach in [181], this work partitioned the facial image
into multiple components and swapped each component
separately. Such a parts–based approach provides a certain
level of flexibility in the construction of the donor library,
but also makes sure that the generated (surrogate) face
images does not bear similarities with any real person. To

ensure visually convincing results, the approach utilizes
Poisson image blending, which mitigates artifacts and pro-
duces photo–realistic deidentification results. A similar so-
lution was concurrently also proposed by Xu et al. in [183].
However, this approach was also applied to video data.

A conceptually different approach to image processing
based privacy enhancement was introduced by Othman and
Ross in [45]. The work aimed at ensuring soft–biometric pri-
vacy (hiding gender information), while still enabling iden-
tity verification, through a face morphing procedure. The
authors used facial landmarks to generate a triangular facial
mesh for a pair of faces (e.g., one male, one female) and
then implemented a morphing procedure that combined
the two images, so that gender information is combined
by the morphing step. Since the contribution of each face
can easily be controlled, different trade–offs between gender
obfuscation and identity preservation can be achieved.

Statistical models

Techniques in this subgroup perform privacy enhance-
ment with the help of generative statistical models, such
as Principal Component Analysis (PCA) [184] or Active
Appearance Models (AAMs) [185]. Statistical models were
introduced in this field as an alternative to the image pro-
cessing techniques discussed in the previous section mostly
due to their flexibility and the potential for improving the
quality of the generated surrogate images and preserving
more of the utility of the original input images. An ap-
plication example of an AAM–based privacy enhancing
technique is shown in Fig. 8 (c).

Many of the techniques in this subgroup are based on the
k–anonymity model. In [15], Newton et al. presented the
k–Same–Eigen technique (in addition to k–Same–Pixel dis-
cussed earlier), which extends the idea of k–anonymity from
the pixel space to the PCA subspace. Clusters of k subjects
are hence defined in the eigenspace of the training data and
the surrogate images for deidentification are created from
the averages of the PCA coefficients corresponding to all
k faces in each given cluster. Compared to k–Same–Pixel,
this solution produces less ghosting effects in the surrogate
images, but still provides provable privacy guarantees. A
detailed evaluation of k–Same algorithms was presented
in [186].

An extension of Newton’s work, called k–Same–Select,
was later presented by Gross et al. in [10] and aimed at
improving the utility of the deidentified faces. With k–
Same–Select a face dataset is first partitioned into mutually
exclusive groups of faces in accordance with a so–called
utility function (e.g., measuring face similarity in terms of
facial expressions). A k–Same algorithm is then utilized on
each face group separately, resulting in deidentified faces
conforming to the k–anonymity model that still preserve
information on the biometric attributes targeted by the
utility function.

To improve the quality of the generated surrogate faces,
Gross et al. [64], proposed the k–Same–M approach. This
privacy enhancing technique extends the concept of the k–
Same family of algorithm to AAMs. Here, surrogate faces
for deidentification are created by averaging over AAM
model parameters, instead of pixels or PCA coefficients,
such as with the k–Same–Pixel or k–Same–Eigen techniques.
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(a) Reference images for (b), (c), (d), (e), and (f). (b) Newton et al. (k–Same–Pixel) [15]

(c) Gross et al. (k–Same–M) [64] (d) Meden et al. (k–Same–Net) [33]

(e) Hukelås et al. (DeepPrivacy) [180] (f) Ren et al. [71]

Fig. 8: Application examples of different synthesis–based approaches to privacy enhancement. The images in (a) represent
the input face images, the examples from (b)–(f) show corresponding privacy enhanced faces using different B–PETs from
the literature. Note that the generated surrogate faces typically retain some utility, e.g., part of visual appearance in (b), (c),
and (f), and also facial expressions in (d). In all examples, artificial face images are generated to replace the original data,
so with the goal of concealing identity information.

Because AAMs combine a shape and an appearance (tex-
ture) model, synthesized faces from the averaged AAM
parameters appear visually convincing and exhibit minimal
artifacts – see Fig. 8 (c). A more complex multi–factor model
capitalizing on data utility was later presented by the same
authors in [30]. Implementational issues related to the k–
Same–M approach were studied by Prinosil et al. [75], who
proposed several heuristics to improve the visual quality of
the deidentified images.

Meng et al. [31] introduced another AAM–based ap-
proach to deidentification aimed at utility preservation. The
k–Same–furthest technique is again based on k–anonymity,
but instead of generating surrogate images based on the
closest set of faces (i.e., faces in a cluster) it identifies
most dissimilar faces (i.e., faces furthest away in a feature
space) and utilizes those for deidentification. To ensure
that utility is preserved (facial expressions in this case), k–
Same–furthest then clones the facial expression from the
original face and maps it to the surrogate using a dedicated
expression transfer procedure. Multiple extension of this ap-
proach focusing on different aspects of the deidentification
procedure were presented in the literature, e.g., [76], [65].

Concurrently with [31], Du et al. [187] proposed GARP–
Face, an AAM–based model that also preserves utility in
accordance with the utility retention strategy. Thus, GARP–
Face first extracts attributes (e.g., age, gender, ethnicity) of
the input face and then generates a k–anonymity compliant
surrogate image for deidentification in accordance with the
identified attributes. In this way, the technique is able to
conceal identity information, but retain a predefined set of
soft biometric attributes.

Again targeting data utility, Chi and Hu [188] proposed
an AAM–based approach to face deidentification that aimed
to split the AAM parameter space into an identity sub-
space and a residual subspace. The presented approach,
called identity subspace decomposition (ISD), is based on k–

anonymity and allows to separate sensitive identity in-
formation from information that relates to data utility, in
turn allowing to efficiently deidentify facial images, while
still preserving information on facial expressions. Research
following a similar idea was also presented in [189].

A notable work from the family of k–anonymity models
was described by Sim and Zhang in [47]. The authors
employ a subspace decomposition technique, called Mul-
timodal Discriminant Analysis (MMDA) to decouple AAM
parameters that control different facial attributes in order to
selectively alter some facial attributes while retaining others.
MMDA offers significantly higher flexibility compared to
competing AAM–based deidentification schemes and other
related decomposition approaches. The importance of this
work is in the introduction of the notion of controllable
privacy, where a user can specify, which attributes to conceal
and which to preserve, something that is important, for
example, when sharing images online and across social
media. Similar work using MMDA for deidentification was
also presented in [190].

A number of B–PETs that do not offer formal privacy
guarantees, but utilize statistical models in the process of
privacy enhancement, have also been studied in the liter-
ature. Samaržija et al., for example, described a technique
based on the q–far deidentification concept in [191]. The
technique uses AAMs for deidentification and swaps faces
by mapping the texture triangles from the surrogate to the
target faces. The authors argue that a one–to–one type of
deidentification scheme are often preferable over standard
many–to–one schemes (e.g., k–anonymity), as it does not
need to consider other identities during deidentification and
is able to generate surrogate faces that look more natural
[191]. In conclusion, the standard many–to–one scheme
ensures better privacy protection (with guarantees), whereas
the proposed one–to–one scheme is more flexible and faster
when new faces need to be deidentified, because no joint
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processing of the entire dataset is needed.
To address privacy protection in videos, Meng et al. [192]

designed a face deidentification pipeline built around sta-
tistical models capable of preserving facial expressions.
The work focused mostly on ensuring identity consistency
across frames, which is achieved by applying the same
identity shift (the difference between a person’s original
neutral face and its de–identified version) to all face in-
stances of the same person. The approach employs AAMs
for face modelling, a constrained local neural field (CLNF)
technique [193] for landmark detection and the k–Diff–
furthest algorithm for face deidentification.

Deep learning approaches

Deep learning techniques represent the latest synthesis–
based techniques used for biometric privacy enhancement.
Techniques and models from this subgroup are typically
considerably more complex than standard statistical models
discussed in the section above and, as a results, are able
to synthesise visually convincing and photo–realistic surro-
gate faces both for still images as well as for video data.
Moreover, because deep learning models can be trained to
exhibit a multitude of different characteristics, they are able
to ensure competitive trade–offs between privacy protection
and utility preservation, as illustrated by the examples in
Fig. 8 (d)–(f). Deep models with provable privacy guar-
antees have also been explored in the literature recently.
We note that some of the synthesis–based solutions in this
subgroup also incorporate ideas from adversarial machine
learning. These, however, are usually limited to the use of
Generative Adversarial Networks (GANs) [231] typically
utilized to ensure photo–realism of the synthesized faces.

One of the earliest examples from this subgroup was
presented by Chi and Hu in [205]. This work extends the
identity subspace decomposition technique (discussed in the
previous section) to deep learning models. At the heart
of the approach is a deep learning model that extracts
so–called facial identity–preserving (FIP) features from input
images and reconstructs faces from the computed FIP fea-
tures. A k–Same based deidentification scheme is utilized
to generate average FIP features from clusters of k subjects,
leading to a deep learning based k–Same deidentification
technique with utility preservation capabilities.

Another deep learning based B–PET was proposed by
Rafique et al. in [206]. Here, the authors explored Gaussian–
Bernoulli Restricted Boltzmann Machines (GBRBMs) [232],
[233] as means for face deidentification and exploited the
generative nature of GBRBMs to design two separate dei-
dentification solutions. The first is capable of pixelating
faces with the goal of hiding identity, whereas the second
(auto–encoder based) allows to produce smoother, higher
quality images that also preserve information on the ex-
pressed (facial) emotions.

