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Abstract: In the past few years, there has been a leap from traditional palmprint recognition method-
ologies, which use handcrafted features, to deep-learning approaches that are able to automatically
learn feature representations from the input data. However, the information that is extracted from
such deep-learning models typically corresponds to the global image appearance, where only the
most discriminative cues from the input image are considered. This characteristic is especially
problematic when data is acquired in unconstrained settings, as in the case of contactless palmprint
recognition systems, where visual artifacts caused by elastic deformations of the palmar surface are
typically present in spatially local parts of the captured images. In this study we address the problem
of elastic deformations by introducing a new approach to contactless palmprint recognition based on
a novel CNN model, designed as a two-path architecture, where one path processes the input in a
holistic manner, while the second path extracts local information from smaller image patches sampled
from the input image. As elastic deformations can be assumed to most significantly affect the global
appearance, while having a lesser impact on spatially local image areas, the local processing path
addresses the issues related to elastic deformations thereby supplementing the information from the
global processing path. The model is trained with a learning objective that combines the Additive
Angular Margin (ArcFace) Loss and the well-known center loss. By using the proposed model design,
the discriminative power of the learned image representation is significantly enhanced compared to
standard holistic models, which, as we show in the experimental section, leads to state-of-the-art
performance for contactless palmprint recognition. Our approach is tested on two publicly available
contactless palmprint datasets—namely, IITD and CASIA—and is demonstrated to perform favorably
against state-of-the-art methods from the literature. The source code for the proposed model is made
publicly available.

Keywords: palmprint recognition; contactless palmprint images; elastic deformations; convolutional
neural networks; deep learning; ArcFace loss; center loss; discriminative feature learning

1. Introduction

The area of palmprint recognition is a well-established subfield of biometrics and has
been widely deployed commercially throughout the years [1,2]. Palmprint recognition
techniques typically rely on two kinds of features for identity recognition in addition to
the obvious principle lines, i.e., palmar friction ridges (the ridge and valley structures like
fingerprint) and the palmar flexion creases (discontinuities in the epidermal ridge patterns),
as illustrated in Figure 1a,b, respectively [1,3,4]. These characteristics represent rich sources
of discriminative information based on which efficient recognition models can be designed.

Palmprint-based biometric systems have been increasingly researched recently due to
their high recognition accuracy, usability, and acceptability [1,2].
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(a) Palmar friction ridges

(b) Palmar flexion creases

Principal 

lines

Figure 1. Illustration of the main palmprint characteristics/features commonly used for identity
inference in palmprint recognition systems: (a) palmar friction ridges and (b) palmar flexion creases.

Over the last few years, there has been a transition from contact-based to contactless
palmprint recognition approaches with a considerable amount of research focusing on
the latter problem [1,2,4–11]. Different from palmprint images captured with contact-
based sensors, palmprint images captured in a contactless manner may be taken with
commercial off-the-shelf cameras and in unconstrained environments [1]. This not only
widens the range of potential application scenarios where palmprint recognition can be
used, but also brings improved convenience to users. Additionally, contactless palmprint
acquisition offers many other benefits over contact-based alternatives, such as higher user
friendliness, increased privacy, and better hygiene [4]. Nevertheless, capturing palmprints
in a contactless manner also leads to new challenges related to increased appearance
variability caused by rotations, ambient illumination, translations, different distances from
the sensor, elastic deformations, as well as by the presence of higher levels of noise [12].
Among these, elastic deformations of the palmar surface (originating from the lack of
contact surface that would constrain the placement of the hand) are one of the biggest
issues for the recognition technology. This is illustrated in Figure 2, where a contact-based
(shown at the top) as well as a contactless (shown at the bottom) acquisition procedures
are presented. As can be seen, the unconstrained placement of the hand typically results in
palmprint samples that exhibit significant deformations compared to images captured with
contact-based sensors. It has been shown that conventional palmprint recognition methods
often degrade in performance when applied on such types of data due to the severe
inter-class variability induced by the acquisition procedure. To avoid such performance
degradations, more powerful models capable of extracting robust and discriminative
images representations are needed.

To address the problems encountered in challenging deployment scenarios, researchers
are increasingly looking into deep-learning (DL) techniques when designing biometric
solutions. Such techniques are capable of: (i) extracting knowledge and learning discrim-
inative representations from (partially noisy) data automatically and in an end-to-end
manner, (ii) adapting to the characteristics of the biometric samples, and (iii) achieving
more accurate recognition performance in less-constrained environments compared with
traditional hand-crafted feature extraction techniques. Several recent solutions, therefore,
consider DL techniques for contactless palmprint recognition [1,4,6,13,14].

However, they exhibit at least one (or more) of the following shortcomings. First,
the majority of existing techniques process input images in a holistic manner, where the
local information that is preserved in the computed representation is limited only to the
most discriminative parts of the input. In unconstrained settings this can be problematic,
since different parts of the input might be elastically deformed, which greatly affects the
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performance of such methods. Second, deep-learning models are often designed for closed-
set recognition tasks (using a softmax over a fixed set of classes), raising questions about
the discriminability of the feature representations learned internally for open-set problems.

Moreover, existing (hybrid) methods that utilize both global and local image infor-
mation fail to do so in a transparent way, that would allow interpretation of the results
and lead to explainable decisions. This has implications for the future application of such
models and their compliance with existing privacy laws, such as GDPR [15,16].

(a)(a)
(a)(a)

Figure 2. Illustrative comparison between a contact-based (at the top) and a contactless acquisition
procedure used in palmprint recognition systems. Because the placement of the hand is not con-
strained by a contact surface, images acquired in a contactless manner exhibit larger variability (also
due to elastic deformations of the palmar surface) as shown by the example palmprint images on the
right. Note that both example palmprints originate from the same subject.

In this work, we aim to address the problems outlined above by presenting a hybrid DL
based technique for contactless palmprint recognition, which: (i) utilizes both global and
local information, (ii) learns highly discriminative features with considerable generalization
capability, while not requiring extensive parameter tuning, and (iii) ensures interpretable
recognition results. To the best of our knowledge, the proposed approach represents the
first hybrid DL technique developed specifically for contactless palmprint recognition.
Different from other DL based solutions, our model also exhibits a high-level of robustness
to elastically deformed images and, as we show in the experimental section, ensures
state-of-the-art recognition performance.

In summary, we make the following contributions in this study:

• We present a hybrid DL approach for contactless palmprint recognition based on a
novel two-path network architecture that takes global as well as local image informa-
tion into account.

• We propose an attention-based channel pooling operation, which is capable of (adap-
tively) extracting the most discriminative (local) information from sampled patches of
the given input image.

• We introduce thin plate splines (TPS) as an augmentation procedure for explicitly
modeling elastic deformations and demonstrate that the proposed augmentation
procedure is beneficial for recognition performance.

• We show the benefit of combining local and global image information into discrim-
inative representations that lead to a state-of-the-art performance for contactless
palmprint recognition on two publicly available datasets.
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2. Related Work

In this section we discuss prior work related to this study and cover some of the
most important representatives of conventional as well as deep learning-based palmprint
recognition methods. The reader is referred to some of the excellent surveys on palmprint
recognition for a more in-depth coverage of the field [17–19].

