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Abstract—Face image quality assessment (FIQA) attempts
to improve face recognition (FR) performance by providing
additional information about sample quality. Because FIQA
methods attempt to estimate the utility of a sample for face
recognition, it is reasonable to assume that these methods are
heavily influenced by the underlying face recognition system.
Although modern face recognition systems are known to perform
well, several studies have found that such systems often exhibit
problems with demographic bias. It is therefore likely that such
problems are also present with FIQA techniques. To investigate
the demographic biases associated with FIQA approaches, this
paper presents a comprehensive study involving a variety of
quality assessment methods (general-purpose image quality as-
sessment, supervised face quality assessment, and unsupervised
face quality assessment methods) and three diverse state-of-the-
art FR models. Our analysis on the Balanced Faces in the Wild
(BFW) dataset shows that all techniques considered are affected
more by variations in race than sex. While the general-purpose
image quality assessment methods appear to be less biased with
respect to the two demographic factors considered, the supervised
and unsupervised face image quality assessment methods both
show strong bias with a tendency to favor white individuals (of
either sex). In addition, we found that methods that are less
racially biased perform worse overall. This suggests that the
observed bias in FIQA methods is to a significant extent related
to the underlying face recognition system.

Index Terms—bias, bias estimation, demographics, biometrics,
face recognition systems, face image quality assessment

I. INTRODUCTION

Modern Face Recognition (FR) systems are capable of
achieving excellent results on large datasets containing im-
ages of varying characteristics, such as pose, illumination or
occlusions. Yet many challenges still exist that prevent such
performance to carry over to real-world scenarios [1].

Face Image Quality Assessment (FIQA) aims to assist FR
models in achieving better performance by providing addi-
tional biometric sample quality information. Unlike standard
Image Quality Assessment (IQA), which is tightly connected
to human (visual) quality perception, FIQA techniques focus
on estimating the utility of the input samples for FR tasks. As
such, the quality scores obtained from FIQA methods may
not directly reflect visual quality but account for different
image characteristics that may have an impact on recognition
performance. One of the key problems of FR models not
explicitly addressed by FIQA techniques is bias. FR models
have been shown to exhibit different performances for different
demographic groups [2], [3]. These performance differentials
(or bias) have an impact on the fairness of FR models and
have recently been at the core of many research efforts.
As FIQA techniques are intended to capture the utility of
face images for face recognition, it seems likely that bias-
related issues are also present with this group of techniques.
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Understanding the behavior of FIQA methods especially in
conjunction with selected FR models is, therefore, critical
for the trustworthiness of face recognition technology and its
perceived fairness in the general public.

While many studies have been conduced on the topic of
bias in FR tasks [2]–[5], exploring differences between race,
sex and age groups, not much research has been done on the
topic of bias in FIQA methods, with one notable exception.
In [6], Terhörst et al. investigated bias in FIQA techniques by
looking at how gradually increasing the number of rejected
images, due to a poor quality score, changes the proportions
across different demographic groups. The main assumption
of this work was that fair and unbiased techniques should
exclude samples from different demographic groups in an
equal manner. In this paper, we built on the work in [6]
but take a step further and explore FIQA methods and FR
models within a joint framework. Thus, we are not interested
in the (demographic) bias of FIQA techniques per se, but the
performance differentials observed in face recognition systems
when used jointly with FIQA approaches.

II. RELATED WORK

A considerable amount of FIQA methods have been pre-
sented in the literature over the years following several key
ideas. One such idea is to extract pseudo-quality ground-truth
labels on a closed set of images, which can be used to train a
quality estimation network. An example, of a technique from
this group is FaceQnet [7]. FaceQnet uses third-party software
to determine the highest quality images of individuals, where
the pseudo-quality score is then calculated as the similarity of
embeddings of a given image and the predetermined highest
quality image of the individual. PCNet [8] includes a slightly
different labeling approach, where all image pairs are assigned
their embedding similarity as the ground truth label and the
quality-estimation network is then trained on image pairs.
SDD-FIQA [9] extends on these concepts and incorporates
non-mated image pairs into the quality label generation pro-
cess. An emerging idea adopted by several recent methods is to
include the quality-estimation process into the training of FR
models. The Probabilistic Face Embeddings (PFE) [10] of Shi
and Jain trains a FR model to predict the mean and variance
vectors for any input, where the mean represents the actual
embedding, while the variance can be seen as the uncertainty
of the embedding that can be interpreted as the quality of
the input image. Similarly, MagFace presented by Meng et
al. in [11] introduces a new quality-aware loss capable of
predicting the quality of the input sample from the norm of
the predicted embedding. One of the most established ideas is
to use information directly from the biometric sample or given
FR model [12]–[14] to estimate quality. As most methods
using this idea deal predominantly with visual quality, their