Brkić et al. [32], [207] described an approach that goes
beyond deidentification of facial regions only, but instead
performs full–body deidentification. To this end a deep
convolutional generative adversarial network (DCGANs)
and the Viola–Jones face detector are utilized and combined
with a GraphCut segmentation procedur to detect, segment,
synthesize and finally deidentify faces, hairstyles as well as
human silhouettes – via clothing color deidentification.

Several deep learning solutions inspired by k–
anonymity have also been proposed recently. Meden et
al. [9], for example, designed a face deidentification pipeline
around Generative Neural Networks (GNN) consisting of
the Viola–Jones face detector, a VGG16–based feature ex-
tractor and a GNN based face renderer – for surrogate face
generation. This ad–hoc pipeline was then extended to the
k–Same–Net model, which incorporated elements from the
k–Same family of algorithms and was empirically shown to
offer a solid compromise between privacy protection and
data utility – preserving facial expressions without visual
artifacts [33], [61]. While k–Same–Net was inspired by the k–
anonymity model, a formal proof of the privacy guarantees
associated with the model was not provided.

Building on the idea from [33], Guo et al. [211] intro-
duced k–Dive–Net, a deep learning based deidentification
models, that improved on the k–Same–Net model by in-
tegrating diversity into the deidentification procedure. As
a result of this modification, the deidentified faces appear
distinct from each other despite building on the k–Same
family of techniques. Another interesting extension of the
k–Same–Net model, called k–Same–Siamese–GAN, was also
presented recently in [218].

A synthesis–based approach to privacy enhancement
relying on facial attribute transfer was designed by Li and
Lyu [219]. With this approach, facial attributes (mildly cor-
related with identity) are transferred from a source image to
a donor face, preserving attribute information while hiding
identity in the process. The model is implemented with
an encoder–decoder network topology. The same encoder
but separate decoders are used with each identity. This
design choice is made to ensure that the encoder of the
attribute–transfer model captures identity independent at-
tributes (shared among all face identities) and each of the in-
dividual decoders preserves identity–dependent attributes,
which can be mapped onto the target faces.

More recently, privacy-enhancing solutions based on
GANs started to appear in the literature. Chen et al. [212],
for instance, presented the Privacy–Preserving Representation–
Learning Variational Generative Adversarial Network or PPRL–
VGAN for short. The model relies on a variational auto–
encoder (VAE) that serves as the generator within the adver-
sarial learning framework as well as on multiple discrimina-
tors that ensure that the generated faces appear realistic and
exhibit the desired properties in terms of facial attributes
(e.g., identity, facial expression). To facilitate facial synthesis
a disentangled representation is learned in the latent space
of the auto–encoder. Once trained, the model is able to per-
form face image synthesis, face image completion, and even
facial expression morphing, in addition to deidentification.

Ren et al. [71] studied privacy enhancement in the con-
text of action recognition systems. The authors proposed a
GAN–based multi–task framework that learns to generate
surrogate facial regions through a combination of learning
objectives related to action recognition, identity classifica-
tion, and face modification. Because action recognition also
heavily relies on consistent visual information obtained
from facial areas, standard face deidentification methods
have a negative impact on action recognition performance.
The presented solution therefore aims to keep the syn-
thesized faces as close as possible to the originals, while
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TABLE 5: High–level summary and comparison of the surveyed synthesis–based image–level B–PETs. Information is
provided on the type of data the techniques were applied to, the attributes to be concealed and preserved, reversibility
(Rev.) and privacy guarantees (Gua.), privacy mechanism used with the B–PETs, the utility preservation strategy, privacy
target, and the dataset the techniques were tested on. Techniques are ordered chronologically for each sub–group.

Summary of Synthesis techniques

Subgroup Techniques
Applied to Attribute

Rev. Gua. Mechanism Utility Target Test dataset
Video Stills Concealed Preserved

Image processing

Newton et al. (k–Same–Pixel), 2005 [15] ✗ ✓ ID NSA ✗ ✓ Image averaging RD H FERET [144]
Bitouk et al., 2008 [181] ✗ ✓ ID Appearance ✗ ✗ Replacement RT H IHD
Othman and Ross, 2014 [45] ✗ ✓ GD ID ✗ ✓ Morphing RT M MUCT [165]
Mosaddegh et al., 2015 [182] ✓ ✓ ID NSA ✗ ✗ Composing parts RT H MultiPIE [194]
Xu et al., 2015 [183] ✓ ✓ ID EX ✗ ✗ Replacement RT H FEI [195], Caltech Faces [196]

Statistical models

Gross et al. (k–Same–Select), 2005 [10] ✗ ✓ ID EX, GD ✗ ✓ Selective averaging RD H FERET [144]
Mercier et al., 2005 [189] ✓ ✓ ID EX ✗ ✗ AAM RT H MMI [197]
Gross et al. (k–Same–M), 2008 [30] ✗ ✓ ID EX, GD ✗ ✓ AAM RT H MultiPIE [194]
Driessen and Durmuth, 2013 [186] ✗ ✓ ID NSA ✗ ✓ PCA RD M FERET [144]
Chi and Hu, 2014 [188] ✗ ✓ ID EX ✗ ✓ AAM RT H JAFFE [198]
Samaržija et al., 2014 [191] ✓ ✓ ID NSA ✗ ✗ AAM RT H IMM [199]
Du et al. (GARP–Face), 2014 [187] ✗ ✓ ID EX, ET, GD ✗ ✓ AAM RT H MORPH [175]
Meng et al. (k–Same–furthest–FET), 2014 [31] ✗ ✓ ID EX ✗ ✓ AAM RT H IMM [199]
Sun et al. (k–Diff–furthest), 2015 [76] ✗ ✓ ID NSA ✗ ✓ AAM RT H IMM [199], LFPW [200]
Sim and Zhang, 2015 [47] ✗ ✓ Arbitrary Arbitrary ✗ ✓ AAM RT H IHD
Ohana et al., 2016 [201] ✗ ✓ ID NSA ✗ ✗ AAM RT M IHD
Meng et al. (k–SameClass–Eigen), 2017 [65] ✗ ✓ ID EX ✗ ✓ AAM RT H BU–3DFE [202]
Meng et al., 2017 [192] ✓ ✗ ID EX ✗ ✓ AAM RT H UNBC–McMaster [203]
Prinosil et al., 2017 [75] ✗ ✓ ID NSA ✓ ✓ AAM RT H IHD
Wang et al., 2018 [190] ✗ ✓ Arbitrary Arbitrary ✗ ✓ AAM RT H CK+ [204]

Deep learning

Chi and Hu, 2015 [205] ✗ ✓ ID NSA ✗ ✓ Feature averaging RT H MultiPIE [194]
Rafique et al., 2016 [206] ✗ ✓ ID NSA ✗ ✗ RBM RT H Yale Faces [143]
Brkić et al., 2017 [32], [207] ✓ ✓ ID NSA ✗ ✗ GAN RT H ChokePoint [208]
Meden et al., 2017 [9] ✓ ✓ ID EX ✗ ✗ GNN RT H ChokePoint [208]
Meden et al. (k–Same–Net), 2018 [33], [61] ✗ ✓ ID EX ✗ ✗ GNN RT H XM2VTS [157], CK+ [204]
Ren et al., 2018 [71] ✓ ✓ ID Behaviour ✗ ✗ GAN RT H LFW [126], DALY [209], JHMDB [210]
Guo et al. (k–Dive–Net), 2018 [211] ✗ ✓ ID EX ✗ ✗ GNN RT H BU–3DFE [202]
Chen et al. (PPRL–VGAN), 2018 [212] ✓ ✓ ID EX ✗ ✗ GAN RT H FERG [213], MUG [214]
Sun et al., 2018 [215], [216] ✗ ✓ ID EX ✗ ✗ AE, GAN RT H PIPA [125]
Wu et al. (PP–GAN), 2018 [217] ✗ ✓ ID A, ET ✗ ✗ AE, GAN RT H MORPH [175]
Pan et al. (k–SS–GAN), 2019 [218] ✗ ✓ ID EX ✗ ✗ GAN RT H RaFD [176], CelebA [173]
Li and Lyu, 2019 [219] ✓ ✓ ID EX ✗ ✗ Attribute transfer RT H LFW [126], PIPA [125]
Li and Lin (AnonymousNet), 2019 [220] ✗ ✓ ID Arbitrary ✗ ✗ GAN RT H CelebA [173]
Hao et al. (UP–GAN), 2019 [221] ✗ ✓ ID A, EX, GD ✗ ✗ GAN RT H FaceScrub [222]
Hukelås et al. (DeepPrivacy), 2019 [180] ✓ ✓ ID NSA ✗ ✗ GAN RT H WIDER Face [223], IHD (FDF)
Croft et al., 2019 [74] ✗ ✓ ID GD ✗ ✗ GNN RT H RaFD [176], KDEF [224]
Maximov et al. (CIAGAN), 2020 [225] ✓ ✓ ID EX ✗ ✗ AE, GAN RT H CelebA [173], MOTS [226], LFW [126]
Cho et al. (CLEANIR), 2020 [227] ✓ ✓ ID EX ✗ ✗ AE RT H LFW [126], JAFFE [198], MUG [214]
Proença (UU–Net), 2020 [228] ✓ ✓ ID ET, EX, GD ✓ ✗ AE RT H IHD (BIODI), MARS [229], P–DESTRE [230]

Symbol explanation: ID – identity, GD – gender, A – age, ET – ethnicity, EX – expression, RD – reduction, RT – retention, IHD – In house dataset, NSA – no specific attribute (information removed on all attributes),
AAM – Active Appearance Model, PCA – Principal Component Analysis, GNN – Generative Neural Network, GAN – Generative Adversarial Network, AE – Autoencoder, RBM – Restricted Boltzmann Machine,
H – Human, M – Machine.

still efficiently concealing identity information. Unlike many
other works in this area, this research is focused on video
data and not only still images.

