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Abstract

The human iris is considered an extremely safe and reli-
able physiological modality and is thus often used in recog-
nition systems. A crucial pre-processing step for quality
iris recognition lies in iris segmentation, a process that de-
termines which part of the captured image belongs to the
iris. Iris segmentation has in recent years shifted from tradi-
tional algorithms to deep learning approaches, which have
many advantages. In this paper, we follow this trend and
with the use of multi-task learning, try to further improve
the quality of iris segmentation in difficult settings and also
its required training time. Our segmentation models follow
the classic U-Net architecture, with certain modifications
made to accommodate multi-task learning, where image in-
painting was chosen as the auxiliary task. Our approach is
evaluated on two datasets, MOBIUS and SBVPI, and shows
promising results for training time improvements, albeit not
for segmentation performance, where the results are im-
proved only on the SBVPI dataset, but remain similar, yet
worse on the MOBIUS dataset.

1. Introduction
The human iris is considered to be an extremely reliable

physiological modality, which is often used in biometrics
for security and authentication systems [1]. Its advantage
as a modality is most evident in its distinctiveness, perma-
nence, and performance [7].

Iris segmentation is a process of determining which pix-
els of the input image belong to the iris and it presents a
vital step for every sequential operation in the iris recogni-
tion pipeline (such as normalization and feature extraction)
and is thus crucial for successful iris recognition. By seg-
menting the iris, we are removing irrelevant information,
which could have a negative impact on the recognition re-
sults [10] and it has been proven [11] that the iris segmenta-
tion error rate negatively influences the quality of iris recog-
nition. A quality segmentation step allows the extraction of
more distinctive features and prevents invalid mapping of
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Figure 1: Examples of the results of our multi-task iris seg-
mentation learning approach, jointly trained with the task
of image inpainting, for both tasks. The images in column
(a) present the input images, those in columns (b) and (d)
present the ground truths for both the main (iris segmen-
tation) and auxiliary (image inpainting) tasks, and finally
columns (c) and (e) display our results for each task.

iris patterns into extracted iris code [7]. Furthermore, iris
segmentation does not only play an important part in bio-
metric recognition systems but is useful in medical diag-
nostic as well. Similar to iris recognition, the segmentation
of the iris presents a crucial pre-processing step in complex
computer systems designed for diagnostics of ocular dis-
eases [7].

Iris segmentation has traditionally been solved with
handcrafted methods, based on conventional computer vi-
sion, image processing, and pattern recognition methods.
In the last decade, these traditional methods were surpassed
by deep learning methods, which proved to be exception-
ally good at solving different computer vision tasks, in-
cluding image segmentation. Recent research in the field
of iris segmentation focuses on segmentation in different
difficult conditions such as with applications of recognition
at-a-distance, on-the-move, with little or no user cooper-
ation, using a mobile device, and recognition in dynamic
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imaging environments. In these cases, the task of iris seg-
mentation becomes increasingly challenging as opposed to
in constrained environments with utilized user cooperation,
where there are far fewer problems with noise, occlusions
(due to eyelids, eyelashes, and glasses), spectral reflections,
and off-angle image capturing. As further development of
iris recognition systems aims to make iris recognition in dif-
ficult applications possible and increasingly reduce the re-
quired user cooperation [1], robust and quality iris segmen-
tation is regarded as the first required step and remains an
ongoing research topic [19].

While the deep learning methods used in these problem-
atic applications achieve remarkable results in iris segmen-
tation, they are all based on a single-task learning approach,
where they focus only on iris segmentation. With this, some
information that could be used to solve tasks related to seg-
mentation is left out. These related tasks can share certain
representations with the task of segmentation and by shar-
ing them, a better generalization for all of the related tasks
can be achieved [15]. Depending on the choice of the tasks,
multi-task learning can either improve or worsen the results
of all the tasks or only some of them. Because of this, it
might be useful to choose multi-task learning even if solv-
ing only one task, known as the main task. With a good
choice of an auxiliary task, a possible improvement of the
main task, iris segmentation, can thus be achieved.