2.1. Conventional Methods

Early work on palmprint recognition focused on hand-crafted feature extraction
techniques to encode the palmprint structure. Jia et al. [8], for example, presented a palm-
print descriptor, called Histogram of Oriented Lines (HOL) inspired by the established
Histogram of Oriented Gradients (HOG) descriptor [8] and developed a recognition ap-
proach around HOL that also considered subspace learning methods for dimensionality
reduction, i.e., PCA, LDA, and SRDA, as well as their corresponding kernel versions
KPCA, KLDA, and KSRDA. The proposed approach was tested on two palmprint datasets,
i.e., PolyU II [20] and PolyU MB [21]. Kumar [2] explored the use of improved align-
ment and matching strategies for contactless palmprint recognition using several publicly
available contactless palmprint datasets and showed that these lead to state-of-the-art
performance. Wu et al. [22] presented a contactless palmprint verification method that
used an isotropic filter for preprocessing and SIFT based feature extraction and matching.
The proposed method utilized a two-stage strategy, i.e., in the first stage, an iterative
RANSAC (I-RANSAC) algorithm was employed to remove the mismatched points, and
in the second stage, Local Palmprint Descriptors (LPDs) were extracted at SIFT keypoints
and used to further refine the keypoint matching procedure. As a detection score, the
authors used the final number of matched SIFT keypoints.To evaluate the performance
of the proposed approach, two publicly available contactless palmprint databases were
considered, i.e., the IIT Delhi (IITD) Touchless Palmprint Database [23], and the CASIA
palmprint database [24]. Zheng et al. [11] presented a new descriptor referred to as Differ-
ence of Vertex Normal Vectors (DoN) for 2D palmprint matching. The descriptor is based
on the ordinal measure which partially describes the difference of the neighboring points’
normal vectors. Using the DoN descriptor, the authors were able to extract 3D information
from 2D palmprint images, which was demonstrated to be highly stable under commonly
occurring illumination variations during contactless imaging. The proposed method was
evaluated on several publicly available 2D palmprint databases in identification as well as
verification mode with highly encouraging results.

While the solutions reviewed above achieved impressive performance for palmprint
recognition, they are still limited in the amount of discriminative information they are
able to extract from the input images given their hand-crafted design. A richer and more
descriptive set of features can in general be obtained through the use of deep learning
models, such as the one presented in this work.

2.2. Deep Learning Methods

More recently, the focus in the field of palmprint recognition shifted from tradi-
tional feature engineering approaches to the deep learning based solutions [1,13,14,25].
Fei et al. [18], for example, evaluated a number of feature extraction methods for contact-
less palmprint recognition, including four deep learning architectures, i.e., AlexNet [26],
VGG-16 [27], GoogLeNet [28] and Res-Net-50 [29]. These networks were pre-trained on
ImageNet [30] and then fine tuned using extracted palmprint regions of interest (ROIs). The
authors concluded that deep learning methods achieve comparable or even higher perfor-
mance than conventional palmprint methods. Genovese et al. [6] introduced the PalmNet
architecture, a novel Convolutional Neural Network (CNN) that is capable of fine tuning
specific palmprint filters through an unsupervised procedure based on Gabor responses
and Principal Component Analysis (PCA), while not requiring class labels during the train-
ing process. The authors validated their approach on several publicly available datasets, i.e.,
the CASIA palmprint database V1 [24], the IITD database (Version 1.0) [23], the REgim Sfax
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Tunisia (REST) hand database 2016 [25] and the Tongji Contactless Palmprint Dataset [5]. In
all cases, they obtained recognition accuracies greater than those of the prior methods from
the literature [6]. Svoboda et al. [1], presented a Siamese-type CNN for palmprint image
recognition based on a novel loss function related to the d-prime index. Their approach
automatically learns features from the data, thus not requiring extensive parameter tuning.
By using their design, the authors achieved greater class separation between the genuine
and the impostor score distributions and better scalability than competing methods, while
not requiring large amounts of training data. The authors also achieved state-of-the-art
verification results on the standard IIT Delhi [23] and CASIA palmprint [24] datasets. Liu
and Kumar [4], designed a fully convolutional and highly optimized network that used
a soft-shifted triplet (SSTL) loss function to learn discriminative palmprint features. The
presented method was shown to offer superior generalization capability over different
publicly available contactless palmprint databases, while not requiring database-specific
parameter tuning. By using the proposed design, the authors consistently outperformed
several classical and state-of-the-art palmprint recognition methods in identification, as
well as in verification experiments. Zhu et al. [31] introduced an adversarial metric learning
methodology for palmprint recognition and reported superior performance over competing
techniques on eight different datasets.

The approach in this paper is related to the above methods in that it also uses deep
learning to address the problem of contactless palmprint recognition but differently from
the existing solutions, it takes not only global image appearance into account, but also
the most discriminative local image cues that are aggregated through a novel attention
based channel pooling operation. Moreover, to further boost the verification performance
the proposed model uses a powerful learning objective that allows it to learn highly
discriminative feature representations.

3. Proposed Method

In this section we present our new DL-based methodology for contactless palmprint
recognition. First, we explain how the model encodes global and local image characteristics
from the palmprint images. Next, we introduce the attention mechanism. Finally, we
proceed to the learning mechanism used to further enhance the discriminative power and
the quality of the learned deep palmprint features.

3.1. Overview of the Proposed Model

The idea behind our approach is illustrated on Figure 3. Compared to other relevant
deep learning methods, our method relies on a dual-path model architecture, where one path
processes the input in a holistic manner through a backbone CNN feature extractor and the
second path captures local (patch-based) information through a backbone Siamese-based
CNN feature extractor. In the local processing path feature representations are extracted
from each of the patches sampled from the input image and aggregated by a novel pooling
mechanism, called channel-wise attention pooling. At the final stage, the global holistic and
the aggregated local features are combined by using a simple concatenation procedure. The
model is trained end-to-end with a learning objective that combines the Additive Angular
Margin (ArcFace) loss with the center loss. This overall training objective helps the model
learn highly discriminative features, which is crucial for contactless palmprint recognition.
The overall idea with our design is that the complementary information is learned within
the two processing paths, where the local path compensates for the image characteristics
that are not captured well by the global processing path. Since the presence of elastic
deformations of the palmar surface is a major obstacle for palmprint images acquired in
a contactless manner, we designed our model under the assumption that a combination
of such global and local information and joint supervision through the combined loss,
would lead to more robust and discriminative image representations. As we show in the
experimental section, the addition of local image representations contributes toward better
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and more robust overall recognition performance. The following sections provide detailed
explanations of all the building blocks of the proposed method.
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Figure 3. Overview of the proposed method for contactless palmprint recognition. Our model is
designed as a Two-path architecture. The first path of the model, marked (a), extracts holistic image
information through a backbone CNN feature extractor. The second path, marked (b), represents the
local processing path where the sampled patches from a fixed grid are processed through a parallel
Siamese-based CNN feature extractor with shared model parameters. The next part of the model,
marked (c), extracts the most relevant local information from the local image patches with a new
channel-wise attention pooling mechanism. The global and the aggregated local features are then
combined in (d). The final part of the model, marked (e), is only used during training and represents
the joint supervision with the ArcFace and the center losses.

3.2. The Global Processing Path

The global processing part of the model (shown in Figures 3a and 4) is responsible for
capturing global palmprint characteristics, similarly to standard CNNs used for recognition
purposes in other areas of biometrics [27,32,33]. The processing path consists of a simple
CNN backbone feature extractor ψg that takes a palmprint ROI x ∈ Rw×h×3 as input, where
w and h denote image dimensions, and generates a global image representation fg as the
results. Formally, this can be written as:

fg = ψg(x, θg) ∈ Rd, (1)

where θg denotes the parameters of the global processing path that need to be learned
during training. While any backbone CNN can be used in our approach, we select the
popular VGG-16 model [27] in this work because of (i) its competitive performance, and
(ii) the fact that an open source implementation is publicly available.