Another solution exploiting GANs for image synthesis
was proposed by Wu et al. [217] in the form of the Privacy–
Protective GAN (PP–GAN). PP–GAN is a dedicated face
deidentification model capable of generating high–fidelity,
visually convincing deidentification results that retained a
high structural similarity with the input images. Unlike k–
Same–like algorithms, the model is able to generate dei-
dentified faces from a single input image (instead of a set
of images). PP–GAN uses a U–Net–based encoder–decoder
network as the generator, a (relatively shallow) conv net as
the discriminator. The model is learned in an adversarial
setting using multiple learning objectives that ensure the
quality of the generated deidentified output images.

A GAN–based face replacement framework for face
obfuscation was introduced by Sun et al. in [216]. This
work combines a data–driven method to image rendering
with a parametric face model (a 3D Morphable Model –
3DMM [234]) in a two–stage procedure. In the first stage
a surrogate face is rendered using the 3DMM. This render-
ing procedure conceals identity information, but preserves
utility (e.g., facial expressions). In the second stage, the
complete head is inpainted with a GAN model using the
rendered face and the rest of the original input image.

A notable approach to face deidentification, called
AnonymousNet, was designed by Li and Lin [220]. Anony-

mousNet combines several ideas from the literature into a
powerful solution that can generate convincing and photo
realistic face deidentification results. In the first step, the
framework uses a large set of attribute classifiers to identify
aspects of the faces that need to be concealed. Next, it
uses a GAN model to generate surrogate faces with natural
appearance and then maps the generated surrogates back
into the originals. Finally, it adds adversarial noise (using
DeepFool [235]) to add another layer of privacy enhance-
ment to the overall framework. Despite building on different
formal privacy schemes, the authors do not discuss whether
AnonymousNet also comes with privacy guarantees.

A recent B–PET designed for utility preservation was
introduced by Hao et al. in [221]. The presented Utility–
Preserving GAN (UP–GAN) again generates surrogate face
for deidentification, but is designed to preserve multiple
soft–biometric attributes that do not reveal identity, such as
age, gender, skin tone, pose, and expression. The generated
faces appear natural and are used in a face swapping proce-
dure to achieve deidentification. UP–GAN is benchmarked
against k–Same, k–Same–Net, blurring, and pixelation at
different resolutions and is shown not to yield highly com-
petitive performance.

In [180], Hukelås et al. studied a GAN–based face
anonymization approach that removes identity information
from images through an inpainting procedure. The model
used in this work is closely related to inpainting approaches
based on conditional GANs (c–GAN) and is able to generate
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surrogate faces based on conditional information in the
form of a sparse set of facial landmarks (defining pose) and
image background. Thus, the surogate faces are seamlessly
incorporated into the source image during deidentification.

Conditional GANs were also used by Maximov et
al. for their Conditional Identity Anonymization GAN
model (CIAGAN) [225]. CIAGAN, in essence, implements
a face swapping procedure using an encoder-decoder type
generator network trained in an adversarial manner. For
anonymization, the model first locates and masks the facial
region in the input image using a landmarking technique
and then inpaints the masked out region with a face of an
artificially generated surrogate identity. During inpaitning,
the output identity is determined by a one-hot encoding
vector fed to the latent space of the CIAGAN model.

Next to GANs, other generative deep models have also
been considered when developing B–PETs for facial images.
In [227], for instance, Cho et al. described CLEANIR, a Varia-
tional Auto–Encoder (VAE) [252] based face deidentification
technique. With CLEANIR, a disentangled representation
(separating identity from other attributes) is learned in the
VAE latent space. This disentangled latent space then allows
to modify (and in turn conceal) identity information inde-
pendently from other attributes and generate images that
are identical to the originals in all aspects except identity.
The resulting deidentified images are convincing, although
not as sharp as those generated by GAN–based approaches.

Another approach based on auto-encoders, called UU–
Net, was recently proposed by Proença [228]. In this work,
a reversible deidentification is described, where two consec-
utive U–Nets are trained, one for deidentification and the
second one for reversing the deidentification process. Thus,
the first U–Net generates privacy-enhanced video data that
facilitate video analytics and data sharing, whereas the
second is intended to be private and available to authorities
in case the original data is needed.

Attempts have also been made to devise privacy–
enhancing techniques based on differential privacy. The
work of Croft et al. [74] presents an initial attempt toward
this goal using deep learning synthesis–based B–PETs. Here,
the authors introduce a general framework for face obfusca-
tion using differential privacy and apply it to a generative
neural network (GNN). The proposed approach exhibits
several desirable characteristics over techniques relying on
by formal privacy models, such as k–anonymity, in that it
is resilient to composition attacks (special type of linkage
attack7) and does not need subject–specific set of images to
perform obfuscation.

3.1.5 Comparison of synthesis techniques
Table 5 presents a summary and high–level overview of the
techniques surveyed in this section. As can be seen, exist-
ing synthesis techniques use various privacy mechanism
to remove or conceal information on biometric attributes
from facial data. The latest approaches proposed in the
literature are influenced heavily by advancements in deep
learning and typically rely on adversarial techniques or
generative deep models. B–PETs in this group are often able
to target any selected specific biometric attribute, though

7. See Section 4.1.3 for details on attack models.

the majority of research is still focused on deidentification
and obfuscation of identity information. Existing solutions
are mostly not reversible, but may come with privacy guar-
antees. Interestingly, deep learning solutions with provable
privacy are so far still limited in the literature, but some
pioneering work is currently being done here as well.

3.2 Representation–level techniques

Different from image–level techniques, which mostly fo-
cus on removing identity information from facial images,
representation–level techniques predominantly focus on the
removal of other (typically soft) biometric attributes, such
as gender, age, or ethnicity, from biometric templates. The
reason for this conceptual difference is in the fact that
templates are typically constructed explicitly for the goal
of identity inference (with consent), and should, therefore,
ideally be free of other potentially sensitive information.
We partition representation–level B–PETs into three distinct
groups, i.e., i) transformation–based techniques, ii) elimination–
based techniques, and techniques based on iii) homomorphic
encryption. We describe the three groups in–depth in the
following sections.

3.2.1 Transformation techniques
Transformation techniques try to remove sensitive informa-
tion from biometric templates by transforming the feature
space in such a way that information on predefined at-
tributes is suppressed as much as possible or, ideally, is
removed from the feature space altogether. This group also
includes techniques that try to learn (from scratch) image
representations without sensitive information. In essence,
techniques following this strategy try to built models capa-
ble of transforming input face images into image represen-
tations containing only information that is not critical from
a privacy perspective. Transformation–based techniques are
in general highly selective and usually able to suppress only
the targeted attributes, while not affecting others.

Several techniques have been proposed in the literature
that fall into this group and exploit different mechanisms
to ensure privacy. Feutry et al. [236], for example, proposed
an adversarial anonymization method that allows to learn fa-
cial representations useful for expression, but not identity
recognition. The core contribution of this work is a novel
training objective that allows to simultaneously learn a pre-
dictor/classifier for a selected attribute (facial expressions
in this work), while preventing the representation to be
predictive of sensitive data attributes, e.g., identity.

Terhörst et al. [70] introduced a Cosine–Sensitive Noise
(CSN) transformation to ensure soft–biometric privacy and
suppress gender and age information in biometric tem-
plates. With CSN, a specific type of noise is added to the
face representations such that soft–biometric information is
masked, while identity information is not. CSN works in
an unsupervised manner and unlike competing techniques
from the literature does not need large amounts of anno-
tated data to learn the privacy enhancement.

Morales et al. [46] proposed a supervised approach to
soft–biometric privacy by learning dedicated deep models,
called SensitiveNets. SensitiveNets use a modified version
of a triplet loss objective function to learn feature space
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TABLE 6: High–level comparison of the surveyed representation–level B–PETs. The table provides information on the
attributes the techniques are trying to conceal, type of supervision, mechanism used for privacy enhancement, target of the
privacy enhancement, and dataset(s) used to evaluate the technique.