In this work, we try to address the gap in multi-task
learning approaches for solving iris segmentation tasks. We
propose a multi-task learning solution, to further improve
the segmentation quality achieved with single-task learning.
We also strive to improve on the time needed to train such
models. Some examples of the results of our multi-task
learning approach can be seen in Figure 1. The architec-
ture we use for both single and multi-task learning models
follows a classic U-Net architecture, where additional mod-
ifications are made to accommodate the multi-task learning
approach.

The rest of our work is structured as follows. In Section
2 we present related works, where we look both into iris
segmentation, as well as into image inpainting. We continue
with our methodology explained in Section 3, followed by
the experimental Section 4 where we present the datasets
used, the experimental setup, evaluation methods we used,
and finally the analysis of the results of our work. Section 5,
where we summarize our work and future plans, concludes
our paper.

2. Related Works
As our work focuses on a multi-task learning approach,

we divide the related works section into two parts. We first
present related works pertinent to our main task, iris seg-
mentation, which is followed by related works of our auxil-
iary task, image inpainting.

2.1. Iris Segmentation

The development of iris segmentation algorithms started
for the purpose of iris recognition. One of the first algo-
rithms used for iris recognition was presented by Daugman
[4]. With this, the development of traditional handcrafted
iris segmentation methods, based on computer vision and
image processing methods, began. Of course, the recent
success of deep learning methods marked a turning point
for iris segmentation as well. As such, iris segmentation
algorithms can be broadly split into two categories: tradi-
tional approaches and deep learning algorithms.

Traditional Methods: The most common conventional
iris segmentation methods are boundary based methods
such as Daugman’s integro-differential approach [4] and
Wildes’ [20] approach using Hough transform. Daug-
man’s algorithm finds the inner and outer boundaries of the
iris with the use of an integro-differential operator, while
Wildes uses Hough transform following edge detection on
a given image [1].

Pixel-based methods belong in the conventional method
group as well. These methods determine the iris region us-
ing specific gradients for colour, texture, and illumination,
thus separating the iris and non-iris region [1]. Among tra-
ditional iris segmentation approaches, there are also active
contour methods [5], circle fitting methods [16], and others.

Deep Learning: In the past decade, deep learning meth-
ods have become an extremely popular and successful ap-
proach for solving many computer vision challenges, in-
cluding iris segmentation and recognition [19].

Fully convolutional networks presented a big milestone
for the challenge of image segmentation, allowing the prob-
lem of segmentation to be treated as a classification problem
for each pixel of the image. Some of the approaches to iris
segmentation using fully convolutional networks have been
proposed by Liu et al. [9] and Bazrafkan et al. [3]. Their
methods use modified fully convolutional networks for iris
segmentation but lack fine enough results due to coarse up-
sampling of the feature maps [7]. In general, some fully
convolutional architectures proved to be exceptionally good
at segmentation challenges. Examples of these are Mask R-
CNN [6], developed for general object segmentation, and
U-Net [12], developed for segmentation of biomedical im-
ages, such as microscopical images of cells. U-Net and
its variations specifically have proven to provide a good
approach towards iris segmentation challenges. Lozej et
al. [10] have shown that their U-Net based model out-
performs multiple baseline methods for iris segmentation
which use a combination of Hough transform and other im-
age processing operations. Lian et al. [7] have upgraded the
basic U-Net architecture to improve the wrongly classified,
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noisy pixels outside of the iris region, by adding a regres-
sion module that helps the network focus on the iris region.
The authors have shown that their approach improves the
segmentation quality of the basic U-Net.

The popularity of deep learning based methods can also
be observed in the recent iris segmentation challenges such
as NIR Iris Challenge Evaluation in Non-cooperative En-
vironments: Segmentation and Localization [19]. In this
challenge, all of the participating teams had submitted al-
gorithms based on deep learning methods.

2.2. Image Inpainting

The goal of image inpainting tasks is to fill out the miss-
ing pixels of the input image with coherent and accurate val-
ues [21]. The methods used for this could again be broadly
split into conventional and deep learning methods.