To make the global processing path applicable to differently sized input images, we
make sure the backbone CNN is fully convolutional. Thus, the d-dimensional global
features fg ∈ Rd are generated through an average pooling layer in case of the VGG-16
backbone, as also illustrated in Figure 4.
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Figure 4. Detailed illustration of the global processing path from Figure 3a, along with the feature
maps extracted at different levels of the model. A fully convolutional VGG-16 backbone is used to
extract a global palmprint representation fg from the input image.

3.3. The Local Patch-Based Processing Path

In the second processing path of our model (shown in Figure 3b and in detail in
Figure 5), the global palmprint image is first decomposed into N smaller patches—sampled
from a fixed grid with overlap (Figure 5). Here, N is an open hyper-parameter that can be
set depending on the data characteristics. This processing path differs from the global path
in that it represents a Siamese CNN with shared model parameters. Thus, the same feature
extractor is used for all image patches. This design is able to process all N patches in a
single shot. By focusing only on a small palmprint area at the time, the local processing path
is able to encode important local image characteristics that are not properly represented
in the holistic representation extracted by the global processing path. If we denote the set
of sampled local patches as {xi}N

i=1, where xi ∈ Rw′×h′×3 and w′ ≤ w and h′ ≤ h, then the
local image representations can be described as:

fli = ψli (xi, θl) ∈ Rd, (2)

where ψli denotes the i-th component of the Siamese structure, θl are the shared model
parameters, fli = [ fi1, fi2, . . . , fid]

T is the i-th d-dimensional local feature vector and
i = 1, . . . , N.
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Figure 5. Detailed illustration of the local processing path from Figure 3b, along with the feature
maps learned at different levels of the model. Image patches, sampled from the input image in a
grid-like manner, are processed by a parallel backbone Siamese CNN with shared model parameters
resulting in N local image features fli

, where i = 1, . . . , N.
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Similarly as in the global processing path, the local processing path can be imple-
mented with arbitrary backbone CNNs in the Siamese structure. However, we again utilize
a fully convolutional VGG-16 model in this work to make our approach more coherent as
illustrated in Figure 5. Next, we aggregate all local feature vectors into a N× d dimensional
feature matrix F as shown in Equation (3), where N denotes the number of patches and d is
the feature dimension, i.e.,

F =


f11 f12 · · · f1d
f21 f22 · · · f2d
...

...
. . .

...
fN1 fN2 · · · fNd

 ∈ RN×d (3)

The generated feature matrix then serves as the basis for a novel pooling operation
that is described in depth in the next section.

3.4. The Attention Mechanism

In order to obtain the final most relevant d-dimensional feature representation from
the local feature matrix F, a novel pooling operation called channel-wise attention-pooling
is proposed in this paper. This operation is implemented through a dedicated CNN, as
shown in Figure 6, and has its own trainable parameters. Suppose the output of the local
processing path is the N × d feature matrix F, then the output from the attention-pooling
layer can be calculated as follows:

F̃ = F� (w · 1Td ) ∈ RN×d, (4)

where
w = ζ(y) ∈ RN , (5)

and where F̃ denotes the weighted feature matrix, � represent the element-wise or
Hadamard product, w is a vector of weights, 1d ∈ Rd is a d-dimensional vector of all
ones, y is the output from the last fully connected (FC) layer with the number of output
units equal to the number of patches N, and ζ is the softmax activation function. After
applying the softmax activation function, the vector of weights w = [w1, w2, . . . , wN ]

T has
the following property:

N

∑
i=1

wi = 1, (6)

and can be considered as a vector of probabilities. The final local feature vector fl is
obtained by averaging the weighted feature matrix over the patch dimension (indicated by
the superscript) as shown in Equation (7), i.e.,

fl =
1
N

N

∑
i=1

F̃(i) ∈ Rd, (7)

The main idea behind the proposed channel-wise attention-pooling mechanism is to
encourage the model to focus on the most discriminative parts of the input, while giving
less importance to less discriminative parts. The proposed approach also offers a straight-
forward way of exploring the importance of each image part (by examining the weights in
w) which contributes towards high explainability of our model. In summary the mapping
ψa performed by the proposed attention mechanism is formally described as:

F̃ = ψa(F, θa), (8)

where θa stands for the set of parameters of the attention block from Figure 6.
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Figure 6. Illustration of the channel-wise attention-pooling mechanism. The local feature matrix F
is reweighted along the patch dimension to give more importance to more informative local image
patches. Shown is the architecture, implemented in the model we have used.

3.5. Combining Information

In the next step, the global and local features are concatenated to form the combined
feature representation fc, i.e.,

fc = fg ⊕ fl ∈ R2d, (9)

where ⊕ is the concatenation operator. This representation is then fed to a series of
additional processing layers with parameters θ f , as shown in Figure 3d. Various forms
of regularizations are also included to prevent overfitting and to enhance the stability of
the model during the training process. One such form of regularization is the dropout
regularization, which prevents the model from learning interdependent sets of feature
weights. The use of the batch normalization as a second form of regularization, increases the
stability of the model by normalizing the output of the previous layer, i.e., by subtracting
the batch mean and dividing by the batch standard deviation. This layer has its own
trainable parameters that are learned along with the remaining model parameters. Before
computing the loss, the final embeddings are normalized to unit L2 norm, which is a
common strategy that proved beneficial in the open literature when training models with
angular margin losses [34,35].

3.6. Discriminative Feature Learning Approach for Deep Palmprint Recognition

The training process for the proposed palmprint recognition model is done by using a
combined learning objective of the following form:

L = Laam + λLC , (10)

where

Laam = − 1
M

M

∑
i=1

log
es(cos(Θyi+m)

es(cos(Θyi+m) + ∑n
j=1,j 6=yi

es cos Θyj
, (11)

and

LC =
1
2

M

∑
i=1
||xi − cyi ||22. (12)

In the above equations, Laam is the Additive Angular Margin (aam) loss, also known
as the ArcFace loss [34], LC is the center loss [36] and λ is a hyper parameter that balances
the two [36]. In Equation (11), m denotes the angular margin penalty on angle Θi, s is a
feature scale parameter, cos Θyj is the logit for each class yj, while the batch size and the
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class number are denoted as M and n, respectively. For the center loss in Equation (12), xi
denotes the i-th feature vector belonging to the yi-th class, and cyi is the yi-th class center.
The center update in the center loss function is done over mini-batches as follows:

ct+1
j = cj − α · ∆ct

j, (13)

where

∆ct
j =

∑M
i=1 δ(yi = j) · (ci = xi)

1 + ∑M
i=1 δ(yi = j)

. (14)

The hyper parameter α controls the learning rates of the centers and helps to avoid
large perturbations caused by a few mislabelled samples, ∆ct

j (Equation (14)) denotes the
difference between the current center vector and the individual feature vectors, t stands
for the iteration number, and δ(·) is equal to 1 when the inside condition is satisfied and
0 otherwise.

The motivation for using the combined loss is two-fold: (i) the ArcFace loss Laam
contributes towards better separation between classes in the embedding space and ensures
high discriminability of the learned feature representations, whereas (ii) the center loss LC
minimizes intra-class variations and encourages features from the same classes to be pulled
closer to their corresponding class centers [36,37]. While the ArcFace loss was originally
designed to avoid the need for additional (discriminative) learning objectives (such as
center loss), we show in the experimental section that the combination of the two losses
still leads to improved performance.

3.7. Model Implementation

We implement our model in the PyTorch framework (available at: https://pytorch.org
latest accessed on 21 December 2021) and use a built-in implementation of the VGG-16
model initialized with weights learned on the ImageNet dataset for all of our backbone
feature extractors. We modify the backbone models in order to accept arbitrary sized input
images by replacing the last max pooling layer in both processing paths with the average
pooling layer with kernel size of 2, which yields 2048-dimensional embeddings. We set
the number of patches in the local processing path to N = 9 with a size of 75× 75 pixels,
which in our preliminary experiments was observed to provide a good trade-off between
performance improvement of the overall model and its computational complexity. Both
the global (holistic) and the aggregated local features are then concatenated to form a
4096 dimensional feature representation. After that, the combined feature vector is fed
to a series of layers as summarized in Table 1 and illustrated in Figure 3d. Additional
implementation details can be found in the publicly available source code: https://github.
com/Marjan1111/tpa-cnn latest accessed on 21 December 2021.