Group Techniques
Attribute

Supervision Mechanism Utility Target Dataset
Concealed Preserved

Transformation
Feutry et al., 2018 [236] ID EX Supervised Adversarial objective RD M JAFFE [198]
Terhörst et al. (CSN), 2019 [70] GD, A, ET ID Unsupervised Noise addition RD M ColorFERET [144]
Morales et al. (SensitiveNets), 2019 [46] GD; ET ID Supervised Triple loss learning RD M DiveFace [46], LFW [126], CelebA [173]

Elimination
Terhörst et al. (IVE), 2019 [66] GD; A ID Supervised Feature elimination RD M ColorFERET [144]
Bortolato et al. (PFRNet), 2020 [20] GD ID Supervised Disentanglement, elimination RD M LFW [126], CelebA [173], Adience [131]

Homomorphic

Erkin et al., 2009 [237] Arbitrary ID n/a Paillier and DGK encryption RD M AT&T (ORL) [149]
Sadeghi et al., 2009 [238] Arbitrary ID n/a Garbled circuit scheme RD M IHD
Rahulamathavan et al., 2012 [239] Arbitrary EX n/a Paillier encryption RD M JAFFE [198], MUG [214]
Troncoso–Pastoriza et al., 2013 [240] Arbitrary ID n/a Gentry scheme RD M XM2VTS [157], FERET [144], LFW [126]
Xiang et al., 2016 [241] Arbitrary ID n/a FHE [242] RD M IHD
Ma et al., 2017 [243] Arbitrary ID n/a Paillier encryption RD M LFW [126], Faces94 [244]
Boddeti, 2018 [245] Arbitrary ID n/a BFV RD M LFW [126], IJB-A [246], IJB-B [247], CASIA [248]
Drozdowski et al., 2019 [249] Arbitrary ID n/a BFV, CKKS RD M FERET [144]
Kolberg et al., 2020 [250] Arbitrary ID n/a BFV, CKKS, NTRU RD M FERET [144]
Yang et al., 2021 [251] Arbitrary ID n/a CKKS RD M LFW [126]

Symbol explanation: GD – gender, A – age, ET – ethnicity, ID – identity, EX – expression, RD – reduction, M – machine, DGK – Damgård, Geisler and Krøigaard cryptosystem, HSC – Hilbert Space-filling Curves,
FHE – Fully Homomorphic Encryption, BFV – Brakerski/Fan-Vercauteren encryption, CKKS – Cheon-Kim-Kim-Song encryption, NTRU – N–th degree truncated polynomial ring.
n/a – not applicable, since the techniques are not learning based.

transformations that ensure, that sensitive information is re-
moved from biometric templates. The approach is evaluated
for suppression of gender and ethnicity information and is
shown to ensure competitive performance on three public
benchmarks.

3.2.2 Elimination techniques
Unlike transformation–based techniques, elimination tech-
niques do not try to construct a feature space, in which infor-
mation on certain attributes is suppressed, but instead aim
to remove (or eliminate) elements of the image representa-
tion that carry most of the information on the targeted soft–
biometric attribute(s). A strong (implicit) assumption made
by techniques from this group is that the features in the
computed face representations are mutually independent or
at least the information on different biometric attributes is
not distributed equally across the image representations.

A notable elimination technique, called Incremental Vari-
able Elimination (IVE) was proposed by Terhörst et al. in [66].
IVE gradually eliminates components of biometric tem-
plates that contribute most to the prediction of a chosen
attribute (i.e., age or gender). The algorithm is based on
a decision tree ensemble that scores each variable in the
face representation with respect to its importance for a
specific recognition task. Variables most affecting attribute
classification are then excluded from the representation. The
authors show that it is possible to discard a considerable
amount of information on sensitive attributes, while still
maintaining high recognition accuracy. A shortcoming of
this approach is the fact that after each elimination step a
new impact–estimation model needs to be trained, which
slows down the the elimination process.

To have better control over the information contained
in the face representations prior to elimination, Bortolato et
al. [20] proposed to learn a disentangled feature represen-
tation using a deep learning model, called PFRNet. PFRNet
is an autoencoder that accepts original face templates as an
input and then generates a disentangled representations in
its latent space, in which identity information is separated
from the attribute–related information. To ensure that sen-
sitive information is removed, the attribute–related part of
the latent space is discarded, while the identity–related part
is used for verification purposes.

3.2.3 Homomorphic encryption techniques

Techniques from this group rely on homomorphic encryp-
tion to ensure that face representations, e.g., templates,
are used only for the intended purpose. The main idea
behind these techniques is to encrypt data in such a way
that specific calculations are still possible in the encrypted
domain. This allows for the design of template–comparison
functions (applicable only to a predefined task) without
the need for data decryption. Techniques from this group
combine characteristics from both data security and privacy–
enhancing techniques and are included in this survey due
to their relevance for privacy protection. Homomorphic
encryption schemes can in general be partitioned into three
main sub–groups, i.e. [245], [254]:

• Partially Homomorphic Encryption (PHE) schemes that
allow for a single mathematical operation (addition
or multiplication) to be performed in the encrypted
domain an unlimited number of times.

• Somewhat Homomorphic Encryption (SHE) schemes
that allow to perform different mathematical opera-
tions (additions and mutliplications) in the encrypted
domain a limited number of times.

• Fully Homomorphic Encryption (FHE) schemes that al-
low to conduct different mathematical operations (ad-
ditions and mutliplications) directly in the encrypted
domain an unlimited number of times. FHE schemes
represent the most general type of homomorphic
encryption approaches, but due to their generality
are also computationally intensive.

One of the earliest B–PETs based on homomorphic en-
cryption was presented by Erkin et al. in [237]. Here, the
authors describe a PHE scheme that allows for executing
Eigenface–based [184] matching directly in the encrypted
domain. The presented scheme combines Eigenfaces with
the Paillier [255] and Damgård, Geisler and Krøigaard
(DGK) [256] cryptosystems and enables projecting facial
images into an Eigen–space, comparing queries to templates
in the database, and finding matching identities from the
database. Because only a matching function is defined in
the encrypted domain and the database is assumed to
be private, this scheme allows for identity inference but
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TABLE 7: High–level comparison of the surveyed inference–level B–PETs.The table provides information on the attributes
the techniques are trying to conceal, type of supervision, mechanism used for privacy enhancement, privacy target, and
dataset(s) used to evaluate the technique.

Techniques
Attribute

Supervision Mechanism Utility Target Test dataset
Concealed Preserved

Terhörst et al. (NFR), 2020 [253] GD, A, ET ID Supervised† Negative templates RT M ColorFERET [144], Adience [131]
Terhörst et al. (PE–MIU), 2020 [22] GD, ET ID Unsupervised Minimum information units RD M LFW [126], Adience [131], ColorFERET [144]
Symbol explanation: GD – gender, A – age, ET – ethnicity, ID – identity, RD – reduction, RT – retention, M – machine.
† Supervision is applied for an intermediate step, not the privacy enhancement.

not (necessarily) extraction of other biometric attributes. A
similar (but computationally simpler) SHE–based approach
based on Garbled Circuits [257] and again focused on Eigen-
face was later proposed by Sadeghi et al. [238] and im-
proved through the use of a fully homomorphic encryption
(FHE) [242] scheme by Xiang et al. in [241].

Rahulamathavan et al. [239] introduced a PHE–based
scheme for recognizing facial expressions in the encrypted
domain. The schemes uses Local Fisher Discriminant Anal-
ysis (LFDA) to extract facial features and the Paillier
cryptosystem [255] to perform homomorphic encryption.
The authors show that comparable expression–recognition
performance can be achieved in the original (plain) and
encrypted domains under a suitable selection of hyper–
parameters. Because the subspace (i.e., feature extractor)
used is trained to be discriminative in terms of facial expres-
sions, the scheme is expected to perform poorly for other
biometric recognition tasks, such as, identity recognition for
example.

Ma et al. [243] described a PHE encrypted face verifica-
tion system, where the main idea is to extract facial features
using deep neural networks and then encrypt the computed
features with the Paillier cryptosystem [255]. To calculate
distances during verification (between two encrypted vec-
tors of facial features), a Hamming distance is used. The
reported results show that verification performance in the
original (plain) and encrypted domains is comparable. Be-
cause the complete solution is designed as a multi party
system that only allows for distance calculations, other use
cases of the data beyond similarity score computations are
not possible.

Boddeti [245] presented a face recognition framework
based on fully homomorphic encryption (FHE) for pro-
tecting user privacy in and preventing information leakage
from biometric templates. The framework enables template
matching in the encrypted domain and is based on the Fan–
Vercauteren encryption scheme [258]. To trade–off matching
accuracy and computational complexity, the author also
explores batch–processing and dimensionality reduction of
deep facial features. A similar FHE scheme [259] defined
over Gabor features was presented earlier by Troncoso–
Pastoriza et al. [240].

More recently, Drozdowski et al. [249] explored the use
of homomorphic encryption in biometric systems designed
for identification rather than verification as most prior work.
The presented system combines template protection with
existing homomorphic encryption schemes (Cheon-Kim-
Kim-Song – CKKS [260] and Brakerski/Fan-Vercauteren –
BFV [258]) and is demonstrated to result in comparable
identification performance to the original and quantised fea-
ture vectors. In a follow–up to this work, Kolberg et al. [250],

also investigated another homomorphic encryption scheme,
i.e., N–th degree truncated polynomial ring (NTRU) [261].
A conceptually similar study based on CKKS homomorphix
encryption was discussed by Yuan et al. in [251].

Homomorphic encryption is relevant also beyond the
field of biometrics. The reader is referred to some of the
existing surveys, e.g., [254], [262], [263] for more detailed
information on this topic.

3.2.4 Comparison of representation–level techniques
Table 6 provides a high–level comparison of different chara-
teristics of representation–level B–PETs. The characteristics
compared include i) the targeted soft–biometric attribute(s)
the techniques are trying to remove, ii) the attribute they are
trying to preserve, iii) whether supervision is used during
training (when training is needed), v) the mechanism used
for privacy enhancement, vi) the strategy used to reduce the
utility of the biometric data, vii) the target of the privacy
enhancement, and viii) the test dataset the techniques were
tested on. As can be seen, all surveyed techniques aim to
reduce the biometric utility of the facial representation and
in most cases preserve identity information. While different
mechanisms are typically used for privacy enhancement for
the transformation and elimination–based methods, these
techniques share common characteristics in that they are
computationally simple and, thus, applicable with limited
computational resources. Homomorphic encryption based
methods, on the other hand, typically do not require a
learning stage, but are computationally more intensive.
Most often these techniques are used to ensure template
comparisons for (identity) recognition purposes, though
work is out there on enabling recognition of other attributes
(e.g., facial expressions) as well.