performance is commonly not competitive compared to state-
of-the-art FIQA methods. However, two modern approach with
competitive results have been proposed recently, i.e., SER-
FIQ [14] and FaceQAN [15]. The first relies on measuring
differences in embeddings produced by varying the dropout,
while the latter relies on adversarial noise.

While the progress made in face-image quality assessment
has been impressive, most of the existing work is focused
on improved performance. Comprehensive studies exploring
the behavior of the models across demographic groups and
their fairness towards subjects of a specific sex or race are
largely missing from the literature - with the exception of [6].
We, therefore, address this gap in this paper and present an
analysis of the bias of existing FIQA techniques when used
jointly with a selected FR model.

III. METHODOLOGY

The goal of this paper is to examine the differences in
the performance and bias of different groups of (face) quality
assessment methods. In the following section, we present the
methodology used for the study and discuss the dataset and
models used in the experiments.

A. Dataset
The evaluation was performed using the Balanced Faces

in-the Wild (BFW) dataset [16], which represents a subset
of the VGGFace2 dataset. The BFW dataset contains 20000
face images of 800 individuals corresponding to classes from
two different demographic groups: Sex and Race. For the
first group, images are divided into male and female, and for
the second group, the images are divided into White, Black,
Asian, and Indian1. The entire dataset is balanced by both sex
and race, allowing for a fair assessment of the demographic-
specific biases inherent in quality assessment methods. Al-
though the dataset was not created specifically for quality
assessment, it contains images of varying quality, such as non-
frontal or low-resolution images and images with some degree
of occlusion. Additionally, the dataset also contains a list of
genuine and imposter pairs that are needed for verification
experiments to evaluate the biases and performance of face
image quality assessment methods.

B. Face Recognition Systems
One of the main goals of our analysis is to explore

differences between the results of different FR models. To
this end, we use three popular open-source models: ArcFace2

[18], VGGFace23 [19] and FaceNet4 [20]. The models differ
significantly: ArcFace uses a ResNet100 backbone and an
angular-margin loss and is trained on the MS1MV3 dataset,
VGGFace2 uses a SE-ResNet50 backbone and a soft-max
loss, and FaceNet uses an Inception-ResNet50 backbone and
a triplet loss. Both the VGGFace2 and FaceNet models are

1Note that we intentionally use the terms sex and race in this work. While
gender and sex have been used interchangeably in the biometric literature, we
follow [17], where gender is considered a social or cultural construct, while
sex is considered to describe biological characteristics. The terms race and
ethnicity have also been used interchangeably in the literature, and an exact
definition of these two terms appears to be a subject of debate.

2https://github.com/deepinsight/insightface
3https://www.robots.ox.ac.uk/∼albanie/pytorch-models.html
4https://github.com/timesler/facenet-pytorch

trained on the VGGFace2 dataset, used also to construct the
BFW dataset, which we use for evaluation. In the evaluation,
we therefore study bias with independent test data for ArcFace
and data that (partially) overlaps with the training data for
VGGFace2 and FaceNet.

For each of the three FR models, the images are prepro-
cessed as described in the corresponding paper. The embed-
dings are extracted from the last layer of each model and the
cosine similarity is used to generate comparison scores for the
verification experiments.

C. Evaluation Criteria
Following established literature [11], [21]–[23], we report

the performance of the FIQA methods through the use of
Error-Versus-Reject Characteristic (ERC) curves, which mea-
sure the False Non Match Rate (FNMR) at a predefined value
of False Match Rate (FMR), typically 0.001, while increasing
the number of rejected low quality images. Additionally, the
Area Under the Curve (AUC) is computed at different image
drop (or reject) rates. When interpreting results, the focus
is typically on the lower drop rates, where images of lower
quality are rejected.