Table 1. Description of the used layers with their corresponding output dimensions after the
concatenation procedure. This part of the model is shown in Figure 3d.

Layer Abbreviation Type of Layer Output Dimensions

fc Input 4096
FC Fully Connected 4096
Bn Batch Normalization 2048

ReLU Activation Function 2048
FC Fully Connected 2048
Bn Batch Normalization 1024
L2 L2 Normalization 1024

https://pytorch.org
https://github.com/Marjan1111/tpa-cnn
https://github.com/Marjan1111/tpa-cnn
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Throughout all of our experiments we compare the global processing path (Figure 4) as
a standalone CNN feature extractor against the two-path CNN feature extractor (Figure 5) in
order to explore how the model benefits from using both global and local image information.

4. Experiments
4.1. Experimental Datasets

Two publicly available contactless palmprint datasets are used to evaluate the per-
formance of the proposed method in this study, namely the IITD and CASIA palmprint
datasets. Details on the two datasets are given below.

4.1.1. IITD Palmprint Image Dataset

The IIT Delhi (IITD) Touchless Palmprint Dataset [23], collected by the Indian Institute
of Technology Delhi, provides images from the left and right hands of more than 230 volun-
teers in the age group between 14–57 years. Images in the database were collected with a
simple touchless imaging setup in an indoor environment and with a circular fluorescent il-
lumination around the camera lens. A total of 2601 color hand images from 460 palms with
7 samples for each hand of each person were acquired in a single session. The IITD database
also provides automatically segmented (i.e., extracted Regions-Of-Interests—ROIs) and
normalized images with the size of 150× 150 pixels and at least 5 samples for each of the
two hands. Some typical example images from the IITD dataset from the left and right
palmprints with their corresponding ROIs are shown in Figure 7a.

(a) (b)

Figure 7. Samples from the left and right palmprints with their corresponding segmented region of
interests (ROIs) for: (a) the IITD dataset, and for (b) the CASIA dataset.

4.1.2. CASIA Palmprint Image Dataset

The second palmprint database used in our experiments is the CASIA Palmprint Image
Dataset [24] (or CASIA-palmprint for short), collected by the Institute of Automation of
the Chinese Academy of Sciences, which is one of the largest (to date) palmprint database
available in terms of the number of individuals [24]. It contains 5052 palmprint images
captured from 312 individuals, both males and females, with at least 8 samples for each
hand of each individual acquired in a single session. The images were acquired by a
self-developed palmprint recognition device with a CMOS imaging sensor fixed on top
of it. No pegs were used to restrict postures and positions of the palms. The acquired
images are in an 8-bit grayscale format with dimensions of 640× 480 pixels. During data
capture, the subjects were required to put their palms into the device and lay them on a
uniform-colored background, to generate evenly distributed illumination. As explained
in [2], there are several things that need to be considered w.r.t. this database. The individual
“101” is the same as individual “19”, and therefore these two classes were merged into
one class. The 11th image from the left hand of individual “270” was misplaced to the
right hand, and the 3rd from the left hand of individual “76” represents a distorted sample
with very poor quality. These problematic images were excluded from our experiments.
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As the CASIA database does not provide segmented palmprint images, we used the
segmentation procedure from [6] to extract the palmprint ROIs. The final dataset adopted
for our evaluation contained 301 individuals and a total of 5467 palmprint ROIs. A few
illustrative sample images from the dataset are presented in Figure 7b.

4.2. Experimental Setup

To evaluate the performance of the proposed model, verification experiments were
conducted over the two experimental datasets. Every two samples in the datasets are
matched. If the two images were from one person (class), the matching is considered
genuine (a mated comparison), otherwise, it was considered an impostor matching (non-
mated comparison). Following the all-vs.-all experimental protocol, the number of genuine
verification attempts conducted (Ngenuine) and the number of impostor attempts (Nimpostor)
can be computed with Equations (15) and (16), as follows:

Ngenuine = Nhands × Nenroll × Nclass, (15)

Nimpostor = Nhands × Nenroll × Nclass × (Nclass − 1), (16)

where Nhands is the number of hands, Nenroll is the number of enrollment palmprint images
of the the subjects, and Nclass is the number of unique classes in a given dataset. The
cosine similarity function is used to compute client and impostor matching scores S, as
seen in Equation (17), where n′ is the length of the feature vector, fp is the feature vector
extracted from the given probe image, and fe is the feature vector extracted from the
enrollment image.

S =
fp · fe∥∥ fp
∥∥‖ fe‖

=
∑n′

i=1 fp,i fe,i√
∑n′

i=1 f 2
p,i ·
√

∑n′
i=1 f 2

e,i

, (17)

where · denotes the scalar product, || · || is the L2 norm operator, and f·,i is the i-th element
of vector f·.

For the experiments we partition the image datasets into three disjoint subsets, i.e.,
(i) a training set, which is used to learn the model parameters, (ii) a validation set, a subset
of the overall training data, used to monitor the training progress and provide an unbiased
estimate of the model fit when tuning hyperparameters, and (iii) a testing set which is
utilized to evaluate the final verification performance.

Since the two datasets contain different numbers of samples per class, we perform a
simple undersampling process. This process ensures that each class has as many samples
as the class with the minimum number of samples. The number of samples in the datasets
before and after the undersampling are shown in Table 2. By using this process, we balance
the datasets with the goal of removing potential biases for the training procedure. On the
other hand, the undersampling discards some potentially valuable sources of information.
We address this issue through severe data augmentations that further stimulate training
and prevent overfitting.

Table 2. The amount of data before and after the application of the undersampling procedure on the
two experimental datasets.

Dataset
Palm

Left Right

IITD (min. samples per class) min = 5 min = 5
Initial numbers 1300 1301

After undersampling 1150 1150

CASIA (min. samples per class) min = 6 min = 7
Initial numbers 2728 2739

After undersampling 1806 2107
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4.3. Performance Metrics

Following standard methodology [32,38,39], the following error rates commonly used
for verification experiments are adopted to evaluate the performance of the tested models:

• Area Under the Curve (AUC): AUC represents a performance metric that measures
the overall performance of a learned binary model and is typically computed from a
standard Receiver Operating Characteristic (ROC) curve. This metric is widely used
to assess performance of biometric systems operating in verification mode. A poor
model fit results in AUC≈ 0.5 which indicates randomness, on the other hand, a good
model fit results in AUC ≈ 1.

• Verification Rate at the False Accept Rate of 0.1% (VER@0.1FAR): This performance
measure corresponds to an operating point on the ROC curve and is computed
as follows:

VER@0.1FAR = 1− FRR(θver01), where (18)

θver01 = arg min
θ
|FAR(θ)− 0.001|, (19)

where θver01 is the relevant decision threshold, FAR denotes the False Accept Rate,
and FRR is the False Reject Rate. FAR corresponds to the percentage/fraction of times
an invalid (impostor) user is accepted by the system and is calculated as follows:

FAR(θk) =
{|dimp|dimp ≤ θk|}

{|dimp|}
. (20)

Similarly, FRR represents the percentage/fraction of times a valid (genuine) user is
rejected by the system and is calculated as follows:

FRR(θk) =
{|dgen|dgen ≥ θk|}

{|dgen|}
. (21)

In Equations (20) and (21), {dimp} and {dgen} represent sets of impostor and gen-
uine scores generated during the experiments, respectively, | · | denotes a cardinality
measure, and θk represents the decision threshold.

