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Abstract
Recently, deepfakes or manipulated face images, where
a donor’s face is swapped with the face of a target per-
son, have gained enormous popularity among the gen-
eral public. With recent advancements in artificial intel-
ligence and generative modeling such images can nowa-
days be easily generated and used to spread misinforma-
tion and harm individuals, businesses or society. As the
tools for generating deepfakes are rapidly improving, it is
critical for deepfake detection models to be able to rec-
ognize advanced, sophisticated data manipulations, in-
cluding those that have not been seen during training.
In this paper, we explore the use of one–class learning
models as an alternative to discriminative methods for
the detection of deepfakes. We conduct a comparative
study with three popular deepfake datasets and investi-
gate the performance of selected (discriminative and one-
class) detection models in matched- and cross-dataset ex-
periments. Our results show that disciminative models
significantly outperform one-class models when training
and testing data come from the same dataset, but degrade
considerably when the characteristics of the testing data
deviate from the training setting. In such cases, one-class
models tend to generalize much better.

1 Introduction
Detecting artificially synthesized data is a longstanding
problem in the artificial intelligence field with wide rang-
ing implications considering the potential of such data for
malicious applications. With the recent wide adoption
of generative neural networks, the emergence of deep-
fakes has drawn even greater attention to this problem.
Deepfakes are a special type of AI–generated visual data,
where the face of a source individual is seamlessly re-
placed by the face of a target individual, while retaining
the initial facial expressions and head poses. Such ma-
nipulated data can then be used to harm the reputation of
the target individual or to spread misinformation.

With the advancements made in artificial intelligence
and image generation, deepfakes are becoming even more
convincing and thus difficult to recognize by an average,
untrained human. Nevertheless, the generation of ma-
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nipulated face images usually leaves visual inconsisten-
cies, which adequate machine learning technique should
be able to detect. Some studies on this topic, for example,
propose explicit modelling of the expected modification
traces/artifacts [6, 7, 8] to detect face manipulations. Oth-
ers rely on data–driven models, that learn to discriminate
between normal and synthesized faces without any a pri-
ori knowledge [9, 10, 13]. Either way, the detection task
is typically formulated as a binary classification problem,
which requires a large, diverse and well balanced training
set. The collection of such a set is not only challenging,
but also represents a never-ending task, as new deepfake
generation methods emerge on regularly in the literature.

Motivated by these limitations, we investigate in this
paper the ability of existing one–class learning models to
detect deepfakes, by learning only from real face images.
Additionally, we analyze the advantages and disadvan-
tages of such one-class learning techniques in compari-
son to the more commonly used discriminative models.

2 Related work
Since the first appearance of deepfakes, the research com-
munity has shown great interest in preventing the abuse
of this technology. As a countermeasure, numerous de-
tection models have been proposed in the literature [5].
Many of these models have been trained to identify spe-
cific traces of visual data manipulations. Although such
modifications are often subtle for humans, they can be
successfully detected by analyzing different spatial and
temporal artifacts that are created during the manipula-
tion process. Agarwal et al. [6], for example, exploit
the idiosyncratic behavioral patterns of synthesized faces,
Yang et al. [7] expose deepfakes as face videos with inco-
herent head poses, while Li et al. [8] observe that unlike
real videos, deepfakes lack reasonable eye blinking.

Recently, various detection models have been pro-
posed that do not rely on any specific temporal or spatial
artifacts, but are instead given examples of real and fake
faces to autonomously learn distinguishing data charac-
teristics. Afchar et al. [9], for example, use a two–stage
convolutional neural network for the detection of both,
swapped faces and face reenactment, while Guera et al.
[10] develop a temporal model based on recurrent neural
networks (RNN). Classification networks such as Xcep-
tion–Net and VGG16 have also achieved high detection



accuracy in a study carried out by Dang et al. in [13].
Although discriminative methods show impressive re-

sults on benchmark datasets, in practice they often suffer
from robustness and generalization issues and perform
poorly, when employed in real–world scenarios. Next to
being affected by domain shifts, such methods are also
less likely to discover fake images containing unseen in-
consistencies. To avoid fine–tuning of existing models
to (previously) unseen deepfakes, Khalid et al. [11] pro-
posed a reformulation of the deepfake detection task into
a one–class anomaly detection problem. Using real face
images only, the authors trained a one–class Variational
Autoencoder (VAE) that successfully detected deepfakes
as deviations from real data. Ortiz et al. [12] also fol-
lowed this one–class learning paradigm and trained VG-
GFace2 and ResNet50 models that were then used to-
gether with an attribution based confidence (ABC) met-
ric to segregate deepfakes from real faces. Despite the
promising results of such one–class learning approaches,
their potential is not yet explored to a full extent.

3 Datasets
We use three popular benchmarks for our investigations,
i.e.: UADFV [2], FaceForensics++ [4] and Celeb-DF [1].
Example images from the datasets are shown in Figure 1.

