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Abstract—The analysis of kin relations from visual data
represents a challenging research problem with important real-
world applications. However, research in this area has mostly
been limited to the analysis of facial images, despite the potential
of other physical (human) characteristics for this task. In this
paper, we therefore study the problem of kinship verification
from ear images and investigate whether salient appearance
characteristics, useful for this task, can be extracted from ear
data. To facilitate the study, we introduce a novel dataset, called
KinEar, that contains data from 19 families with each family
member having from 15 to 31 ear images. Using the KinEar
data, we conduct experiments using a Siamese training setup and
5 recent deep learning backbones. The results of our experiments
suggests that ear images represent a viable alternative to other
modalities for kinship verification, as 4 out of 5 considered
models reach a performance of over 60% in terms of the Area
Under the Receiver Operating Characteristics (ROC-AUC).

Index Terms—biometrics, kinship, ear biometrics, computer
vision

I. INTRODUCTION

Kinship verification is an important computer vision prob-
lem, where the goal is to determine whether two people are in
a kin relation or not based on the analysis of visual correspon-
dences. It has important applications in various areas, ranging
from locating missing children to social media analyses [26],
[32]. Most of the research on this topic has so far been done
using face images1, where diverse datasets with large numbers
of families and family members are publicly available [26].
Research with other modalities, on the other hand, is still
largely missing from the literature. We therefore address this
gap in this paper and study the potential of ear images for
kinship verification, as illustrated in Fig. 1.

While ear recognition gained on popularity in recent years
within the biometric community [8], [10], [29], the analysis
of kin relations based on ear images is a relatively unexplored
problem. To the best of our knowledge, there is only a single
work available in the literature that studies kinship verifi-
cation from ear images using a model-based approach with
hand-crafted features [20]. Here, the authors report promising
initial results on a dataset of 134 images with 21 families
(i.e., 21 parents and 25 children). While the aforementioned
study explored whether geometric and low-level structural
characteristics are shared between first-degree blood relatives,

1Or multi-modal solutions involving face images [33].

Fig. 1: Illustration of the kinship verification task. In this
paper, we investigate the problem of kinship verification from
ear images using automatically learned appearance features
extracted by deep learning models.

we take a step further in this paper and investigate whether
higher-level appearance cues can be exploited for kinship
verification from ear images. To this end, we analyze five
recent deep learning models, including popular convolutional
neural networks (CNNs), attention-augmented models and
transformers, which were shown in the literature to be able
to extract highly descriptive image representations with rich
semantic information for various vision tasks. As part of our
research, we aim to answer the following research questions:
(i) Is kinship verification from ear images feasible using
contemporary appearance-based representations? (ii) What
performance can be expected in this setting? (iii) How does
the observed performance correlate to differences in the data
representation? (iv) What are the limitations of appearance-
based kinship verification that cause errors in the predictions?

To help answer the above questions and facilitate the study,
we introduce a novel dataset of ear images with annotated
kin relations. The dataset, named KinEar, is the first publicly
available dataset in this problem domain and represents one of
the major contributions of this work. KinEar contains data on
19 families with 76 subjects and consists of 1477 images that
correspond to a total of 37, 282 kin pairs that can be used to
train, test and analyze the performance of kinship verification
models. The introduced dataset is, hence, more than an order
of magnitude larger than the dataset from [20] in terms of
images as well as kin pairs.

In summary, the main contributions of this paper can be
grouped into the following main points:

• Feasibility study: We are the first to study kinship verifi-
cation from ear images with powerful appearance features
extracted with contemporary deep learning models.



• The KinEar dataset:2 We introduce a novel dataset of
ear images suitable for studying (visual) kinship recogni-
tion models and make it publicy available to the research
community through: http://ears.fri.uni-lj.si/.

• Comprehensive analysis: We report important findings
with respect to the ear-based kinship verification task
across different deep learning models and qualitatively
analyze failure as well as success (verification) cases that
provide insight into the feasiblity of the task with image
representations extracted with deep learning models.

II. RELATED WORK

In this section, we position our work within the existing
literature. Specifically, we discuss existing work on (i) visual
kinship recognition, (ii) ear recognition in the context of
biometrics, and (iii) kinship recognition from ear images.