• Verification Rate at the False Accept Rate of 1% (VER@1FAR): This measure corre-
sponds to another operating point on the ROC curve defined as follows:

VER@1FAR = 1− FRR(θver1), where (22)

θver1 = arg min
θ
|FAR(θ)− 0.01|, (23)

where θver1 denotes the relevant decision threshold.
• Equal Error Rate (EER): The last performance measure, EER, is defined with a decision

threshold θeer that ensures equal values of FAR and FRR as follows:

EER =
1
2
(FAR(θeer) + FRR(θeer)), with (24)

θeer = arg min
θ
|FAR(θ)− FRR(θ)|. (25)

Additionally, we also use Receiver Operating Characteristic (ROC) curves to visualize
the performance of the models throughout all experiments. Note that all performance
scores defined above are provided in % when reporting results.
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4.4. Training Details

We train our model(s) with the combined objective function from Equation (10). Dur-
ing the training process, some hyperparameters remain fixed, while others are further
analyzed in a broader range to study their impact. The parameters that we vary in our
experiments are the hyper-parameters of the combined objective function, i.e., the λ pa-
rameter, which balances the impact of the ArcFace and the center losses, and the parameter
α that controls the learning rate of the centers in the center loss function. The optimiza-
tion of the base model parameters is done with the Adam optimizer with a learning rate
of 1× 10−4. The channel-wise attention-pooling operation, which has its own trainable
parameters, is trained with a learning rate of 1× 10−2.

To prevent overfitting we use severe data augmentations and modify data on the fly,
so that our CNN models is transformation invariant to the maximum possible extent. The
augmentations are done with the Imgaug (available at: https://github.com/aleju/imgaug,
accessed on 12 December 2021) library and the following image transformations:

• Histogram equalization,
• Rotations in the range ±10◦,
• Random cropping (with a 50% chance), where between 5% and 30% of the original

image is cropped away,
• Multiplication of all image pixels with a random value v sampled once per image in

the range (0.9, 1.2),
• Application of one of the following:

(1) Random corruption of p percent of all pixels within an image area by salt-and-
pepper noise, where p ∈ (1, 10)%. The size of the image area is between 2% and
20% of the size of the input image,

(2) Random replacement of a certain fraction of pixels from the image with zero,
with a percentage value p ∈ (1, 10)%, with 20% per-channel probability,

(3) Random replacement of rectangular masks from the image with zeros, with a
percentage value p ∈ (1, 10)%. The size of the masks is between 2% and 20% of
the size of the input image,

• Application of one of the following:

(1) Blurring with a Gaussian kernel with a sigma value between (0, 3.0),
(2) Blurring using averaging over neighborhoods that have random sizes, which can

vary between 5 and 11 in height and 1 and 3 in width,
(3) Application of motion blur with a kernel size of 15× 15 pixels.

Through these data augmentations we ensure that our model sees new variations of
the data at each and every epoch of the training procedure, and (almost) never sees the
exact same image multiple times, which is always beneficial when fine-tuning models
trained initially on large scale datasets like ImageNet to downstream tasks. By carefully
choosing the image augmentations, we can additionally boost the predictive performance
of the learned model, which further enhances its generalization capability. Another reason
to use data augmentation is because we want to lower the gap between the training and
validation performance during the training process. All augmentations are performed in
random order and with 50% probability, which means there is a (small) chance for not
performing augmentations at all.

For illustrative purposes, several image augmentations with the patch decomposition
procedure from a single augmented image are shown in Figure 8a for IITD, and in Figure 8b
for the CASIA dataset. It is important to note that the second input in the proposed Two-
Path CNN model (Figure 5), takes the same augmented image as input, but decomposes
it into N smaller patches sampled in a grid-like fashion with overlap. By doing this, we
ensure that the global and the local processing path are looking at the same input data
during training.

https://github.com/aleju/imgaug
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(a) (b)

Figure 8. Illustration of different data augmentations as well as the patch decomposition procedure
for sample images from (a) the IITD dataset and (b) the CASIA dataset.

5. Quantitative Results

The main goal of this section is to rigorously evaluate the proposed Two-Path CNN
palmprint recognition model and to compare its performance with competing state-of-the-
art methods from the literature. Throughout the experiments, we evaluate all models on
different subsets of images by randomly splitting the test data into five equal folds and
adopting the all-vs-all experimental protocol in each of the folds. We use this approach
to be able to also estimate confidence scores on all reported results in addition to the
overall performance.

For the competing methods we report results for several traditional feature extraction
methods, using the code provided in [37,40]. Furthermore, we also compare our results
against four state-of-the-art methods from the literature, i.e., three DL-based from [4,31,41],
and one traditional (non DL-based) solution [11], previously reported to achieve state-of-
the-art performance on standard benchmarks.

5.1. Comparison with Competing Methods

For the comparison with traditional feature extraction approaches we consider seven
dense-descriptor based methods, i.e., Local Binary Patterns (LBPs) [42], Rotation Invari-
ant and Local Phase Quantization (RILPQ [43] and LPQ [44]) features, Histograms of
Oriented Gradients (HOG) [8,45], Binarized Statistical Image Features (BSIF) [46], Pat-
terns of Oriented Edge Magnitudes (POEM) [47] and features extracted with the help of a
bank of the Gabor filters [48]. These feature extraction techniques are used (with default
parameters from [40]) to infer compact representations from the palmprint images for
matching. To facilitate a fair comparison, the cosine similarity is again used to produce the
comparison scores.

The results of the comparison are presented in the form of ROC curves in Figure 9
and in the form of performance scores in Table 3. We can see that the proposed Two-path
CNN approach clearly outperforms all traditional feature extraction methods at every
evaluated operating point, with BSIF, RILPQ and POEM being the closest competitors.
We also observe that the Global-CNN, when used as a standalone feature extractor, is
able to outperform the traditional methods in almost all cases except for BSIF, RILPQ and
POEM, when evaluated on the right palmprints from the CASIA dataset. Additionally, we
notice that the local image properties captured by recognition techniques based on HOG,
LBP and Gabor features, are not sufficient to extract useful information from contactless
palmprint images where the presence of elastic deformations is known to be problematic.
We can conclude that even though the Global-CNN model processes the input image
in a holistic manner, the very nature of the CNN models helps to extract discriminative
local information due to the local connectivity of the convolutional kernels. However, the
addition of the local image properties through the local processing path in the proposed
Two-path model boosts the verification performance while making the deeply learned
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features more discriminative and more resilient to the presence of elastic deformations and
other artefacts caused by the contactless acquisition procedure.
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Figure 9. Comparison between the traditional feature extraction methods and the proposed two-path
model evaluated on the (a) left and (b) right palmprints from the IITS dataaset, as well as the (c) left
and (d) right palmprints of the CASIA dataset. The figure shows average ROC curves together with
confidence intervals (in the form µ± σ) on a semilog scale.

Table 3. Comparison against traditional recognition approaches relying on hand-crafted features.
Results are reported for left and right palms separately for both datasets. The results are presented in
the form of a µ± σ (and in (%)) computed over five test subsets. The best performance is highlighted
in bold.