UADFV is a recent deepfake dataset and contains 49
real YouTube videos of public figures and 49 deepfake
videos [2]. Deepfakes were generated with the FakeAPP
approach, by swapping the original faces with the face of
Nicolas Cage. The length of the videos ranges between 3
and 15 seconds. All videos have a frame rate of 30 fps.

FaceForensics++ (FF) is a dataset consisting of 1004
YouTube videos with over 1.8 milion frames containing
face images of random people [4]. Each video sequence
represents a unique identity. Up to this date, 5 differ-
ent methods have been used for the generation of the
fake videos: deepfakes, Face2Face, FaceSwap, Neural-
Textures and FaceShifter with FaceShifter [3] being the
latest state–of–the–art method also known by its ability
to successfully handle both, non-occluded as well as oc-
cluded face images. In this work we only use the 1004
fake images generated by FaceShifter (denoted FF–FS).

Celeb–DF is a recent dataset, whose real videos are
collected exclusively from YouTube and feature 59 celebri-
ties of diverse genders, ages, and ethic groups [1]. The
dataset has 890 real videos, each around 13 seconds long,
with a frame rate of 30 fps. This real data has been used
as a source for generation of 5639 high-quality deepfake
videos. Fake videos have been synthesized using state-of-
the-art synthesis algorithms. The amount of notable vi-
sual artifacts has been further minimized by various post-
processing methods, making Celeb-DF one of the most
challenging benchmarks to date.

4 Experiments
4.1 Methods
In our comparative study we train and evaluate two dis-
tinct models: (i) ResNet50 [14], a commonly used dis-
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Figure 1: Examples of deepfakes from the three datasets used in
this paper: UADFV [2] (top row), FF–FS [4] (middle row) and
Celeb–DF [1] (bottom row). Deepfakes have been generated by
swapping a source face (left most column) with the face of a
chosen target person (middle column).

criminative network with residual blocks, and (ii) GAN-
omaly [15], a recent state–of–the–art representative of the
one–class learning methods.

ResNet50. Residual networks or ResNets were intro-
duced in an attempt to further improve the performance of
existing convolutional neural networks (CNNs) and mit-
igate the vanishing gradient problem [14] and represent
state-of-the-art CNN models typically used for various
recognition tasks. In this study, we use ResNet50 - a
ResNet variant with 48 convolutional layers and an out-
put layer with a sigmoid activation function at the top,
for classification of input samples into fake or real. The
model is trained with a binary cross–entropy loss.

GANomaly [15] is a recent state-of–the–art model
for detection of anomalies in a one–class learning set-
ting. As its name implies, it is a generative adversarial
network (GAN), consisting of a generative part that maps
input samples into a latent space and then reconstructs
them back to the image space. It is hypothesized, that
once such networks learn the identity mapping of nor-
mal, non–anomalous samples, they fail to accurately re-
construct anomalies, since they were not seen during the
training phase. In our case, we train GANomaly on real
face data only, using the objective proposed by the au-
thors of the model [15].

4.2 Data Preprocessing
All datasets described in Section 3 consist of videos, whe-
re faces are not zoomed in, so each video frame has a sig-
nificant amount of redundant information, i.e. non–face
image areas. Since faces represent our regions-of-interest
(ROIs), we preprocess all videos frames by by subjecting
them to a face detection procedure. For this purpose we
use the pre–trained MTCNN face detector, proposed by
Zhang et al. in [16]. The algorithm returns coordinates
of the bounding boxes containing a face, which are then
used to crop out rectangular face areas. False positives



are manually removed from the final set of images. At
the end, all face images are resized to 224 × 224 pixels
for the training of the ResNet50 model and to 256× 256
pixels for the training of the GANomaly model.

4.3 Training and Evaluation Protocol
In our experiments, we follow the 80/20 split rule, where
80% of the samples are used in the training phase, while
the remaining 20% are used for testing. Both, training
and testing samples are randomly selected such that they
equally represent real and fake data. To ensure a fair com-
parison, the training and testing splits remain unchanged
throughout the execution of the experiments. ResNet50
is trained on both classes, while GANomaly is trained us-
ing real data only. Hyperparameters of each model are set
to their default values, reported in the respective papers.
Following common practice, each trained model is eval-
uated with the AUC (Area Under the ROC curve) metric.
In ResNet50 experiments, the ROC curve is generated
with the probabilities of the output layer. In GANomaly
experiments the L2 reconstruction error of the testing sam-
ples is used instead.

Experiments are run in two stages: (i) a matched
dataset stage, and (ii) a cross-dataset stage. In the first
(matched dataset) stage, both training and testing sam-
ples come from the same dataset, assuming that the im-
age quality and the deepfake generation technique have
remained the same. In practice, such expectation is un-
likely to be met. Therefore, the second (cross dataset)
stage consists of cross–dataset experiments, where the
testing data comes from a different dataset.

5 Results
We summarize the results from both experimental stages
(carried out in accordance with the experimental protocol
described above) In Table 1.