A. Visual Kinship Recognition

Existing work on kinship recognition from visual data is
predominantly focused on analyzing facial images, mostly due
to the availability of suitable datasets, which are scarce for
other modalities. One such work by Lu et al. [19], for example,
presented a Discriminative Deep Metric Learning (DDML)
method for face kinship verification with images captured
in-the-wild. In DDML, a discriminative neural network is
used to project face pairs into the same latent feature space,
learned by minimizing distances between positive image pairs
and maximizing distances between negative pairs. Wu et al.
[34] proposed Latent Adaptive Subspace (LAS) learning for
kinship classification by using an auxiliary dataset to address
the problem of unavailable children data for training. Nandy
et al. [22] presented a deep learning approach using a Siamese
convolutional neural network architecture to quantify the sim-
ilarity between two images and solve the kinship verification
task on the Families in the Wild dataset [26]. A large amount
of work along these lines has been presented in the literature
over the years, as evidenced by recent surveys on this topic
[24], [25]. The majority of this work explores metric-learning
solutions and Siamese model topologies that allow to derive
a measure of kinship using a pair of input images. We follow
these trends and also investigate a Siamese model setup as the
basis for ear-based kinship verification.

B. Ear Recognition

Ear recognition techniques have evolved from early ap-
proaches based on geometric, structural and low-level texture
features [4], [15], [21] to more recent deep learning solutions
[7], [9]. This development led to significant performance
improvements that now allow to deploy ear recognition models
across images captured in unconstrained settings [10], [11].

Within these developments, Sinha et al. [28] proposed a
solution that relied on histograms of oriented gradients (HoGs)
with support vector machines (SVMs) for ear localization
before using a deep neural network for recognition. Stepec

2The dataset will posted after the review procedure.

et al. [29] presented a deep constellation model for ear recog-
nition that used global as well as local ear characteristics to
generate descriptive representations for recognition purposes.
Alshazly et al. [2] performed a study on ear recognition
with various convolutional neural networks (CNNs) such as
AlexNet [17], VGG [23], Inception [30], ResNet [13] and
ResNeXt [35] and reported highly competitive performance
on the unconstrained EarVN 1.0 dataset [14]. Emersic et al.
[6] introduced a complete ear recognition pipeline based on
convolutional neural networks. Alshazly et al. [1] investigated
a system for ear recognition based on ensembles of CNN
models. Different networks of increasing depth were trained
in this work and the best models were used to build ensembles
to improve performance.

Inspired by the success of deep learning models for ear
recognition and their ability to learn powerful data representa-
tions by correlating salient image characteristic to the provided
reference labels, we explore in this paper the possibility
of automatically learning high-level ear representations for
kinship verification.

C. Kinship Recognition Using Ear Images

Kinship recognition from ear images is a relatively un-
explored field with only a single paper by Meng et al.
[20] available in the literature. As already outlined in the
introductory section, the authors propose a model-based ap-
proach for kinship and gender verification using hand-crafted
features. The approach first performs viewpoint correction
and then generates ear descriptions using 81 triangles with 9
common points on every ear image. The generated features
are then used to determine kinship from ear-image pairs.
While we address the same conceptual tasks as the work in
[20], the recognition approach used in this paper differs in
several aspects from the research of Meng et al., i.e.: (i) we
automatically learn features for kinship verification instead of
using hand-crafted representations, (ii) our approach is model-
free and relies on the analysis of raw appearance information,
(iii) in addition to the data representation we also learn a
classifier that is directly applicable for the kinship verification
tasks, and (iv) we conduct experiments over a (novel) larger
dataset with a larger number of subjects and image pairs.

III. METHODOLOGY

In this section we present the methodology of our work.
We start the section with a formal problem formulation,
then describe the basic framework utilized, the deep learning
models considered, and finally introduce the novel KinEar
dataset and the performance metrics used in the experimental
evaluation.

A. Problem Formulation

Kinship verification from ear images represents a two-class
problem where the goal is to determine if the ears in the two
input images come from subjects in a kin relation or not, as
already illustrated in Fig. 1. Let x1 ∈ Rw×h×3 and x2 ∈
Rw×h×3 represent two RGB ear images, and let ψ be a kinship

http://ears.fri.uni-lj.si/


Fig. 2: Overview of the utilized framework. In accordance
with existing literature in related problem areas, we use a
Siamese model setup as the basis for the study, which can
be conveniently implemented using various backbones.

verification model trained to produce a kinship score given x1
and x2 as input. The kinship verification task then assigns the
input pair (x1, x2) to either the class of kin-related images w1

or the class of images without a kin relation w2, or formally:

(x1, x2) =

{
w1, if ψ(x1, x2) > ∆

w2, otherwise
, (1)

where ∆ represents a decision threshold that controls the trade-
off between false positives and false negatives.