Method HOG [45] LBP [42] LPQ [44] RILPQ [43] Gabor [48] BSIF [46] POEM [47] Global (Ours) Two-Path (Ours)

Evaluated on the Left Palmprints from IITD Dataset

EER 7.216± 1.519 6.380± 0.577 1.383± 0.578 1.824± 0.508 7.123± 0.744 1.121± 0.431 1.737± 1.014 1.849± 0.641 0.757± 0.212
AUC 97.394± 0.690 98.072± 0.437 99.812± 0.133 99.660± 0.289 97.495± 0.694 99.768± 0.142 99.359± 0.442 99.770± 0.127 99.935± 0.065

VER@0.1FAR 81.739± 3.049 71.652± 1.272 96.173± 1.006 97.130± 0.650 73.739± 2.730 98.0± 0.976 96.434± 1.516 94.782± 1.099 98.086± 0.347
VER@1FAR 88.086± 2.104 81.391± 0.968 98.521± 0.706 98.0± 0.650 85.304± 1.659 98.869± 0.650 97.913± 1.358 97.478± 1.179 99.478± 0.507

Evaluated on the Right Palmprints from IITD Dataset

EER 6.327± 1.041 7.209± 0.488 1.309± 0.266 1.101± 0.428 6.184± 0.866 1.191± 0.453 1.652± 0.426 0.900± 0.421 0.602± 0.234
AUC 97.796± 0.691 97.607± 0.496 99.868± 0.090 99.855± 0.123 98.050± 0.335 99.780± 0.121 99.701± 0.191 99.939± 0.056 99.912± 0.102

VER@0.1FAR 82.434± 0.706 69.304± 1.307 96.434± 0.886 97.565± 0.706 75.217± 1.760 97.565± 0.706 96.695± 0.806 97.391± 1.626 98.521± 0.589
VER@1FAR 88.608± 0.325 77.043± 2.599 98.608± 0.325 99.043± 0.748 87.217± 2.994 98.521± 0.758 98.260± 0.476 99.043± 0.576 99.478± 0.425

Evaluated on the Left Palmprints from CASIA Dataset

EER 5.025± 1.005 5.150± 0.663 0.904± 0.336 0.705± 0.216 7.530± 0.475 0.465± 0.230 0.679± 0.117 0.385± 0.273 0.374± 0.164
AUC 98.557± 0.546 98.992± 0.174 99.896± 0.095 99.947± 0.060 96.704± 0.418 99.969± 0.039 99.939± 0.046 99.987± 0.011 99.986± 0.015

VER@0.1FAR 86.489± 0.657 64.229± 0.781 92.411± 2.863 98.671± 0.563 61.960± 0.756 99.003± 0.646 98.172± 0.622 99.113± 0.847 99.113± 0.687
VER@1FAR 91.861± 1.625 82.889± 2.163 98.836± 0.847 99.501± 0.322 80.011± 2.228 99.723± 0.303 99.501± 0.207 99.722± 0.303 99.778± 0.207

Evaluated on the Right Palmprints from CASIA Dataset

EER 6.691± 0.691 5.577± 0.618 1.533± 0.421 0.949± 0.336 7.677± 0.334 0.981± 0.487 0.997± 0.275 1.208± 0.306 0.553± 0.315
AUC 97.756± 0.234 98.725± 0.256 99.659± 0.030 99.885± 0.064 97.065± 0.471 99.770± 0.225 99.695± 0.167 99.801± 0.089 99.917± 0.070

VER@0.1FAR 82.631± 1.561 61.652± 1.595 90.792± 4.662 97.436± 0.317 62.938± 5.086 97.864± 1.093 97.959± 0.465 96.583± 0.906 98.625± 0.863
VER@1FAR 88.041± 1.516 80.305± 1.449 98.101± 0.721 98.907± 0.512 79.879± 3.645 99.051± 0.541 99.003± 0.274 98.718± 0.439 99.525± 0.299

5.2. Comparison with State-of-the-Art Methods

Next, we compare the proposed method against three state-of-the-art DL-based palm-
print recognition techniques and one non DL-based method. To ensure a fair comparison,
we either use the evaluation protocol used by the authors of the baseline techniques or
utilize the code provided by the authors of the baseline methods (where available), and
use our evaluation protocol for the comparison.

The first state-of-the-art method is a highly optimized DL architecture, referred to as
Residual Feature Network (RFN) [4]. RFN is based on a fully convolutional network that
generates deeply learned residual features trained with the Soft-Shifted Triplet Loss (SSTL).
The key advantage of this method is that it offers superior generalization capabilities
across different datasets. FRN-SSTL does not have fully connected layers which results
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in pure feature map outputs and is beneficial for preserving spatial correspondences
among the most discriminative palmprint areas. The second method is referred to as
Difference of Vertex Normal Vectors (DoN) and represents a non-DL based method [11].
The key advantage of DoN lies in the ability to extract 3D information from 2D palmprint
images, which is beneficial when dealing with contactless palmprint images, where the
presence of different variations in illuminations is common. The next method selected
for the comparison represents a DL approach initially presented in [31] and uses the
GoogLeNet DL architecture as a backbone feature extractor. We denote this method as
AML_N-Pair in this paper. To obtain discriminative and equidistributed embeddings, the
authors propose a novel optimization objective which consists of a pair of adversarial loss
functions, specifically, a distance metric term and a confusion term. By using the joint
supervision of those two terms, this method was reported to achieve strong generalization
in cross-dataset contactless palmprint recognition experiments. We also compare the results
against the Weight-based Meta Metric Learning (W2ML) approach proposed in [41]. This
method uses metric learning in a meta way to extract discriminative palmprint features
using an end-to-end DL network, which was shown to be robust and efficient for diverse
palmprint recognition scenarios.

It is important to note that the experimental results are done only on the IITD dataset
since some authors did not provide results for the CASIA dataset. Table 4 summarizes the
experimental results for IITD in terms of EER values. The proposed Two-path model clearly
outperforms the DoN, AML_N-Pair and W2ML approaches and ensures an EER reduction
of around 50% compared to any of these methods. Additionally, it performs comparably to
the recent RFN-SSTL method, where a very similar EER score is achieved by the proposed
approach. The difference in the point estimates of the EER scores of RFN-SSTL and our
approach is statistically not significant. The reported results point to the discriminative
power of feature representations generated by the proposed Two-path model and their
suitability of contactless palmprint recognition. Furthermore, we note that we are able to
further improve on the results reported here by explicitly modeling elastic deformations
using a Thin Plate Spline (TPS) transformation. We provide detailed information on this
process (not yet used for generating results in this section) in Section 5.4.

Table 4. Comparison against state-of-the-art methods from the literature. The comparison is done on
the IITD dataset in terms of EER values. All results are presented in (%).

Setting Method EER (in %)

Protocol from [4,11,41]

DoN [11] 1.391
RFN-SSTL [4] 0.600

W2ML [41] 2.330
Two-Path CNN (ours) 0.701

Code from [31] AML_N-Pair [31] 1.690
Two-Path CNN (ours) 0.910

5.3. Sensitivity Analysis and Ablations

In this section for the ablation study we conduct a wide range of experiments by
examining different parts of our method.

To explore the impact of various model components on performance we conduct a
sensitivity analysis. Specifically, we investigate the sensitiveness of models to changes of
the parameters in the combined training objective, i.e., the λ parameter (Equation (10)),
which balance the contribution of the two learning objectives, and the α parameter that
controls the learning rate of the centers (Equation (13)) in the center loss function. Note
that the experiments also include cases where λ = 0 and, hence, one of the loss terms
is ablated. Additionally, we also provide a detailed look into the performance of the
global and local processing paths and their contributions to the overall performance of the
complete Two-path model.
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5.3.1. Impact of λ and α Parameters

In the next series of experiments we train multiple models with different λ and α
parameters and investigate how sensitive the training procedure is to changes in hyper-
parameter values and how these values affect performance. Note that we use only the IITD
dataset for this sensitivity analysis. In the first experiment, we fix the α parameter to 0.5
and vary λ from 0 to 0.1, and in the second experiment we vary α between 0.2 and 1, while
using the value of λ from the best performing model obtained in the first experiment. The
reason why we restrict α in that specific range is because when using values below 0.2, we
observed that the model did not converge.