Matched-Dataset Results. As can be seen from the
presented first-stage results, ResNet50 significantly out-
performs GANomaly on all three benchmarks by cor-
rectly predicting the ground truth label of over 90% of the
data when imagery with similar characteristics is used for
training and testing. Although less accurate, GANomaly
still shows a relatively high detection rate despite being
trained without any fake samples. We can observe that
GANomaly is most successful in the detection of the lower–
quality UADFV deepfakes and least successful in detec-
tion of the higher-quality Celeb–DF deepfakes. In the
latter case, the model achieves an AUC score of 0.746 –
down by close to 0.2 when compared to ResNet50. To
better understand the differences between the two mod-
els, we perform a visual analysis of the deepfake samples
that were successfully detected by ResNet50 and missed
by GANomaly. Representative examples from each data-
set are shown in Figure 2. As can be seen, GANomaly is
less likely to recognize a deepfake, where visual artifacts
are less apparent or might also represent naturally occur-
ring skin spots. It also fails to detect deepfakes generated
from images taken in non–standard lighting conditions.
A probable reason for such failures is the high generaliza-

Table 1: Deepfake detection performance for ResNet50 and
GANomaly in terms of AUC scores. Experiments with matc-
hed datasets show that ResNet50 significantly outperforms
GANomaly on all three benchmarks. Cross–dataset experi-
ments, on the other hand, suggest that in contrast to GANomaly,
ResNet50 fails to detect deepfakes coming from datasets not
seen during training pointing to better generalization capabili-
ties of one-class models.

Stage Training Testing ResNet50 GANomaly
dataset dataset (discriminative) (one-class)

Matched-dataset
UADFV UADFV 0.947 0.880
FF–FS FF–FS 0.966 0.868
Celeb–DF Celeb–DF 0.938 0.746

Cross-dataset

UADFV FF–FS 0.622 0.768
UADFV Celeb–DF 0.531 0.704
FF–FS UADFV 0.763 0.794
FF–FS Celeb–DF 0.561 0.608
Celeb–DF UADFV 0.574 0.772
Celeb–DF FF–FS 0.527 0.680

Celeb-DFUADFV FF-FS

Figure 2: Examples of deepfakes successfully detected by
ResNet50 and missed by GANomaly when training and testing
samples come form the same dataset.

tion capacity of generative one–class methods, causing a
successful reconstruction of some image inconsistencies.
Because of the discriminative nature of ResNet50, the
model is able to detect such deepfakes despite the some-
what more challenging image characteristics.

Cross-Dataset Results. In contrast to the matched-
dataset experiments, the results of the cross-dataset ex-
periments show that GANomaly is much more accurate
in the classification task, where the model is tested on
samples from a dataset different from the one used for
training. ResNet50, on the other hand, shows a signifi-
cant drop in efficiency, in some cases performing simi-
larly to a random classifier. In this case, one of the main
problems is simply the domain shift, causing the model to
miss both, real and fake samples. Another issue we could
observe is the inability of ResNet50 to detect deepfake
artifacts that have not been introduced during the training
phase. Some deepfake samples that were successfully de-
tected by GANomaly and missed by ResNet50 in this ex-
perimental stage are shown in Figure 3. As can be seen,
ResNet50 failed to recognize very low–quality UADFV
deepfakes with badly aligned face masks and incorrectly
adjusted colors. Such deepfakes can not be found in the
datasets, utilized for the training process. In contrast to



GANomaly, ResNet50 was also unable to detect unique
artifacts such as errors in the reconstruction of the teeth,
fake faces with asymmetrical or crossed eyes and sharp
illumination transitions. Moreover, training ResNet50 on
UADFV and FF-FS, both highly biased towards the Cau-
casian race, results in very low classification probabilities
of real and fake Asian faces.
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Figure 3: Examples of deepfakes successfully detected by
GANomaly and missed by ResNet50 during the cross–dataset
experiments, where testing samples come from a different
dataset than the training samples.

6 Conclusion
In this paper we presented an experimental study compar-
ing the deepfake detection performance of a discrimina-
tively learned ResNet50 model and the one–class learn-
ing GANomaly approach. Using three common deepfake
datasets, we conducted a series of matched- and cross–
dataset experiments, where testing samples were either
taken from the same dataset as the training data or were
coming from one of the other two datasets. The matched–
dataset experiments showed a clear advantage of the dis-
criminative ResNet50 model. However, in the cross–dataset
experiments ResNet50 was severely affected by the do-
main shift, also failing to recognize deepfakes with visual
artifacts, that have not been introduced during the train-
ing. Unlike the discriminative model, GANomaly was
shown to be less prone to distribution shifts and changes
in the technique, used for the generation of deepfakes.
Although GANomaly was not able to produce state–of–
the–art detection results, our experiments suggest that one–
class learning models have considerable potential for deep-
fake detection due to the fact that they can be trained
without any fake samples and, thus, do not rely on prior
assumptions about the appearance of the deepfake im-
ages.
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