B. The Experimental Framework

Following the dominant approaches from the face-related
kinship-recognition literature [24], [25], we use a Siamese
framework as the basis for our study. A high-level overview
of the adopted framework is presented in Fig. 2.

Architecture. The framework uses a Siamese model archi-
tecture that takes two ear images, x1 and x2, of different
people as input. The two branches of the Siamese architec-
ture share parameters and are implemented with a selected
backbone model. These backbones produce image embeddings
(or image representations), y1 and y2, that are concatenated
and fed to a couple of fully connected layers that capture
the correlations between the two embeddings and ultimately
generate the kinship score ψ(x1, x2) that determines whether
the people in the input images are related or not.

Training. When training the Siamese model we use binary
supervision for image pairs with and without kin relations and
select binary cross-entropy as the learning objective. While
the KinEar dataset (introduced later) offers a larger amount of
data than previous datasets in this area, data augmentation is
still needed to ensure that the models do not overfit. During
the training procedure, we, therefore, utilize the functionality
from the Keras and Torchvision libraries and use: (i) random
translation in all directions by a factor of 0.1, (ii) random
rotation in both geometric directions for an angle between 0
and 45 degrees, (iii) random zoom by a width and height
factor of 0.1 and (iv) random horizontal flip. When using the
transformer-based CoTNet backbone [18], we use additional
data augmentation because transformer-based models typically
require more data. Along with the previously mentioned

functionalities, we use: (i) color jitter with brightness and hue
set to 0.2, (ii) Gaussian blur with kernel size 5 × 9 and σ
between 0.1 and 5, (iii) random solarization and (iv) random
sharpness adjustment with the sharpness factor set to 2. Batch
normalization and dropout layers are included in the model to
improve training characteristics.

C. The Backbone Models

We use five different backbone models within the frame-
work described above to extract image representations for ear-
based kinship verification. The considered backbones are all
publicly available to foster reproducibility and are selected due
to their state-of-the-art performance for different vision tasks.
Details on the backbones are given below.

• VGG16: The first backbone is the VGG16 model pro-
posed initialy by Parkhi et al. [23]. As the name suggests,
the model consist of 16 convolutional layers with small
kernels (of size 3 × 3) and interspersed max-pooling
layers. For the experiments, we use the model pretrained
for face recognition on the VGG Face dataset.

• ResNet-152: The second backbone considered is a
ResNet-152. This model comes from the family of
ResNet models, developed by He et al. [13], that allow
for efficient learning of very deep convolutional networks
due to the presence of skip connections. The selected
backbone, ResNet-152, contains 152 convolutional layers,
but is lighter and less complex than VGG16. For the
experiments, we again start with pretrained weights (from
ImageNet [27]) to have a good initialization for training.

• USTC-NELSLIP: The third backbone used is a ResNet-
50, which was shown to achieve the best overall per-
formance within the USTC-NELSLIP model. Here, the
USTC-NELSLIP model, initially presented by Yu et al.
[36] for kinship verification using face images, is very
similar in the overall design as our adopted framework.
We, therefore select ResNet-50 as a light weight alter-
native to the ResNet-152 presented above. We again use
existing weights pretrained on the VGG Face 2 dataset
[3] to initialize the model for the experiments.

• AFF: The fourth backbone is the Attentional Feature
Fusion (AFF) model, presented by Dai et al. [5], where
the main idea is to implement feature fusion through an
attention mechanism instead of simple operations like
concatenation or addition. The main motivation behind
using the AFF model in our experiments is to fuse
the global and local information in ear images through
an attention mechanism and then exploit the computed
representations for kinship verification.

• CoTNet: The last backbone considered in our experi-
ments is the Contextual Transformer Network, presented
by Li et al. in [18]. CoTNet uses a transformer architec-
ture to exploit contextual information with the attention
mechanism. The goal of the model is to exploit the
entire context available in the input data to improve the
learning of the attention matrix and consequently improve
performance across various computer vision tasks. This



Characteristic Value
#Family 19
#Members/Subjects 76
#Images 1477
#Subject-2-Subject Kin Relations 96
#Kin image pairs 37282
Minimal Ear Resolution 250× 250
Capture devices Various

TABLE I: Summary statistics for the KinEar dataset. The
number of kin relations provided is only for positive pairs, i.e.,
true kin relationships.

is achieved by the proposed CoT block which is an
alternative to standard convolutions in CNNs.