To assess demographic-specific performance and examine
the biases of the FIQA methods when a particular FR model
is used, we compare the AUC values of the ERC plots
corresponding to different demographic groups. To create the
ERC plot for a given group, we perform demographic-specific
verification experiments, in which the images from mated and
non-mated pairs all originate from within the same group. We
create 100, 000 mated and 300, 000 non-mated image pairs
for each demographic group to capture as much within-group
variation as possible and guarantee reliable results. Because we
are interested in exploring bias and thus relative performance
between groups, we need to normalize the results to allow
comparisons between groups. For this reason, the values of the
ERC curve from which the AUC is calculated are normalized
so that the FNMR value at a drop rate of 0% is equal to 1, that
is, all FNMR values of a given ERC curve are divided by the
FNMR value at a drop rate of 0%. We denote the normalized
variant of the AUC by AUCN .

IV. PRESENTATION OF USED APPROACHES

For our research, we use three different groups of methods,
that can be used for FIQA. The first group are general purpose
Image Quality Assessment (IQA) [24]–[28] methods, which
are different from the other two groups because they are
not specifically designed to work with face images , but
rather with arbitrary images. The second group of methods
are Supervised Face Image Quality Assessment (sFIQA) [7]–
[9], [11], [21], [22] methods, which usually obtain the quality
score using a pre-trained quality estimation model. The last
group of methods are Unsupervised Face Image Quality As-
sessment (uFIQA) [14], [15] methods that rely only on the
information available in the image and a given FR model. In
the following sections, we present all three groups and the
chosen methods in detail.

A. Image Quality Assessment Methods
We use three so-called no-reference IQA techniques, i.e.,

BRISQUE [24], NIQE [25] and RankIQA [26]. These tech-
niques are applicable to any input image and unlike other

https://github.com/deepinsight/insightface
https://www.robots.ox.ac.uk/~albanie/pytorch-models.html
https://github.com/timesler/facenet-pytorch


alternatives from the literature [29] require no high quality
reference when computing the quality scores.

BRISQUE. The Blind/Referenceless Image Spatial Quality
Evaluator presented by Mittal et al. [24] tries to estimate
the quality characteristics of a given sample using Mean
Subtracted Contrast Normalized (MSCN) coefficients, which
for a pristine image exhibit a Gaussian-like shape. For this
reason, an Asymmetric Generalized Gaussian Model (AGGM)
distribution is used to estimate the MSCN coefficients and a
Support Vector Machine (SVM) is utilized to calculate the
final image quality from 32 extracted features.

NIQE. The Natural Image Quality Evaluator, presented by
Mittal et al. [25], is based on quality-aware statistical features
of natural scenes obtained from a corpus of natural images.
A multivariate Gaussian model is used to fit the coefficients
obtained from the corpus. The final quality is calculated as the
distance between the model obtained from the natural image
corpus and the given image.

RankIQA. This no-reference method of Liu et al. [26]
learns to predict quality from rankings. The rankings are
generated using a Siamese network trained to rank images
by quality on synthetically generated image sets. Knowledge
transfer is then used to train a classical CNN network based
on the Siamese model to predict the quality of a given sample.

B. Supervised Face Image Quality Assessment Methods

Supervised FIQA methods [9], [11], [22], [23] are the most
widely used methods in the literature. They usually rely on
pseudo ground-truth quality labels, based on which a quality
estimation network is trained. We select three widely used
state-of-the-art sFIQA methods for our analysis, namely, SDD-
FIQA [9], MagFace [11], and CR-FIQA [21].

SDD-FIQA. The SSD-FIQA method described by Ou et al.
[9] introduces an advanced unsupervised approach to comput-
ing pseudo-quality labels that considers both mated and non-
mated image pairs. For a given sample, the quality is computed
using the Wasserstein distance between the distributions of
mated and non-mated similarity scores by randomly sampling
images from a background dataset. The final score is obtained
by averaging the partial scores over several runs.

MagFace. The method presented by Meng et al. [11],
called MagFace, generates both an embedding and a quality
score for a given sample by using an extended version of the
ArcFace [18] loss. The proposed loss is able to discriminate
well between samples of different quality by pushing apart
images of different quality. The embeddings generated by a
model trained with the new loss can be used to automatically
obtain a quality score by measuring their magnitude.