Conventional methods often achieve image inpainting by
propagating information about the missing pixels from the
neighbouring ones. This approach is limited to small miss-
ing regions with little variance in colour and texture [8].
Inpainting is also done with patch-based methods, where
the missing patches are filled with similar patches from the
remaining image. Here the region with the best-calculated
similarity is chosen. These methods work well on filling
the simple background patches but fail at complex and non-
repetitive regions [21]. Furthermore, calculating patch sim-
ilarity is a computationally expensive process and even with
additional upgrades, such as PatchMatch [2], these methods
are still mostly unusable for real-time applications.

Deep learning models, unlike conventional methods,
learn semantic priors and hidden representations. Usually
defining a fixed value for missing pixels, these methods of-
ten achieve blurred results, with missing textures and colour
discrepancies, where the results need to be additionally
post-processed. Moreover, these methods often focus on
missing regions of rectangular shape, which results in poor
performance on irregular-sized patches [8]. Liu et al. [8]
proposed a method that fixes the problems of region shape,
dependence on starting pixel values and thus requires no
post-processing. Their method uses partial convolutions,
applying convolution only on valid pixels defined with a
mask, and outperforms other noted compared methods.

3. Methodology
In this section, we present our proposed multi-task learn-

ing approach for the task of iris segmentation. We also de-
scribe the chosen architecture of our models, their modifi-
cations, and conclude with an explanation of the training
process used in our work.

3.1. Overview of the proposed approach

Our iris segmentation approach is based on multi-task
learning. This means that a single built model is capable

of solving more than one task, an approach that can im-
prove the speed of solving multiple tasks, the performance
of some or all learnt tasks, and the training time needed to
build such models. Our goal for choosing this approach
is the improvement of the quality of the iris segmentation,
which is therefore chosen as the main task. We chose im-
age inpainting to be learnt alongside iris segmentation, as
an auxiliary task. This way we try to achieve the sharing
of certain joint representations between the chosen tasks,
which could have a positive impact on the generalization of
the model and thus the performance of our main task. As
we focus only on the improvement of the iris segmentation,
the performance of the auxiliary task is not important.

The proposed approach, seen in Figure 2 on the left, con-
sists of modifying the chosen convolutional neural network
architecture, defining the loss function, which includes the
losses of both tasks, and their weights, which have to finally
be fine-tuned, and additionally modifying the training data,
so it can be used for multi-task learning with the chosen
auxiliary task. The performance of this approach is com-
pared to our baseline single-task learning model, trained
only for the task of iris segmentation, using unmodified ar-
chitecture and with unmodified training data.

Figure 2: A step-by-step explanation of our methodology,
with the multi-task learning approach shown on the left and
the baseline single-task learning approach on the right.

3.2. U-Net overview

Both single-task and multi-task learning models, used in
our work, are based on the classic U-Net architecture, pro-
posed by Ronneberger et al. [12]. U-Net architecture is a
commonly used approach for image segmentation, which
was first developed for the segmentation of biomedical im-
ages. Its architecture is divided into two parts, an encoder,
and a decoder. Encoder’s primary role is capturing the
broader context of the image, which is achieved with a se-
quential combination of convolutional and pooling layers,
that down-sample the image and obtain its context. This
process comes with the downside of worsening the local-
ization accuracy, so a trade-off between the use of context
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and the quality of localization is required. The authors of U-
Net tackle this problem with an added decoder, which up-
samples the intermediate feature maps, and combines them
with corresponding high-resolution feature maps from the
encoder. This way high-resolution results which still cap-
ture the broader context of the input image can be achieved
[12].

3.3. Modifications to the architecture

The original U-Net’s input and output sizes differ by a
large margin of around 33%, which is caused by the use
of unpadded convolutions that essentially crop the feature
maps. We avoid such a discrepancy by applying padding
for each convolution operation in the architecture. Further-
more, in the decoder’s part of the architecture, we use trans-
posed convolution layer for upsampling, instead of a com-
bination of an upsampling operation and a 2 × 2 convolu-
tion. We also apply additional regularization layers, such as
dropout layers, throughout the architecture instead of only
at the end of the encoder.

To accommodate the architecture for multi-task learning,
an additional output of the model is added, besides the ex-
isting segmentation output of the single-task learning.