D. The KinEar Dataset

To the best of our knowledge, no dedicated dataset is
publicly available for research into kinship verification from
ear images. We, therefore, introduce a new dataset for this
task in this section and make it publicly available for research
purposes from: http://ears.fri.uni-lj.si/.

The dataset, named KinEar, was acquired at the Dr. A.P.J.
Abdul Kalam Technical University and in collaboration with
members of the University of Ljubljana. The dataset contains
data on 19 families with ear images for each family member.
The total number of images in the dataset is 1477. There are
19 fathers, 19 mothers, 19 sons and 17 daughters present in
the KinEar dataset. Manually annotated bounding boxes are
provided for all ear images in order to ensure that all ears in
the dataset can be properly aligned. While the capture devices
and consequent image characteristics varied from family to
family, we made sure that the ear region is always at least
250×250 pixels in size, which provides a reasonable resolution
useful for most modern CNN-based models. Details on the
dataset can be found in Table I and a per–family break down
in Table II. Fig. 3 shows the distribution of relationships of
family members over the entire dataset and Fig. 4 presents a
few visual examples.

E. Experimental Setup

When training the models, pairs of images corresponding
to different people are sampled from the dataset in a way that
ensures that an approximately equal number of positive and
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Fig. 3: The distribution of family relations in the KinEar
dataset. The family members are represented as: F – father,
M – mother, So – son, D – daughter, B – brother, Si – sister.

Family # #Members #Images #Relations #Kin pairs
1 4 74 5 1649
2 4 60 5 1125
3 4 84 5 2300
4 4 65 5 1339
5 4 60 5 1125
6 4 60 5 1125
7 4 75 5 1799
8 4 91 5 2599
9 4 96 5 2793
10 4 99 5 2903
11 4 87 5 2375
12 4 84 5 2183
13 4 83 5 2094
14 4 84 5 2133
15 5 103 9 3755
16 4 89 5 2484
17 3 45 2 450
18 4 64 5 1308
19 4 74 5 1743

TABLE II: Per–family summary of the KinEar dataset. The
number of relations and image pairs is counted only for the
positive pairs.

Fig. 4: Examples of image pairs from the KinEar dataset.
The presented images are aligned and resized in accordance
with the provided bounding boxes.

negative pairs is included in each training batch. The ground
truth is determined from a list provided with the dataset where
related family member pairs are listed. The pairs of images that
are not listed are considered to be negative examples in the
training. The husband and wife of a family are regarded as not
related. The training set contains 14 families, the validation set
contains 2 and the testing set contains 3 families. The number
of all possible image pairs in the testing set is 12960, out of
which 9692 are negative and 3268 are positive.

We use different performance indicators when testing the
considered backbones within our overall framework. The
performance indicators are: (i) classification accuracy (CA),
(ii) sensitivity, (iii) specificity, and (iv) the area under the
Receiver Operating Characteristics (ROC) curve (ROC-AUC).
The first three are defined with the following equations [12]:

CA =
TP + TN

TP + TN + FP + FN
, (2)

Sensitivity =
TP

TP + FN
, (3)

Specificity =
TN

TN + FP
, (4)

http://ears.fri.uni-lj.si/


Backbone CA [%] Se. [%] Sp. [%] ROC-AUC [%]
VGG16 [23] 64.01 64.01 64.01 69.22
ResNet152 [13] 57.50 57.50 57.51 63.14
USTC-NELSLIP [36] 55.12 55.14 55.10 57.29
AFF [5] 60.00 60.00 60.00 64.01
CoTNet [18] 61.85 61.84 61.86 65.88

TABLE III: Kinship verification performance for different
backbones. The results are reported for decision thresholds
at the equal error operating point of the ROC curves. The
”Se.” column represents the sensitivity and the ”Sp.” column
represents the specificity.

where FP represents the number of false positive classifica-
tions, FN the number of false negatives, TP the number of true
positives, and TN the number of true negative classifications.
Classification accuracy is an often used metric, which provides
information on the ratio between correctly classified cases
against all cases. Sensitivity conveys the ratio between the
number of pairs classified as positive and the number of all
pairs that are truly related, and specificity captures the ratio
between the number of pairs classified as negative and all pairs
that are truly not related.