3.3 Inference–level techniques

Inference–level privacy enhancing techniques represent the
most recent category of B–PETs. Consequently, only a few
solutions from this category can currently be found in the lit-
erature. However, given their computational simplicity, on
the one hand, and their efficiency, on the other, it is expected
that research on this type of B–PETs will intensify in the
future. Different from other categories of B–PETs, inference–
level solutions don’t alter only the biometric representation,
i.e., the templates, but also modify the inference procedure
(matching) to ensure privacy. Techniques from this group
have so far only been applied for soft–biometric privacy,
as also shown in Table 7, while approaches for removing
identity information have not yet been proposed. Existing
inference–level B–PETs are not reversible and do not come
with formal privacy guarantees.
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A notable solution from this group was presented by
Terhörst et al. in [253]. The main idea of this work is to
use the concept of negative face recognition (NFR) to ensure
privacy. Using NFR two templates are generated for a given
input face image. The first is a standard face template
generated, for example, by recent deep face recognition
models, whereas the second is a so–called negative tem-
plate, which is stored in the systems database. The negative
template is created by populating it with features that are
intentionally different (but in a valid range) from the ones
in the original (positive, standard) template. In this way, the
negative template encodes (random) attribute information
that is not present in the input image and the template itself
exhibits only small similarities with the original (positive)
template. Due to the design of the negative template, it is
hard to infer sensitive soft–biometric information from the
stored template. Identity verification, on the other hand,
is still feasible, as the similarity computed for a mated
comparison is by design smaller (on average) than the
similarity for a non-mated template comparison. Thus, a
special type of matching procedure is used that is based
on dissimilarities – hence the name negative face recognition.
The authors demonstrate the feasibility of their approach in
soft–biometric privacy experiments (with age, gender, and
ethnicity) on multiple face datasets.

Another inference–level technique was introduced re-
cently by the same authors [22]. The proposed Privacy–
Enhancing face recognition approach is based on Minimum
Information Units (PE–MIU) and is completely unsupervised.
As a consequence, PE–MIU is not limited to a predefined
set of attributes that are targeted for suppression, but en-
sures privacy for any biometric attribute beyond identity.
Similarly to the approach from [253], a special type of tem-
plate is created by first partitioning the computed (original)
template into smaller parts (called minimum information
units – MIUs), and then randomly shuffling the location
of the MUIs in the generated template. Because each tem-
plate is encoded differently (using another random shuffling
operation), a malicious user trying to infer soft–biometric
information cannot learn a classification model from the
stored templates even in the worst case white–box scenario.
The approach still allows to conduct identity verification by
designing a matching procedure that incorporates an (op-
timal) alignment step between a given “live” template and
the MIUs of the modified template stored in the biometric
system. The efficiency of the technique was presented in ex-
periments demonstrating gender and ethnicity suppression
with respect to verification performance using challenging
datasets, such as LFW, Adience, and ColorFERET.

4 EVALUATING PERFORMANCE

A key issues with biometric privacy enhancing techniques
(B–PETs) is how to quantify performance. As illustrated
by the literature survey in the previous sections, many of
the existing B–PETs rely on image processing and machine
learning techniques and do not come with formal provable
privacy guarantees. The performance of such techniques
is, therefore, usually evaluated empirically using suitable
datatsets and performance measures. Typical evaluations in
this area include experiments that test for i) the efficiency

of the privacy enhancement, ii) the biometric utility pre-
served after privacy enhancement, and iii) the robustness
to attempts to reverse the privacy enhancement. However,
we note that the evaluation methodology is not yet stan-
dardized and often varies from paper to paper. In the fol-
lowing sections, we provide an overview of the evaluation
methodologies used most frequently in the literature, we
describe existing evaluation frameworks and briefly review
the datasets utilized in the literature for evaluation of bio-
metric privacy enhancing techniques.

4.1 Evaluation methodology
4.1.1 Evaluating privacy enhancement efficiency
B–PETs use various mechanisms to remove (conceal) sen-
sitive information from biometric data (at the image, rep-
resentation, or inference levels). However, due to the char-
acteristics of biometric data, its inherent variability and the
(often) data–driven approach to privacy enhancement, this
process is never perfect. Even with elaborate B–PETs, the
possibility remains that sensitive information can (to some
extent) still be recovered from the privacy–enhanced data.

To assess the efficiency of privacy enhancement, most of
the existing work relies on automatic recognition techniques
trained for extracting various attributes, such as identity,
age, gender, ethnicity, or others, from the biometric data,
e.g., [10], [20], [22], [33], [44], [45], [46], [69], [105], [106].
Experiments are typically conducted on both, the original
and privacy enhanced data, and performance differences
between the two groups of data are reported. In verification
scenarios (with still images), for example, this involves
matching the original and privacy enhanced data against the
galleries stored in the database of a biometric system. For
soft–biometric privacy problems the evaluation comprises
recognition experiments aimed at predicting soft–biometric
attributes from the original and privacy–enhanced data,
and so on. Such an evaluation process generates two sets
of results that are then compared to assess the efficiency
of privacy enhancement. The performance assessment typ-
ically includes comparisons of performance curves, such
as receiver operating charateristics (ROC) curves for bi-
nary recognition problems (e.g., identity verification, gender
recognition) and cumulative match score curves (CMCs) for
multi–class problems (e.g., identification, ethnicity recogni-
tion), or scalar accuracy measures, such as equal error or
rank–1 recognition rates.

While the evaluation methodology described above is
most widely used in the literature, attempts have also been
made to combine results generated on the original and
privacy–enhanced data into scalar measures that quantify
privacy enhancement in the form of a single number. Kor-
shunov et al. [105], for example, proposed to measure the
privacy gain (PG) produced by B–PETs (aiming at identity
suppression) as:

PG = (1−Rp)− (1−Ro), (1)

where, R denotes the recognition performance, o stands
for the results on the original data, and p for the results
obtained on the privacy enhanced data. PG is positive if the
privacy enhancement degrades the recognition performance
compared to the original data and equals 1 in the ideal case
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when the performance drops from Ro = 1 to Rp = 0 due to
application of the evaluated B–PET.

A similar performance measure was also proposed by
Terhörst et al. [253] in the context of soft–biometric privacy.
Here, the authors defined an attribute suppression rate (SR)
that measures the difference in attribute–prediction accu-
racy with and without privacy enhancement, i.e., Ap and
Ao, respectively:

SR =
Ao −Ap

Ao
. (2)

The presented evaluation methodology and performance
scores are used predominantly with automatic recognition
techniques. However, several studies also employ human–
centered experiments to compute performance metrics and
evaluate how the privacy enhancement impacts human per-
ception of sensitive information in biometric data – see [264]
for a notable example for video data. An aspect that is also
often of interest is the computational complexity and processing
speed, which are frequently assessed when evaluating B–PET
efficiency, see [100] for an example.

4.1.2 Evaluating biometric utility
B–PETs are designed to provide a trade–off between pri-
vacy protection and biometric data utility. When evaluating
performance, it is, therefore, paramount to consider the effi-
ciency of privacy enhancement with respect to the preserved
utility of the biometric data.

Because the meaning of the term biometric utility is very
much application dependent, standard evaluation strategies
typically define a secondary task that needs to be evaluated
after privacy enhancement. With video surveillance sys-
tems, for example, utility is often linked to the ability to
extract behavioural information [120], with deidentification
techniques, utility is frequently measured with the ability to
infer facial expressions after deidentification [9], [10], while
for soft–biometric privacy problems, utility is routinely de-
fined with the recognition performance after the removal
of selected soft–biometric attributes [20], [66]. To quantify
the amount of preserved utility, existing work is commonly
looking at the performance differences achieved with auto-
matic recognition techniques on the selected secondary task
with the original and privacy–enhanced data. The smaller
this difference, the higher the level of utility preservation.

While separate experiments are usually conducted to
assess the efficiency of privacy enhancement and utility
preservation aspects of B–PETs, it is crucial that the re-
sults are interpreted jointly. To facilitate such comparisons,
the so–called privacy–gain identity–loss coefficient (PIC) was
recently introduced for measuring soft–biometric privacy
performance [70]:

PIC =
AEp −AEo

AEo
− REp −REo

REo
. (3)

The privacy–utility trade–off measured by PIC pins at-
tribute prediction errors AE against verification (or recog-
nition) errors RE on both, the original (o) and privacy en-
hanced (p) data. Positive PIC values suggest that the privacy
gain is higher than the loss in recognition performance, with
higher values indicating better privacy enhancement. While
originally proposed for evaluating soft–biometric privacy

techniques, the idea behind the coefficient is in general
applicable to other privacy enhancing problems as well.

Alternative strategies to quantifying utility preservation
also rely on measuring the structural similarity (SSIM) or
peak–signal–to–noise ratio (PSNR) between the original in
privacy enhanced data. Here, the similarity with the original
data is used as a proxy for biometric utility. This strategy is
most often seen with image–level privacy enhancing tech-
niques applied to surveillance footage, where computation-
ally simple techniques, such as filtering, are used for privacy
enhancement [106]. It is less suitable for more complex
techniques that rely, for example, on image synthesis or
other generative approaches.