3.4. Training

For the purpose of training a single-task learning model,
the images of the datasets were not additionally modified.
These RGB images represent the input data and iris masks
represent their labels. However, for the part of multi-task
learning, we had to additionally process them to be suit-
able for the task of image inpainting. For each input image,
based on the corresponding iris masks, a white square of a
random size was randomly added on the contour of one of
the iris boundaries, thus removing a part of the image. Im-
ages processed in such a way can then be used as input im-
ages, with two corresponding labels. The first label presents
the image before removal and is used to train inpainting,
while the second label remains the iris segmentation mask
used as before for the single-task learning approach.

The multi-task learning model is trained using a loss
function, which contains loss functions of both outputs.
Mean squared error is used for image inpainting while bi-
nary cross-entropy is used for the segmentation task. The
total loss is calculated based on the values of each loss func-
tion and the loss weights defined beforehand. These weights
ultimately influence the importance of each task and control
by how much each of them will affect the learning process.
Choosing suitable weights is tricky, and desired results re-
quire a lot of fine-tuning. Our final choice for weight values
was 0.1 and 1 for mean squared error loss and binary cross-
entropy loss, respectively.

Finally, when fitting both models, the ADAM optimizer
is used with a default learning rate of 0.001. We also use

early stopping based on validation loss. Here we suppose
that if the model has not improved in the chosen number of
sequential epochs, it had probably converged close enough
to its final value.

4. Experiments and results
In the following section, we present our experimental

work, where we start with a description of the datasets that
we used, followed by an explanation of our experimental
setup and evaluation metrics. Finally, we conclude the sec-
tion with the results of our experiments.

4.1. Datasets

To train and evaluate the quality of our approach, two
datasets were used. These are MOBIUS and SBVPI
datasets [18, 14, 13, 17], which are both publicly available
and were both developed at the University of Ljubljana. The
datasets were chosen because they contain quality segmen-
tation masks of the iris region corresponding to the images
of the dataset, which is necessary for developing and eval-
uating a deep learning iris segmentation model. The main
characteristics of each dataset can be seen in Table 1 and we
also provide a detailed description of each of them.

Dataset Total Image details Variations
MOBIUS 16, 717 3000×1700, RGB EV,CD,LC,GD
SBVPI 1, 858 3000×1700, RGB EV,GD

Table 1: Overview of the datasets used. Variations of im-
ages are denoted as EV - eye variation, CD - capturing de-
vice, LC - lighting conditions, GD - gaze direction.

MOBIUS dataset: MOBIUS (the Mobile Ocular Bio-
metrics in Unconstrained Settings) dataset consists of
16, 717 RGB colour images of eye regions taken from 100
Caucasian individuals. The images were taken twice for
each eye with three different mobile phones and under three
different lighting conditions. Furthermore, the images dif-
fer in the direction of the individual’s gaze, where four dif-
ferent gaze directions were photographed. For our work,
only the segmentation subset was used. It consists of 3559
hand-annotated RGB colour images of 35 individuals. Each
image in this subset includes corresponding segmentation
masks of the sclera, iris, and pupil, but as we focused only
on iris segmentation, sclera and pupil masks were not used.

SBVPI dataset: SBVPI (Sclera Blood Vessels, Periocu-
lar and Iris) dataset consists of 1, 858 RGB colour images of
eye regions taken from 55 Caucasian individuals. The im-
ages were taken four times for each eye with a digital cam-
era, with no variation in the lighting conditions. Again four
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Figure 3: Examples of the MOBIUS dataset images with
the corresponding masks below them.

different gaze directions were used in each set. Similar to
the MOBIUS dataset, a subset of 129 images are available
with corresponding segmentation masks for the iris region.

Figure 4: Examples of the SBVPI dataset images with the
corresponding masks below them.

4.2. Experimental setup

The datasets used were first split into train and test sub-
sets, with an 80% and 20% split. Furthermore, an additional
90% and 10% split of the training subset was applied, where
90% of the images were kept for training, and the rest of
them were used for the validation subset to assess overfitting
or underfitting of the model during training. Before split-
ting the data we also removed 10 images from the SBVPI
dataset, where inconsistent annotations occurred. A random
shuffle was also applied for each dataset, to thoroughly mix
the images of all the individuals. The final number of im-
ages in each subset can be seen in Table 2.