CR-FIQA. The basis for this method of Boutros et al. [21]
is the so-called Certainty Ratio (CR), which is defined in a
classification setting when neural networks are trained with a
variant of angular-based loss, such as ArcFace. Formally, CR
is defined as the ratio between the angular similarities of the
face sample and its true class center and the nearest negative
class center. A ResNet network is trained on a classification
task using a loss composed of the ArcFace and the Certainty
Ratio terms. The trained network is then used to predict the
quality of a face image.

C. Unsupervised Face Image Quality Assessment Methods
A limited number of unsupervised FIQA techniques capable

of ensuring state-of-the-art performance has so far been pre-
sented in the literature. Two such methods are selected for the
analysis in this work, i.e., SER-FIQ [14] and FaceQAN [15].
Both of these methods have been shown to perform well over
a number of FR models and datasets.

SER-FIQ. Modern FR architectures rely on dropout as a
form of regularization when training CNN-based models. The
SER-FIQ method, proposed by Terhöerst et al. in [14], uses
the dropout layers to measure the quality of a given face image
sample. Specifically, for a given sample, a number of different
embeddings are created using different sub-network layouts
generated by harnessing the dropout layer. The quality is then
calculated by measuring the pairwise distances between the
constructed features.

FaceQAN. Adversarial approaches are often used to create
adversarial examples that can deceive a FR model. The method
proposed by Babnik et al. [15] measures the difficulty of
creating adversarial examples in conjunction with a symmetry-
estimation process, which incorporates additional information
about the facial pose into the quality estimation procedure.
The quality score is calculated from statistics derived from the
similarity between adversarial and input sample embeddings
multiplied by the symmetry score.

Model ArcFace VGGFace2 FaceNet
TAR@FAR(1e-4)[%] 95.3 86.2 75.3

TABLE I: Verification performance on the IJB-C dataset.

V. EXPERIMENTS AND RESULTS

In the following section we present the results of our
experiments conducted to investigate: (i) the performance and
(demographic) bias of the FIQA methods, (ii) the performance
differences between IQA, sFIQA and uFIQA techniques, and
(iii) the impact of FR models on the observed results.

A. Face Image Quality Assessment Performance.
We first evaluate the performance of individual FIQA

methods using standard evaluation methodology to benchmark
their performance with different FR models. To give a better
overview of the standings between the FR models, we present
verification performances on the IJB-C dataset in Table I,
whereas the FIQA results in the form of ERC curve plots
and AUC scores for different drop rates are shown in Fig. 1.

Comparison of IQA Methods. Overall, the results of all
tested IQA methods tell the same story regardless of the FR
model used. NIQE is by far the best performing method, while
BRISQUE and RankIQA generally perform worse. Looking at
the ERC plots, we see that NIQE provides quality scores that
lower the FNMR, while both BRISQUE and RankIQA seem
to increase the FNMR indicating that they are of limited use
as additional sources of information for FR models.

Comparison of sFIQA Methods. All evaluated sFIQA
methods appear to be highly effective as a sharp decline in
the FNMR can be seen with increasing reject rates. Overall,
the CR-FIQA method perform the best with all considered
FR models, followed closely by MagFace. While SDD-FIQA
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Fig. 1: Results of the performance evaluation. The perfor-
mance is reported using ERC curve plots (left) and AUC scores
(↓) at different drop rates (right).

is the weakest of the three methods, its performance is still
relatively close to both CR-FIQA and MagFace.

Comparison of uFIQA Methods. Similarily to sFIQA,
both evaluated uFIQA approaches perform well with all three
FR models, with a notable exception of SER-FIQ and the
FaceNet model. Both methods are highly competitive on Arc-
Face and VGGFace, with FaceQAN having a slight advantage
over SER-FIQ on both.

Overall Comparison. Considering all 3 FR models, CR-
FIQA performs best overall, followed closely by FaceQAN.
Both the sFIQA and uFIQA groups are highly competitive,
whereas the IQA methods fall short when it comes to per-
formance, which is expected since these methods were not
designed specifically with FR in mind.

B. Bias Analysis
We explore differences in the demographic-specific AUC

scores produced by the evaluated quality assessment tech-
niques in Table II. Here, we report AUCN scores for the
baseline verification experiments as well as scores for each
demographic group separately. Additionally, we also calculate
the relative difference of the AUCN for a given demographic
group w.r.t. the best performing group – marked with (B).