4.1.3 Evaluating robustness
Another important aspect of B–PETs is their robustness to
attempts at reconstructing (or recovering) the concealed
information. The evaluation methodologies described in
the previous two sections often assume a “vanilla” sce-
nario, where recognition experiments are conducted on
the privacy–enhanced data with machine learning models
trained on the original data. In deidentification settings, for
example, a pretrained recognition model is typically applied
on deidentified images to assess the efficiency of privacy en-
hancement. While such an approach is reasonable for appli-
cation domains, where it can be assumed that biometric data
will only be processed by automatic recognition techniques,
(e.g., for profiling and tagging in social media, for targeted
advertising, etc.), it is critical that the robustness of privacy
enhancing techniques is evaluated in more comprehensive
attack scenarios as well.

Several such attack scenarios are considered in the lit-
erature in addition to the vanilla scenario discussed above,
including [23], [120]:

• Parrot or imitation attacks: This scenario assumes a
white box attack, where an adversary trying to re-
cover sensitive information has access to the pri-
vacy enhancement mechanism. To extract informa-
tion about biometric attributes, the adversary applies
the privacy mechanism on some training data and
learns a classifier in the privacy enhanced domain.
In recognition settings, the adversary applies the
privacy enhancement on the gallery images and then
simply matches data in the privacy enhanced do-
main [9], [33], [120].

• Reconstruction attacks: This scenario again assumes
a white box attack where the adversary has access
to the privacy enhancement procedure. However,
instead of matching the privacy enhancement on
the reference data, the adversary now tries to in-
vert it. Evaluating robustness to reconstruction at-
tacks, hence, involves solving an inverse (privacy
enhancement) problem and evaluating the amount
of sensitive information contained in the recovered
data [120]. Alternatively, a reconstruction attack may
be implemented within a grey or black box attack
scenario, where the reconstruction attempt is made
based on limited or no knowledge of the mechanism
used for privacy enhancement, see, e.g., [43].

• Linkage attacks: The last scenario assumes an attacker
is able to link the privacy enhanced data with other
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sources of information that, in combination, reveal
sensitive details bout the original data. These sources
of information can represent parts of the biometric
data not considered critical from a privacy perspec-
tive, prior knowledge, multiple instances of the same
privacy–enhanced data, or external sources of infor-
mation, for which a link with the privacy–enhanced
data can be established [23], [74], [265], [266].

The first two types of attacks are relatively straight
forward to implement and are used regularly to evaluate the
robustness of privacy enhancing techniques, e.g., [9], [43].
The robustness to linkage attacks, on the other hand, is more
difficult to evaluate and may require assessment of data
not subject to privacy enhancement. For example, clothing,
background, body parts, or hairstyle in facial images are
often excluded from privacy enhancement, but may reveal
sensitive information, as shown in [265], [267].

We note that both, the vanilla–type evaluations as well as
the attack experiments discussed above, aim at estimating
the risk associated with recovering suppressed biometric
attributes. This is risk of often referred to as re–identification
risk in the deidentification literature, but we use the term
attribute recovery risk in this work to also account for at-
tributes other than identity when discussing performance
evaluations.

4.2 Evaluation frameworks and performance studies
Several evaluation frameworks have been presented over
the years with the goal of providing standardized experi-
mental methodologies for the assessment of B–PETs. Below,
we provide a short summary of the most relevant ones.

Dufaux and Ebrahimi [268] were among the first to pro-
pose using a standardized face recognition framework to as-
sess the efficiency of different privacy enhancing techniques.
In their study, the authors utilized the CSU Face Identi-
fication Evaluation System (FIES) and the FERET dataset
to evaluate the efficiency of five different deidentification
methods (pixelization, Gaussian blurring, scrambling by
random sign inversion, and scrambling by random per-
mutation) and found that simple blurring and pixelation
offers only limited privacy protection, while scrambling
techniques were deemed most efficient. The value of this
work is in the attempt to quantify privacy protection using
automated face matchers.

Korshunov et al. [105] extended the evaluation frame-
work of Dufaux and Ebrahimi [268] and capitalized on the
need to evaluate B–PETs both from a privacy protection
as well as from an utility preservation perspective. Face
detection performance was used as a metric for data utility
(or intelligibility) and (the inverse of) face recognition per-
formance as a metric for privacy protection. Three privacy
enhancing techniques were considered, i.e., blurring, pixe-
lation, and masking, and evaluated on three face datasets,
i.e., FERET, SCFace, and ChokePoint.

Badii et al. [104], [269] presented a holistic privacy im-
pact assessment framework for B–PETs applied to video
surveillance data. The authors proposed an evaluation
framework based on five different criteria, i.e., efficacy,
consistency, disambiguity, intelligibility, and aesthetics, that
measured different aspects of the privacy enhancement with

specifics of surveillance technology in mind. To demonstrate
the feasibility of their framework, the authors evaluated sev-
eral simple privacy enhancement methods (masking, blur-
ring, pixelation, resampling, and scrambling), and found
scrambling to be the most efficient.

Erdélyi et al. [106] described an objective evaluation
framework for assessing visual privacy enhancing methods
with video surveillance data. The framework defined per-
formance scores and evaluation protocols that measure the
privacy protection achieved as well as the preserved levels
of data utility. In addition to the traditional frame–by–frame
evaluation approach used regularly in the literature with
video data, the framework also introduced two new evalua-
tion approaches based on aggregated and fused frames. The
application of the framework was demonstrated with eight
selected privacy enhancing techniques.

More recently, Terhörst et al. [21] introduced a compre-
hensive framework for the evaluation of soft–biometric pri-
vacy enhancing techniques. Here, the authors defined sep-
arate evaluation protocols for training–free and learning–
based techniques based on Kerckhoffs‘s principle of cryp-
tography. They also proposed performance measures to
quantify performance as well as recognition–attribute plots
to visualize results in a comprehensive manner.

4.3 Datasets

Despite the considerable research effort directed toward B–
PETs, there are currently only few datasets available that are
dedicated specifically to the problem of (visual) privacy in
face biometrics. An overwhelming majority of the research
on B–PETs for face biometrics is, therefore, conducted on
standard face datasets typically used for face recognition,
face analysis, and related tasks. In this section we present
an overview of the datasets most frequently utilized in
experiments with B–PETs from the literature. The reader is
referred to the summary tables in Section 3 for information
on the datasets used in specific works.

4.3.1 Standard datasets
Research on image–level B–PETs applied to video footage
is often concerned with privacy in surveillance scenarios
and, therefore, uses standard video surveillance datasets,
such as ChokePoint [208] and VTM [137] for performance
evaluations. In house datasets that are not publicly available
are also utilized frequently [54], [63], [98], [110], [134], [270].

For B–PETs (image–, representation–, and inference–
level) operating on still images evaluations are routinely
done on standard face datasets. This includes both ear-
lier datasets, captured in controlled, laboratory–like con-
ditions with well illuminated faces captured mostly in
frontal pose, without varying facial expressions and with-
out occlusions, as well as more recent datasets, typi-
cally collected from the web (a.k.a., in the wild), which
exhibit a significantly higher degree of variability. Ex-
amples from the first group of controlled datasets in-
clude AT&T (ORL) [149], Yale Faces [143], AR–face [174],
JAFFE [198], KDEF [224], Caltech Faces [196], FERET
and ColorFERET [144], CMU PIE [154], XM2VTS [157],
IMM [199], MMI [197], BU–3DFE [202], MORPH [175],
CK+ [204], FEI [195], RaFD [176], MUCT [165], MUG [214],
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MultiPIE [194], UNBC–McMaster [203] and FERG [213].
Representative examples from the second group of uncon-
strained dataset are LFW [126], PUBFIG [155], LFPW [200],
Adience [131], FaceScrub [222], CelebA [173], PIPA [125],
WIDER Face [223] and UTKFace [177].

4.3.2 Dedicated datasets
Existing datasets collected for studying problems in the area
of visual privacy, such as PicAlert [271], YourAlert [272],
Campus Face Set [273] VISPR [169], Visual Redactions [35],
or VizWiz–Priv [274], (in a significant part) also include
facial images, but typically aim to address privacy concerns
associated with visual data that go beyond biometric pri-
vacy enhancement. As a result, only limited work related to
B–PETs has been done with these datasets so far.

A notable dataset dedicated to research on B–PETs is
the Privacy Evaluation Video Dataset (PEViD) from [129].
The dataset is commonly used with research on B–PETs for
video surveillance applications. PEViD ships with XML–
based annotations of various privacy regions, including
faces, accessories, skin regions, hair, body silhouettes, and
other personal information, including their descriptions.
The dataset consists of 65 video sequences (16 seconds each)
of full HD resolution covering different video surveillance
scenarios: walking, fighting, stealing, and dropping bag,
in outdoor and indoor environments, as well as during
day and night conditions. A subset containing 20 video
sequences of the dataset was annotated using the ViPER–
GT annotation tool. An extension of the dataset with ultra
high definition (UHD) video was presented in [275].

In [46], Morales et al. presented another dataset for B–
PET evaluton, called DiveFace. The dataset is designed for
studying soft–biometric privacy problems and contains still
image data on 24,000 identities. DiveFace was created from
the publicly available MegaFace dataset MF2 [276]. The data
is grouped and balanced according to gender (male, female)
and ethnicity (three groups) labels and is, therefore, well
suited for research on soft–biometric privacy.