Dataset Total Train.
subset

Val.
subset

Test
subset

MOBIUS 3559 2562 285 712
SBVPI 119 85 10 24

Table 2: Overview of the segmentation subsets after split-
ting the images.

Before training the models we also resized the images
and corresponding masks to the size of 320× 320 and nor-
malized their values between 0 and 1. Additionally, to re-
duce overfitting, we augmented the training subset before
using it in the training process. Here we applied operations
like horizontal and vertical flipping, zooming, shifting the
image by its width or height, and also limited rotations.

For each dataset, multiple single-task and multi-task
learning models were trained. The performance of the mod-
els in each category varies, specifically because of the train-
ing process, which is non-deterministic, and also because
of our use of early stopping. By training multiple models
of each type, calculating their performance on the test sub-
set, and choosing the one with the best performance, we
can determine which approach performs better with higher
confidence. The same was done when evaluating training
speed. Here instead, models were trained for a limited time,
and again evaluated using the test subset and finally, the per-
formance of the best in each category was compared, to de-
termine which approach achieves better performance with
the limited training time. It is important to note that even
though the multi-task learning model is trained on modified
images with rectangle holes added, the evaluation of both
kinds of models is done on unmodified test images, as these
are the images on which we try to improve iris segmenta-
tion.

4.3. Evaluation methods

To consistently evaluate the trained models we have cho-
sen certain performance metrics, such as precision, recall,
F1 score, and intersection over union metric, similar to
[10]. Together these metrics can give us broader informa-
tion about the performance of each evaluated model. They
were chosen because they present a common way of inter-
preting the results of binary classification problems, such as
image segmentation essentially is.

Each performance metric can be calculated for every test
image, based on the resulting numbers of True Positive (de-
noted as TP), True Negative (denoted as TN), False Positive
(denoted as FP), and False Negative (denoted as FN) classi-
fication outcomes for each pixel of the image. However, we
report these metrics on the entire testing datasets, by sum-
ming the total number of outcomes across all the test images
before calculating the results.

It is also important to note that the values of TP, TN,
FP, FN, and consequently all of the performance metrics
values are set with the chosen threshold. For each pixel
classification, the model returns a probability pair for each
category (iris or non-iris class) between 0 and 1. By choos-
ing a threshold for iris classification we are thus influencing
these values and performance metrics. For this reason, we
report the threshold and its metrics where the best results
are achieved.

Precision values tell us how many of our positive predic-
tions were true, while recall measures how many of the total
positive predictions we managed to predict. F1 score com-
bines the two previous metrics and gives us better overall
information about the performance. Intersection over union
provides an insight into the overlap between our predictions
and the ground truth. All of the used metrics can have val-
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ues between 0 and 1, where a higher value is better.
Considering the outcomes of pixel classification, preci-

sion, recall and intersection over union (denoted as IoU) can
be calculated with Equations (1), (2) and (3) respectively:

Precision =
TP

TP + FP
, (1)

Recall =
TP

TP + FN
, (2)

IoU =
TP

TP + FP + FN
. (3)

Using the calculated values for precision and recall, we
can also calculate the F1 score with Equation (4):

F1 = 2× precision× recall

precision+ recall
. (4)

4.4. Results

We split our experimental work into two parts. In the
first one, we evaluate and compare the performance of both
single-task and multi-task learning approaches for the task
of iris segmentation. The second part of the experiments fo-
cuses on their training speed, or how fast they converge to-
wards their final values. Here the models were again trained
and evaluated on the task of iris segmentation but had the
number of their training epochs reduced to 10.

4.4.1 Performance comparison

In the first part, multiple single-task and multi-task learn-
ing models were trained. The performance of these mod-
els was evaluated for the task of iris segmentation using
the corresponding test subset, on which the chosen met-
rics were calculated. The best performing model in each
category and for each dataset was chosen for comparison,
based on its highest F1 value (and also its intersection over
union value). This way we were able to determine whether
multi-task learning with the chosen auxiliary task of image
inpainting improves the iris segmentation performance.