The results of the analysis are reported in the form of box plots of the calculated
EER scores in Figure 10. To highlight the differences between the learned models we
use different colors for each box plot, where the best and the worst performing ones
are highlighted with lime and red colors, respectively. We can clearly see that the best
performing model when trained on IITD left palmprints (Figure 10a,b), is obtained when
λ = 0.01 and α = 0.5. The same applies when the model is trained on the right IITD
palmprints. We notice that the model trained only with the ArcFace loss already ensures
competitive performance. However, the inclusion of the center loss with the right set of
parameters is observed to further improve results. Thus, the box-plots clearly show that
both loss terms are important for the proposed model.
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Figure 10. Results of the sensitivity analysis in the form of box plots of the generated EER scores. The
Two-path CNN model is trained with different combinations of λ and α parameters on: (a) IITD left,
(b) IITD right, (c) CASIA left and (d) CASIA right palmprints, respectively. The figure is best viewed
in color.

5.3.2. Contribution of Global and Local Processing Paths

The proposed Two-path model consist of two distinct processing paths. To explore
the contribution of the two paths to the overall performance of the proposed model, we
extract the global features as well as the local features before the concatenation operation
and perform verification experiments based on each image representation. We compare
the performance of the two processing paths with the full two-path model in Table 5. It
is evident that the use of combined image information plays an important role to further
improve the verification performance of the global processing path. The addition of local
information consistently improves results and allows the Two-path model to produce
more reliable verification decisions. In terms of EER, for example, we observe relative
error reductions ranging from 6% and up to 48%—depending on the dataset and the used
experimental setup. Thus, the information added by the local processing path clearly
complements the information extracted by the global path and helps addressing issues
caused by the contactless acquisition procedure. When interpreting the reported results,
it is important to note that the complete two-path model is trained end-to-end, so the
performance of the learned global and local representations needs to be considered in this
context. The reported performances for the global and local features are, therefore, correctly
interpreted as the partial contributions of the processing paths to the overall performance
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of the model and not in terms of capacities of the individual representations for recognition.
The performances here would be quite different if the representations would be trained
one without the other.

Table 5. Summary of averaged performance metrics when using different types of learned image
descriptors. The results are presented in the form of a µ± σ and in (%).

Type of Descriptor Global Local Two-Path (Combined)

Evaluated on the Left Palmprints from IITD Dataset

EER 1.1270± 0.212 10.677± 0.573 1.061± 0.416
AUC 99.854± 0.083 95.570± 0.377 99.879± 0.063

VER@0.1FAR 96.956± 1.133 75.130± 1.439 96.956± 1.133
VER@1FAR 98.035± 0.325 80.173± 1.185 98.869± 0.851

Evaluated on the Right Palmprints from IITD Dataset

EER 0.894± 0.236 15.370± 2.012 0.462± 0.050
AUC 99.887± 0.099 92.181± 1.527 99.969± 0.137

VER@01FAR 97.826± 0.991 69.043± 0.902 98.521± 0.589
VER@1FAR 99.130± 0.274 72.086± 0.411 99.652± 0.173

Evaluated on the Left Palmprints from CASIA Dataset

EER 0.413± 0.296 18.310± 0.690 0.331± 0.111
AUC 99.959± 0.040 91.465± 0.334 99.982± 0.006

VER@0.1FAR 99.114± 0.687 62.568± 0.776 99.335± 0.414
VER@1FAR 99.723± 0.349 65.115± 0.555 99.778± 0.207

Evaluated on the Right Palmprints from CASIA Dataset

EER 0.930± 0.399 12.483± 1.466 0.643± 0.214
AUC 99.861± 0.112 94.527± 0.976 99.900± 0.064

VER@0.1FAR 98.434± 0.510 63.549± 1.489 98.481± 0.282
VER@1FAR 99.193± 0.440 72.471± 1.422 99.431± 0.320

5.4. Explicit Modeling of Elastic Deformations

In this series of experiments we try to explicitly address the problem of elastic defor-
mations which represent one of the major problems with contactless palmprint recogni-
tion techniques.

A common way to tackle this problem is to achieve invariance to warping through
some kind of spatial transformation on the input images. Based on this insight, we use a
Spatial Transformer Network (STN) [49,50] to learn a warping procedure based on Thin
Plate Splines (TPS). TPS is selected as the basis for warping because it ensures a higher
degree of freedom when modeling deformations compared to other affine transformations.
The TPS algorithm has been applied successfully in several computer vision applications,
especially in medical image registration [51], as well as a minutiae matching algorithms
that model the elastic deformations in fingerprint images [52]. For detailed explanation
about the STN and TPS, the reader is referred to [49,50,53], respectively. However, to the
best of our knowledge, it has not yet been applied as a warping technique for modelling
elastic deformations in palmprint images acquired in a contactless manner. It is important
to note that we did not integrate the STN directly into our Two-path model. Instead we
used it as an external source to generate TPS warped images. This means that in each
iteration we generate an additional batch of warped images which are then combined with
the current batch of images when training the model. With this procedure, we are forcing
our augmentations to be TPS warped with 50% chance.

The results before and after the TPS-STN warping applied on sample images from the
IITD and CASIA datasets are shown in Figure 11. We can clearly see that the images after
the warping procedure are somewhat deformed. This effect can be mostly seen around the
principal lines of the palmprint, which is also the region where elastic deformations are
most prominent. The ROC curves generated with and without data augmentation based
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on TPS warping are shown in Figure 12, and the respective box-plots of the corresponding
EER scores are presented in Figure 13. As can be seen from the results, the TPS warping
has a significant impact on the verification performance, which results in lower EER values
and narrower confidence intervals.

Before TPS warping

After TPS warping

(a)

Before TPS warping

After TPS warping

(b)

Figure 11. Visual effect of the TPS-based modeling of elastic deformations. Examples are shown
before and after the TPS warping on sample images from: (a) the IITD dataset and (b) the CASIA
dataset. The biggest differences after TPS warping are seen in the principle lines. The regions where
the principle lines are affected the most by the warping process are marked with rectangles.
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Figure 12. Impact of using TPS warping as an augmentation technique on the verification per-
formance. The results are shown in the form of mean ROC curves with confidence intervals
when the models are trained on: (a) IITD left, (b) IITD right, (c) CASIA left and (d) CASIA right
palmprints, respectively.
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Figure 13. Equal error rate (EER) box plot visualization showing the effect before and after includ-
ing the TPS warping as image transformation in the existing augmentations when the Two-path
architecture is trained on either left or right palmprints from IITD and CASIA datasets.

6. Qualitative Results

In this section we present different qualitative results related to the Two-path architec-
ture. We mainly focus on the following analyses:
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• Exploring the discriminative power of the deeply learned embeddings through the T-
distributed Stochastic Neighbor Embedding (t-SNE) [54] data visualization technique,

• Investigating the feature importance and attention mechanism of the Two-
path architecture,

• Qualitative evaluations of edge cases generated in the verification experiments.

6.1. Embedding Visualization with t-SNE

We use t-Distributed Stochastic Neighbor Embedding (t-SNE) [54] to visualize the
high dimensional embeddings generated by the proposed model from IITD and CASIA
images. t-SNE represents a nonlinear dimensionality reduction technique developed by the
authors in [54], which is suitable for embedding high-dimensional data for visualization
into a low-dimensional space of two or three dimensions. For a detailed explanation about
the t-SNE technique, the reader is referred to [54].