Another relevant dataset, called PA–HMDB51, was re-
cently introduced in [277]. The dataset is designed for devel-
opment of biometric privacy enhancing techniques aimed
at privacy protection (in videos) across five labeled privacy
attributes (i.e., skin color, gender, faces, nudity, and personal
relationship). The utility preservation aspect is covered by
the ability to conduct action recognition. Thus, videos with
various actions are included in the dataset. The entire
dataset contains 580 videos with frame–level annotations.

5 RELEVANT STANDARDS AND REGULATIONS

As privacy is often considered as a fundamental human
right [278], [279], [280], several regulations have been
adapted to ensure privacy in different applications. More-
over, to motivate consistent understanding of privacy-
related concepts and technologies, a number of standards
have been developed, or are currently under development.
In the following, Section 5.1 describes privacy regulations
and standards that are explicitly designed for biometric
data. Section 5.2 elaborates on regulations and standards
related to privacy in biometrics but are not explicitly de-
signed for biometric data. Table 8 provides a summary of
the documents we base our discussion upon.

5.1 Privacy in Biometrics

In 2019, the Biometric Institute, which include a number of
biometric end-users and vendors, proposed a comprehen-
sive privacy guideline for biometrics [281] taking into ac-
count the new General Data Protection Regulation (GDPR)
[284]. The guideline addresses complaints of users who
suffered discrimination or damage as a result of biometric
systems. It demands stronger privacy protections for auto-
mated data collection and defines the role of audits and
privacy impact assessments. Moreover, it provides advice
on the management of data breaches and capitalizes on
the users right to delete their biometric records. In total,
16 principles are described in the guideline to maintain a
strong privacy environment.

Several ISO standards have been proposed to ensure
the privacy in the context of biometric systems, such as
ISO/IEC 30137-1:2019 [282], ISO/IEC TR 24741:2018 [283],
and ISO/IEC 24745:2011 [287]. In ISO/IEC 30137-1:2019
[282], the use of biometrics in video surveillance systems
is described. It focuses on the design and specifications for
these systems, among others, to ensure privacy. ISO/IEC
TR 24741:2018 [283] focuses on the application aspects of
biometrics. In terms of privacy, it contains a set of principles
including that individuals be informed about the purpose
of the collected data, who is requesting it, how their data
is protected from unauthorized access and modification,
and how long the data will be stored. Concerning privacy–
enhancing mechanisms, it mainly focuses on template
protection properties, such as irreversibility, unlinkability,
and renewability. Similarly, ISO/IEC 24745:2011 [287] pro-
vides requirements and guidelines for secure and privacy-
compliant management and processing of biometric data.

In 2013, the Organisation for Economic Cooperation and
Development (OECD) renewed their 30-year-old privacy
recommendations in a new privacy framework [286]. This
took place due to significant changes in the volume of
personal data used, the range of analytics involving this
data, their social and economic value, the extended threats
to privacy, the global availability of personal data, and the
number of actors capable of putting privacy at risk. Two
themes can be found in the updated Guidelines. The first is
the focus on practical implementations of privacy protection
and the second is the need for greater efforts to address the
global dimension of privacy through enhanced interoper-
ability. Consequently, many new concepts were introduced
such as national privacy strategies, privacy management
programs, and security breach notifications. The guidelines
especially focus "on the human body as information" in the
context of identity and biometrics, including face biometrics.

In 2017, the Japanese Act on the Protection of Personal
Information was enforced [285]. The act states that indi-
vidual identification codes, such as facial features, have to
be treated carefully. The capture of such data requires a
public announcement of the purpose or to notify the subject
directly. Additionally, in case of data breaches involving
privacy-sensitive data, relevant authorities as well as the
Personal Information Protection Commission have to be
provided with details of the breach.

In the United States, Illinois was one of the first states
that regulates the collection of biometric information. In
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TABLE 8: An overview of regulations and standards related to privacy in biometric systems. The top rows refer specifically
to biometrics. The bottom rows refer to general privacy-protection regulations and standards that effects biometric systems
processes.

Year Name Type
2019 Privacy Guidelines of the Biometric Institute [281] Guideline
2019 ISO/IEC 30137-1:2019 Information technology — Use of biometrics in video surveillance systems [282] ISO document
2018 ISO/IEC TR 24741:2018 Information technology — Biometrics — Overview and application [283] ISO document
2018 General Data Protection Regulation (GDPR) of the European Union [284] Regulation
2017 Japanese Act on the Protection of Personal Information [285] Regulation
2013 Organisation for Economic Cooperation and Development (OECD) Privacy Framework [286] Regulation
2011 ISO/IEC 24745:2011 Information technology — Security techniques — Biometric information protection [287] ISO document
2008 Biometric Information Privacy Act (BIPA) [288] Regulation
2019 ISO/IEC 27701:2019 Security techniques — Privacy information management — Requirements and guidelines [289] ISO document
2018 ISO/IEC 20889:2018 Privacy enhancing data de-identification terminology and classification of techniques [290] ISO document
2018 California Consumer Privacy Act (CCPA) [291] Regulation
2017 ISO/IEC 29134:2017 Information technology — Security techniques — Guidelines for privacy impact assessment [292] ISO document
2015 ISO/IEC 29190:2015 Information technology — Security techniques — Privacy capability assessment model [293] ISO document
2011 ISO/IEC 29100:2011 Information technology — Security techniques — Privacy framework [294] ISO document
1950 Article 8 of the European Convention of Human Rights [295] Regulation
1948 Article 7 of the United Nations Universal Declaration of Human Rights [280] Regulation

2008, the Biometric Information Privacy Act (BIPA) [288]
was passed by the Illinois General Assembly. This act re-
quires companies doing business in Illinois to obtain consent
from individuals before the collection of their biometric
data.

One of the most important regulations to ensure indi-
vidual’s privacy is the General Data Protection Regulation
(GDPR) of the European Union (EU) [284]. EU’s GDPR
establishes a harmonized framework within the EU, includ-
ing the right to be forgotten, unambiguous, and affirmative
consent. Moreover, it imposes penalties for non-compliance
with these rules. This applies for "GDPR special category
data" including biometric data used to identify individuals.
GDPR protects EU citizens, as well as long-term residents,
from the distribution of their information without their con-
sent [296]. Because of its sensitiveness, the collection, stor-
age, transmission, and processing of biometric data needs a
legitimate and lawful reason [297]. However, the regulation
contains specific exceptions, e.g. if the consent has been
explicitly given or if it is critical for legal claims, public
health, or social security. GDPR aims to give back control
over personal data to European citizens, while simplifying
the regulatory framework for companies [296]. It explicitly
states that consent must be given before the collection of
personal data and individuals can withdraw their consent
at any time. If commercial entities do not make significant
efforts to secure the “GDPR special category data”, they can
be hit with massive penalties. It is important to note that
the GDPR applies to Non-EU organizations if they process
personal data of EU subjects. This gives the GDPR a global
reach.

5.2 General privacy standards and regulations

There are many regulations and standards that addresses
privacy without explicitly discussing biometric systems. In
ISO/IEC 27701:2019 [289], requirements and guidelines for
information management of privacy-sensitive information is
specified for establishing, implementing, maintaining, and
continually improving a privacy-specific information secu-

rity management system. ISO/IEC 20889:2018 [290], defines
the terminology of de-identification methodologies and clas-
sifies these techniques according to their characteristics and
applicability for reducing the risk of re-identification. In
ISO/IEC 29134:2017 [292], guidelines for privacy impact
assessments (PIA) in the context of security applications
are given as well as the structure and contents of a PIA
report. ISO/IEC 29190:2015 [293] provides organizations
with guidance on how to assess their capability to manage
privacy-related processes with a privacy capability assess-
ment model.

While in the United States, no general and compre-
hensive federal law regulates the handling of all privacy-
sensitive information, such as biometric data, some states
have introduced their own laws. Representative for these,
we emphasize the California Consumer Privacy Act (CCPA).
The CCPA enhances privacy rights and consumer protection
for residents of California. Since California is the fifth-largest
economy in the world and home of several large technol-
ogy firms, it is considered as a trend-setting state for data
protection and privacy in the US [296]. The CCPA provides
residents of California with several rights, such as the right
of disclosure or access, or the right to be forgotten. In
March 2020, a New York State law Stop Hacks and Improve
Electronic Data Security (SHIELD) became effective. The
SHIELD act requires the implementation of a cyber-security
programs and protective measures for residents of the New
York state [298].

The European Convention of Human Rights guarantees
the "right to respect for private and family life" [278]. As-
pects of the right to private life include the physical and
psychological integrity of a person, personal data, repu-
tation, names, and face images [279]. Also in the United
Nations Universal Declaration of Human Rights [280] pri-
vacy is defined as a fundamental right for humans. More
precisely, it states that “no one shall be subjected to arbitrary
interference with his privacy, family, home or correspon-
dence" [299]. This demonstrates that privacy is an inherently
important property that should be especially be included in
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security and biometrics, and thus face recognition systems.

6 OPEN ISSUES AND FUTURE CHALLENGES

While the interest in privacy enhancing solutions for bio-
metric systems is growing and significant progress has been
made in this field over recent years, there are still several
open issues that need to be addressed as part of future
research activities. In this section, we provide a summary
of the main challenges currently associated with biometric
privacy enhancing techniques in our view.