Results: The comparison of the best performing single-
task and multi-task learning models for each dataset can be
seen in Table 3, first for the MOBIUS dataset, followed by
the results for the SBVPI dataset. The single-task learning
model achieved better results of both the F1 metric and IoU
metric for the MOBIUS datasets and can thus be determined
as the better model for this dataset. It is worth noting that
the performance of the multi-task learning model, though
worse, is not much farther behind and still achieves quite
similar results.

However, the multi-task learning model achieved better
results for the SBVPI dataset, with a higher difference be-
tween the models compared to the MOBIUS dataset. This

means that the results are inconclusive and we cannot con-
firm that multi-task learning with image inpainting as the
auxiliary task improves the performance of the task of iris
segmentation.

The cause for the differences in the results could be
found in different ways of annotating the iris regions in
each dataset. While MOBIUS’ annotations cover only the
iris region, SBVPI’s annotations include the pupil as well.
Another reason for the discrepancy could also lie in the
fact that MOBIUS’ images differ much more than SBVPI’s,
with many different lighting conditions and capturing de-
vices covered in the dataset.

Dataset Model Threshold Precision Recall IoU F1

MOBIUS STL 0.45 0.8809 0.9171 0.8160 0.8987
MTL 0.50 0.8775 0.9204 0.8156 0.8984

SBVPI STL 0.50 0.9593 0.9667 0.9285 0.9629
MTL 0.55 0.9695 0.9647 0.9362 0.9671

Table 3: Comparison between the best performing single-
task (STL) and multi-task learning (MTL) models, first for
the MOBIUS dataset, followed by the results for the SBVPI
dataset.

Qualitative evaluation: A visual analysis of the results of
both the single-task and multi-task learning models reveals
extremely similar visual performance between the models
of both datasets. This is supported by the performance re-
sults described above with similar performance metrics val-
ues between the models. Some examples of the segmen-
tation results for MOBIUS and SBVPI test subsets can be
seen in Figures 5 and 6 respectively, for both single-task and
multi-task learning models. Visual inspection of the given
segmentation results confirms quite accurate segmentation
performance for both datasets.

4.4.2 Training speed comparison

We continue with our experiments by looking at the training
speed comparison between the single-task and multi-task
learning models. To evaluate the differences between the
models, we use the same approach as in the previous exper-
iments, but limit the number of training epochs to only 10.
By comparing the performance of the models after a lim-
ited training time we can determine if multi-task learning
improves training speed. Here, we also provide a compari-
son between the values of loss functions during training, as
another way of analyzing the training speed differences.

Results: The performance comparison of the best single-
task and multi-task learning models, trained for 10 epochs,
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Figure 5: Some examples of the segmentation results for the
MOBIUS dataset, with input images in column (a), single-
task learning model’s predictions in column (b), multi-task
learning model’s predictions in column (c), and the corre-
sponding ground truth annotations in column (d).

(a) (b) (c) (d)

Figure 6: Some examples of the segmentation results for
the SBVPI dataset, with input images in column (a), single-
task learning model’s predictions in column (b), multi-task
learning model’s predictions in column (c), and the corre-
sponding ground truth annotations in column (d).

can be seen in Table 4, first for the MOBIUS dataset, fol-
lowed by the results for the SBVPI dataset. It can be noted,
that the multi-task learning model achieved better perfor-
mance for both datasets when trained with limited training
time. The difference between the models is slightly bigger
for the SBVPI dataset. This could again be attributed to the
differences in the datasets, namely the annotation style and
image variations. Based on these results, it can be deter-
mined that multi-task learning with image inpainting cho-
sen as the auxiliary task improves the training speed of the
task of iris segmentation.

It is also interesting, that models trained on the SVBPI
dataset achieved much worse results, even though their per-
formance with non-limited training time far exceeded that
of the MOBIUS dataset.