The main performance metric that we use in our experi-
ments is the ROC-AUC, which is the area under the ROC
curve, a graph created by plotting the true positive rate against
the false positive rate at different threshold values ∆ [31], [37].

F. Experimental Details

The experiments were performed on an Nvidia GeForce
GTX 1060 graphics card with 6 GB of video RAM. We use
the Adam optimizer [16] with the learning rate equal to 10−5

for the VGG16, ResNet152 and USTC-NELSLIP models and
10−4 for the AFF and CoTNet models. During testing, the
AFF and CoTNet models’ thresholds can be set between −1
and 1, while the remaining models’ thresholds can be set
between 0 and 1.

IV. EXPERIMENTS AND RESULTS

A. Quantitative Results

Table III shows the results of the performance evaluation
with all considered backbone models at a decision threshold
∆eer that ensures equal errors on the ROC curves in Fig. 5.

As can be seen, the best performing model is VGG16. Four
out of the five models reach an ROC-AUC score of at least
60%. The CoTNet and AFF models are second and third best,
which indicates that using transformer-based architecture and
efficient feature fusion is beneficial for performance. Another
observation of the results is that generally the models with
lower depth are more successful. This is shown not only
in the fact that VGG16, which has the fewest number of
layers, achieved the best results, but also in the fact that
when comparing backbones for the AFF and CoTNet models,
where backbones of different depth can be chosen, the best
results are obtained when using the backbone with the fewest
layers possible. Given that VGG16 is not the most lightweight
network despite its shallow design compared to the other
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Fig. 5: ROC curves of the comparative evaluation. The
VGG16 model exhibits the strongest performance, followed
in order by CoTNet, AFF, ResNet-152, and USTC-NELSLIP.

models, we hypothesize that data representations with limited
abstraction computed through a lower number of layers are
more informative for the ear-based kinship verification task.
However, additional research with in depth analysis of the
characteristics of the learned representations are needed to
validate this hypothesis.

B. Qualitative Results

In Fig. 6 we show some qualitative results obtained with
the best performing VGG16 model at the decision threshold of
∆eer with pairs of images that resulted in false positive, false
negative, true positive and true negative results. Two examples
of each result are shown. The left false negative pair shows the
ears of a father and his daughter, meaning there is a difference
in gender which makes it more difficult for the models to
predict the correct result. There are some differences in the
shape, particularly on the lower part of the ear, along with
some difference in illumination conditions as well. The right
false negative pair likely occurred due to one of the ears being
captured at a significantly different angle, which makes the
images appear more dissimilar. Among the false positives, the
left pair example show ears which have similar shapes on their
outer edges. Because both persons are children, it is harder
to distinguish between them compared to the case when one
person is a grown up and the other is a child. The right example

Fig. 6: Sample qualitative results. Pairs of input ear images
are shown that resulted in false negative, false positive, true
positive and true negative results with the VGG16 model at
a decision threshold of ∆eer that ensured equal errors on the
corresponding ROC curve.



is similar, as the subjects are both daughters in their families.
In general, there are few false positive cases that occur with all
models. Both true negative pairs show some differences in the
ear shapes and the difference in illumination conditions helps
with the correct predictions as well. Lastly, the true positive
pairs show ears which are visually similar. These images are
taken under similar conditions such as illumination, angle and
distance, and are therefore easy to classify correctly. Cases
such as the true positive and true negative examples are among
the easier ones to predict for all models. Overall, this analyies
suggest the the external conditions have a considerable impact
of kinship verification performance pointing to a need for
controlled capture conditions or normalization techniques that
can normalize the data prior to the verification process.

V. CONCLUSION

In this paper, we studied the task of visual kinship verifica-
tion from ear images using a number of deep learning models
utilized within a Siamese learning framework. Additionally,
we also presented a new dataset, called KinEar, that contains
ear images of members of 19 families and is made available
to the research community. The results of our performance
evaluation showed that ears are a suitable modality for kinship
verification, especially when learned data representations are
used for image description. In our setting, 4 out of the 5
considered models achieved an ROC-AUC score of at least
60%, the best model being VGG16 with an ROC-AUC score
of 69.2%. Given that state-of-the-art solution based on facial
images report performance only somewhat above these scores,
kinship analysis from ear images certainly represents a topic
worth investigating further.
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