In our case, we use t-SNE to generate 2-D visualizations in order to see the clustering
effect produced from the joint supervision between ArcFace loss and the center loss. In
Figure 14 the learned 2-D embeddings for IITD and CASIA datasets are shown. From the
2-D representation, we can clearly see the effect of the center loss which efficiently pulls
the features to their corresponding centers, thus, minimizing the intra-class variations. On
the other hand, the ArcFace loss helps the embeddings from different classes to spread
uniformly on the hyperspace by maximizing the inter-class variations. We also notice
that the embeddings from the CASIA dataset are less uniformly spread compared to the
embeddings from IITD dataset. This effect can be seen from Figure 14c, where we can
see regions of less discriminative embeddings. As seen from Figure 14d, there are also
regions where the discriminative power between the embeddings is preserved, however
these regions suffer from high locality, i.e., there are features located in several small areas
of the embedding space isolated from the rest of the embeddings. Such cases where the
combined objective did not produce sufficiently discriminative features can possibly lead
to miss-classifications of palmprint images.

(a) (b) (c) (d)

Figure 14. 2-D t-SNE visualization of the learned palmprint embeddings for sample images from the
(a) IITD left, (b) IITD right, (c) CASIA left, and (d) CASIA right palmprints. Note that the combination
of the learning objectives results in well separated and compact class clusters. The figure is best
viewed electronically and zoomed-in.

6.2. Feature Importance and the Attention Mechanism

Next, we report qualitative results with respect to the attention mechanism integrated
within the proposed Two-path architecture. As discussed earlier (in Section 3.4), the so
called channel-wise attention pooling mechanism is a trainable attention operation which
offers a straight-forward way of exploring the importance of each image part through
the learned feature vector of weights. This feature vector is then converted to a vector of
probabilities by using the softmax activation function. To generate interpretable results,
we transform the learned vector of probabilities into heatmaps and then superimpose
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the computed heatmaps over the palmprint images. In Figure 15a,b some qualitative
evaluations for the IITD and CASIA datasets are shown, respectively. We can see how
the attention mechanism selects certain image regions that are not only locally important
but are also beneficial for the overall image representation. Note how this procedure is
adaptive in nature and selects a different area in each palmprint depending on image
characteristics. Additionally, the selected areas are also quite localized due to the use of the
softmax function in the attention mechanism.
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Figure 15. Exploring the feature importance learned from the attention mechanism for the: (a) IITD
dataset and (b) CASIA dataset.

6.3. Verification Experiment

Finally, we present qualitative results related to the verification experiments conducted
on the IITS and CASIA dataset. Specifically, we are interested in separability of the score
distributions for the mated and non-mated experiments as well as failure cases generated
by our Two-path model.

In Figure 16 the mated and non-mated score distributions expressed as probability den-
sity functions (PDFs) [1] when evaluating on different palmprints from the datasets are shown.
It can be observed that the Two-path architecture achieved good separation between the
genuine and impostors score distributions, where the combined learning objective efficiently
minimized the intra-class variations, while maximizing the inter-class variations, which vali-
dates our previous analyses. It is also clear that the impostor score distributions are centered
at zero, which points to the fact that inter-class embeddings are well distributed in the hyper
feature space [55]. Here we can also see the presence of the “double-peak” phenomenon [55]—
in our case in the mated (genuine) score distributions [55]. This implies that some features of
same classes exhibit weaker similarities and are therefore harder to recognize.
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Figure 16. Genuine-impostor score distributions expressed as probability density functions (PDFs)
when evaluating on different palmprints: (a) IITD left palmprints, (b) IITD right palmprints,
(c) CASIA left palmprints and (d) CASIA right palmprints.
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Next, we preform an verification experiment based on the decision threshold θeer,
which ensures equal values of the FAR and FRR. Since there is a slight overlap between the
score distributions, we can expect that some of the genuine verification attempts will be
falsely rejected, i.e., false negatives (FN), and vice versa, some of the impostor verification
attempts will be falsely accepted i.e., false positives (FP). For illustration purposes, we
perform the experiment on the palmprint images from both datasets. We present the results
in Table 6 by visualizing some of the compared image pairs and their respective cosine
similarity scores.

Table 6. Verification results based on the decision threshold θeer which ensures equal values of FAR
and FRR. Image pairs are presented that generated different outcomes in the verification process, i.e.,
TP-true positives, FN-false negatives, FP-false positives, and TN-true negatives.

TP FN FP TN TP FN FP TN

IITD right palmprints, θeer = 0.276 CASIA right palmprints, θeer = 0.295

0.5744

1.0000

0.8539

0.6288

-0.0234

0.1057

-0.0069

0.0922

0.3022

0.3242

0.2952

0.3201

0.0271

0.1286

-0.0888

0.2337

0.6970

0.9020

0.8322

0.8949

0.2824

0.2226

-0.0007

0.1386

0.3473

0.4337

0.3588

0.5471

0.0352

0.2482

0.0067

0.0134

IITD left palmprints, θeer = 0.259 CASIA left palmprints, θeer = 0.307

0.4164

1.0000

0.5759

0.6227

0.1902

0.0932

0.1702

0.0428

0.2694

0.2839

0.3056

0.2691

0.1423

-0.0007

0.1150

0.0197

0.8102

0.9316

0.9030

0.5735

0.2677

0.2714

0.1963

0.2533

0.3102

0.3409

0.3117

0.3535

0.1868

0.1862

-0.0883

-0.1604

As can be seen from Table 6, the matching scores between the correctly accepted
mated/genuine attempts, i.e., true positives (TP), are positive and above the decision
threshold, whereas the matching scores between the correctly rejected impostor attempts,
i.e., true negatives (TN), are negative, which indicates opposite feature vectors. The results
in the overlapping region between the genuine and impostor distribution are also quite
interesting. As seen from the falsely rejected genuine attempts or FNs, palmprints from the
same subjects share less similarities due to the high appearance variability caused by the
palmprint acquisition process. For example, in CASIA right palmprint images there is an
extreme case where one palmprint image between the genuine matches is completely white
due to high illuminations that happened during the palmprint acquisition process. This
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means that the Two-path architecture is not able to find any shared patterns between such
images, which results in lower matching score. On the other hand, there are cases where
the exact opposite happens. Different palmprints from different individuals share more
similarities, which results in relatively high scores and above the threshold similarity scores.

7. Conclusions

In this study we introduced a hybrid Two-path DL based model for contactless
palmprint recognition. Unlike competing hand-crafted feature extraction techniques,
our architecture automatically learns discriminative features from the data while not
requiring extensive parameters tuning. Compared to other DL techniques, our model is
designed as dual path CNN, where one input encodes the input image holistically using
a backbone CNN-based feature extractor, whereas the second path, a parallel Siamese
architecture with shared model parameters, captures local information from image patches
sampled from the input image. Moreover, we showed that the discriminative power of
the deeply learned features can be highly enhanced by combining the ArcFace loss with
the center loss to jointly supervise the learning of our model. By using this design we
were able to achieve great genuine-impostor score distribution separation which is key in
biometric recognition systems and paramount for achieving state-of-the-art performance
on standard benchmarks.

We also performed extensive experiments related to different parts of the architecture
and showed how the addition of local information contributes to enhanced robustness to
elastic deformations, as well as, increased generalization capability across different datasets.
Furthermore, we showed that our design choices ensure a level of explainability facilitated
by the proposed channel-wise attention pooling mechanism. Given the promising results,
further extension of this work will focus on palmprint recognition in the wild and explore
how the model generalizes when images are acquired under complex backgrounds, in
different environments and with various postures and illuminations. Furthermore, different
feature pooling strategies and attention mechanisms that could maximize the information
content that can be extracted from the local image patches, especially when considering
detailed image aligned will also be investigated. Particular attention will be payed to the
impact of alignment on the patch generation strategy used.
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