Dataset Model Threshold Precision Recall IoU F1

MOBIUS STL 0.45 0.8684 0.8867 0.7817 0.8775
MTL 0.50 0.8601 0.9038 0.7880 0.8814

SBVPI STL 0.70 0.7414 0.7854 0.6165 0.7628
MTL 0.65 0.6727 0.8999 0.6258 0.7699

Table 4: Comparison between the best performing single-
task (STL) and multi-task learning (MTL) models, that
were trained for 10 epochs, first for the MOBIUS dataset,
followed by the results for the SBVPI dataset.

Qualitative evaluation: Visual examination of the seg-
mentation results for both datasets supports the perfor-
mance results described above. While the values of pre-
cision and recall remain quite similar for both models of the
MOBIUS dataset, this is not the case for the SBVPI dataset.
Here, a large difference between the precision and recall
values, yet similar IoU and F1, can be seen for the compared
models, which is additionally confirmed with the visual in-
spection of the results. Some examples of the segmentation
results for MOBIUS and SBVPI test subsets can be seen in
Figures 8 and 9 respectively, for both single-task and multi-
task learning models. It can be noted that both models of the
MOBIUS dataset achieve visually similar results, while the
SBVPI dataset’s multi-task learning model predicts more
pixels as the iris region than the single-task learning model.
This way a larger portion of the True Positive outcomes is
covered, thus reaching a higher recall value. However, this
results in a lower precision quality, which is, in turn, de-
creased compared to the single-task learning model.

Furthermore, the visual quality of segmentation results is
much worse for the SVBPI dataset models. This too is sup-
ported by the performance results described above, where
the performance metrics values of the SBVPI models are
far worse than those of the MOBIUS dataset.

Comparison of the loss function values: Another way to
compare the training speed of iris segmentation is to look at
the values of loss functions during training. For this pur-
pose, we compared the loss function values of the best per-
forming single-task and multi-task learning models from
the performance comparison of our experiments for both
datasets. The comparison can be seen in Figure 7, where
both models’ loss functions are plotted on the same graph,
first for the MOBIUS dataset, followed by SVBPI.

It can be noted that the loss function for multi-task learn-
ing reaches lower values sooner than the single-task learn-
ing loss function for both cases. As the loss function re-
flects the progress of the training, we can conclude that with
the lower loss function values at the same epoch the train-
ing speed of the multi-task learning was faster and thus im-
proved the training speed.
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(a) (b) (c) (d)

Figure 8: Some examples of the segmentation results for the
MOBIUS dataset, with input images in column (a), single-
task learning model’s predictions in column (b), multi-task
learning model’s predictions in column (c), and the corre-
sponding ground truth annotations in column (d).

5. Conclusion

We have examined the effect of the multi-task learning
approach on the task of iris segmentation, with image in-
painting chosen as an auxiliary task. The multi-task learn-
ing model achieved similar yet worse results to that of the
single-task learning model, when trained and evaluated on
the MOBIUS dataset, but improved the performance by a
higher margin for the SBVPI dataset. This could be at-
tributed to the differences in the datasets, namely in the an-
notation styles and image variation. Ultimately, the results
of our performance experiments are inconclusive and can-
not confirm that multi-task learning with image inpainting
chosen as the auxiliary task increases the performance of
iris segmentation.

However, multi-task learning did noticeably improve the
performance of the models trained with a limited number of

(a) (b) (c) (d)

Figure 9: Some examples of the segmentation results for
the SBVPI dataset, with input images in column (a), single-
task learning model’s predictions in column (b), multi-task
learning model’s predictions in column (c), and the corre-
sponding ground truth annotations in column (d).

epochs. This results in a decrease of the required training
time needed for the model’s loss functions to reach values
close to their final one. This could prove extremely useful
when training models with very large datasets, where train-
ing times become increasingly longer. It could also prove
useful when training a model with limited resources, such
as on systems with poor computational power. In the fu-
ture, we intend to look at the cause for the differences in the
results of iris segmentation performance between the used
datasets. We also intend to explore other possible auxiliary
tasks for the proposed approach, such as image colorization
and denoising and evaluate their effect on the iris segmen-
tation performance as well as on the required training time.

Figure 7: Comparison between the loss function values for single-task (black) and multi-task (red) learning models, first for
the MOBIUS dataset, followed by the values for the SBVPI dataset on the right.
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