6.1 Quantifiable and provable privacy
The ability to objectively quantify performance of privacy
enhancing techniques is of paramount importance for a
number of reasons: i) it allows to assess the quality of the
privacy enhancement in its suitability for deployment in
biometric systems, ii) it enables comparisons between com-
peting solutions, and iii) it facilitates technological advances
by providing clear efficiency and success criteria. Currently,
different strategies and evaluation methodologies are used
in the literature to quantify the performance of biometric
privacy enhancing techniques, which makes it difficult to
objectively compare results and identify prospective future
research directions. While a cross–section of the (currently)
most frequently used evaluation strategies in this field was
presented in Section 4, we note that there is still not gen-
erally accepted consensus on how to quantify performance.
Research into evaluation methodologies and performance
measures is, therefore, needed to move the field forward
and provide common performance criteria that apply to B–
PETs at the image, representation, and inference levels and
a wide range of biometric attributes. Standardization efforts
aimed the performance quantization may also be needed.

Another important aspect of B–PETs related to perfor-
mance is privacy guarantees. Existing provable privacy
models, such as k–anonymity, are based on strong as-
sumptions that make it difficult to apply them to real–
world problems. It is therefore not clear how to extend
such models: i) beyond closed–sets of still images, e.g., to
video data or open–set problems, ii) to attributes other than
identity, or iii) to B–PETs operating at the representation
or inference levels. Novel ideas are needed to provide pri-
vacy guarantees while ensuring biometric utility for more
realistic deployment scenarios. Privacy enhancing models
built around ϵ–differential privacy [82] may be able to relax
some of the assumption associated with k–anonymity, but
the research in this direction is so far still limited [73], [74].

6.2 Generalization and robustness
Contemporary B–PETs are often built (or learned) in a
supervised, data–driven manner. As such, they suffer from
similar shortcomings as related machine learning models
in that they i) need to generalize to different classification
models (e.g., used in an attack scenario to recover sensitive
information), ii) be applicable to input data of different
characteristics, and iii) provide a consistent trade–off be-
tween privacy and biometric utility across a wide variety of
conditions. Devising privacy–enhancement techniques that
generalize well across all outlined settings is a challenging

tasks that is not solved yet to a satisfactory extent. Tech-
niques built in an unsupervised manner e.g., [22], [253] or
ensemble solutions, e.g., [12], may offer ideas that can help
with the generalization ability of future B–PETs.

The robustness of B–PETs is another challenge that will
have to be addressed in the future. Some of the existing
work in this area considers privacy attacks when evalu-
ating the performance of B–PETs. However, the majority
of evaluation in the literature assumes vanilla or zero–effort
experimental scenarios, where it is assumed that no attempt
is made to recover the concealed biometric attributes. With
experimental evaluations focusing more on the attack sce-
narios, discussed in Section 4.1.3, we expect the robustness
of B–PETs to become a central research topic going forward.

6.3 Controllable privacy

Existing B–PETs are usually designed to either remove spe-
cific attributes from the data (for utility reduction strategies)
or alternatively, to retain specific attribute and remove all
others (for utility retention strategies). Thus, a decision
about which attributes to keep and which to remove is
typically made up front. While such privacy enhancing
mechanisms are most common in the literature, they assume
that the attributes most critical from a privacy perspective:
i) are known in advance, ii) do not change over time, and iii)
are equally important to all individuals and application sce-
narios. B–PETs, built around the recently introduced concept
of controllable privacy, e.g., [47], relax these assumptions and
incorporate mechanism that allow individuals to explicitly
specify which attributes of their data to conceal and which
to preserve. Such an approach ensures a higher level of
flexibility and is, for example, relevant in the context of
social media, where different people may have different
preferences about which information to make publicly avail-
able in which not when sharing images online. While B–
PETs in line with this concept may come at the expense of
more complex privacy enhancing mechanism, we expect to
see increased interest in this direction from the biometric
community in the future.

6.4 Public benchmarks

To date, most of the research on B–PETs is conducted on
datasets collected originally for either face recognition or
video surveillance. Only a limited number of dedicated pub-
lic datasets exists that aim at evaluating B–PETs, and even
those don’t necessarily come with predefined experimental
protocols and performance measures. To move the field
forward, large, representative public datasets with a well de-
fined experimental methodology are needed. Such dataset
allow to compare different privacy–enhancing techniques
under a common framework and in consistent settings.
Moreover, to the best of knowledge, there are currently
no datasets available that would aim at the evaluation
of privacy–enhancing techniques at the representation or
inference–level. We note again that performance evaluation
protocols have been proposed for soft–biometric privacy
techniques recently [21], but these are not tied to any public
dataset yet.
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6.5 Multi–level privacy enhancement
Research on B–PETs is usually limited to a single applica-
tion level within biometric systems. Thus, techniques have
been proposed in the literature that operate at either the
image, representation, or inference level. However, it may
be beneficial to apply privacy enhancement across multiple
levels. For example, representation level techniques may be
applied jointly with inference level approaches, resulting
in solutions with better characteristics. Such multi–level
techniques may also help to address challenges related to
generalization and robustness.

6.6 Fairness and bias
The issue of fairness in data-driven computer vision systems
has gained prominence, especially due to the presence of
potential biases in the training data [300]. Since biometric
systems rely heavily on training data, it is imperative that
evaluation methodologies explicitly address the issue of
fairness and bias [301], [302], [303], [304].

The erosion of user privacy isn’t the only critique be-
ing leveled against face recognition at the present time.
Researchers have shown that some of the datasets used for
face recognition algorithm development have a bias towards
lighter skinned faces, causing face recognition algorithms to
exhibit significant differences in matching accuracy between
darker and lighter skin colors [305]. Other work in this vein
has gone on to demonstrate this specific problem in Ama-
zon’s Rekognition face analysis platform [306]. Thus, this is
not merely a hypothetical problem — real face recognition
applications have been demonstrated to exihibit biases in
their performance. It is expected that this problem will
also manifest itself in B-PETs, but as of this writing, that
particular aspect has not been studied to any great extent
in B-PETs technology. Work must be done to avoid bias and
promote fairness in B-PETs before they are deployed in real-
world applications.

6.7 Visual privacy beyond faces
The interest in privacy–enhancing mechanisms is not lim-
ited only to facial images. With the development of auto-
matic recognition techniques and improvements in their ca-
pabilities, it is today possible to extract potentially sensitive
information from a wide variety of biometric modalities,
e.g., [307], [308], [309], [310]. B–PETs are, therefore, be-
coming increasingly relevant across the board and research
efforts, focusing on privacy protection with modalities other
than faces are expected to intensify in the future. While
work on this topic is already underway, e.g., [32], [86], [89],
[92], [93], [95], we anticipate to see synergies between these
research activities and exchange of ideas among solutions
targeting specific modalities going forward.

Furthermore, while research on B–PETs has traditionally
focused on a single modality at the time, multiple
modalities will have to be considered jointly during privacy
enhancement, as multi–modal biometric system become
more prevalent. Future research is, therefore, expected to
focus increasingly on multi–modal B–PETs and consider
correlations and interdependencies between the information
contained in different biometric traits.

7 CONCLUSION

With further improvements in biometric recognition tech-
nology and its deployment in an ever increasing number
of applications domains, privacy concerns associated with
biometrics are only expected to increase in the years to
come [311]. A considerable amount of research has already
been done to address such concerns and make the benefits of
automated recognition techniques available to individuals,
while also taking measures to minimize the impact of the
technology on individuals’ privacy. As discussed in this
survey paper, a significant portion of this research is focused
on biometric privacy enhancing techniques (B–PETs) that
aim to remove sensitive information from biometric data,
while preserving only essential information, needed for a
specific purpose. Such techniques try to strike a balance
between the utility of the biometric data and the level of
privacy protection for individuals.

This survey aimed at presenting a comprehensive in-
troduction into privacy–related research in biometrics and
reviewing existing work on B–PETs for face biometrics.
As seen from the literature review, techniques have been
proposed over the years that operate at different levels of
a typical biometric processing pipeline and exploit a wide
range of ideas and approaches to privacy enhancement.
While some of these techniques target raw biometric data,
i.e., facial images, others aim at modifying derived represen-
tations, i.e., templates, or even components of the biometric
system, i.e., the matching and/or classification stages. These
techniques typically target different application scenarios,
but share a common characteristic in that they strive to mit-
igate privacy concern originating from the use of biometric
systems.

To place the ongoing research on B–PETs in a broader
context, the survey also discussed existing regulations and
standards related to privacy and biometrics. These include
recent privacy laws and regulations that have a direct im-
pact on future requirements of biometric systems, but also
standards (both for biometric as well as more general infor-
mation technology) that impact privacy enhancing solutions
and their deployment. These initiatives demonstrate the
interest of legislative and standardization bodies to provide
(legal and technological) frameworks for the development
future privacy–sensitive biometric solutions, but also point
to the importance of the topic of privacy in modern society.

The progress in B-PETs has been evident over the last
few years, but there are still multiple key issues that have
to be addressed in the future to make them applicable
widely in real–life (deployed) biometric systems. As dis-
cussed above, a critical component that can drive the field
forward is a well defined evaluation methodology with clear
goals and performance criteria as well (challenging) large–
scale benchmarks publicly available to the research com-
munity. Current research often relies on different evaluation
strategies and non–standard datasets that make it difficult
to compare results across publications and identify prospec-
tive research directions. B–PETs that offer a high degree of
flexibility, generalize well over classification models and are
robust with respect to a wide variety of characteristics of
the input data are also needed. These and related challenges
will undoubtedly represent research priorities related to
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biometric privacy enhancement in the years to come.
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