Impact of Sex. For the ArcFace model, the results for
the IQA and sFIQA methods show a clear preference for
females, whereas no consistent trend can be observed for the
uFIQA methods. Nevertheless, the relative differences between
men and women are limited (below 10%) for all methods,
except for MagFace with a relative difference of 13%. The
results for the other two FR models show smaller performance
differential across sex for the majority of tested techniques
compared to the ArcFace model, suggesting that sex bias is
not a major problem for quality assessment methods.

Impact of Race. As seen from the results in Table II, the
relative differences in performance between the race groups
are much larger than for the two sex categories. As expected,
the bias of IQA methods appears to be less pronounced
compared to the sFIQA and uFIQA methods, as they do
not favour any particular race overall. Two out of three
methods from this group perform best for Asian subjects
and one for Indian subjects. The performance differentials
are at most around 15% (BRISQUE) when comparing the
best and worst performing groups. The results for the sFIQA
methods are consistent. All tested methods perform best for
White subjects with all three FR models and worst on images
from the Black or Asian categories – depending on the FR
model used. In the case of VGGFace2 and FaceNet, Asian
individuals appear to be the least favoured, while for ArcFace
the results for the methods are mixed. Overall there appears
to be a strong bias towards white people in all FR-FIQA
model combinations. Similarly, the uFIQA methods show a
strong preference towards White subjects, with the exception
of SER-FIQ when using FaceNet. Both uFIQA methods per-
form worst with subjects from the Black and Asian group,
with the exception of FaceQAN when using ArcFace, which
performs worst with Indian subjects. The effect of overlapping
data on both the VGGFace2 and FaceNet model seems to
cause mixed results, while for VGGFace2 the bias is overall
lower than that of the ArcFace model, the bias for FaceNet
seems comparable or rather larger than that of the ArcFace
model. Another interesting observation is that the performance
of individual methods appears to be related to racial bias,
specifically how strong the method’s preference is for white
people. The better the performance of the method, the more it
appears to favour White subjects over other races. The main
methods that exhibit this behavior are the highest performing
CR-FIQA and FaceQAN. Another example where this can
be seen is SER-FIQ on FaceNet, where the method seems
to weaken in its performance but shows a weaker preference
for White individuals, and NIQE, which performs best of all
IQA methods but also seems to favour White subjects more.

VI. CONCLUSION

In this paper, we presented an analysis of the performance
and biases of different quality assessment methods separated
into three groups: Image Quality Assessment, Supervised Face
Image Quality Assessment, and Unsupervised Face Image
Quality Assessment, using three different face recognition
models. The results show that supervised and unsupervised
face image quality assessment methods are highly competitive
across all face recognition models, with CR-FIQA coming
out on top in most cases. General image quality assessment
methods, on the other hand, perform worse because they assess



TABLE II: AUCN scores generated for the bias-related experiments. Ri
B = (AUCi

N/min{i}AUCi
N)− 1

FR model Method AUCN(↓) Sex–specific AUCs
N(↓) (Rs

B%) Race–specific AUCr
N(↓) (Rr

B%)
Male Female White Black Asian Indian

A
rc

Fa
ce

BRISQUE 1.066 1.078 (1.8%) 1.059 (B) 1.094 (8.3%) 1.067 (5.6%) 1.010 (B) 1.044 (3.4%)
NIQE 0.831 0.835 (1.2%) 0.825 (B) 0.843 (1.1%) 0.854 (2.4%) 0.867 (4.0%) 0.834 (B)
RankIQA 1.047 1.079 (4.4%) 1.034 (B) 1.061 (6.2%) 1.082 (8.3%) 0.999 (B) 1.108 (10.9%)
SDD-FIQA 0.560 0.573 (1.1%) 0.567 (B) 0.513 (B) 0.602 (17.3%) 0.615 (19.9%) 0.554 (8.0%)
MagFace 0.504 0.549 (13.0%) 0.486 (B) 0.430 (B) 0.564 (31.2%) 0.523 (21.6%) 0.518 (20.5%)
CR-FIQA 0.472 0.507 (9.5%) 0.463 (B) 0.376 (B) 0.527 (40.2%) 0.512 (36.2%) 0.493 (31.1%)
SER-FIQ 0.490 0.488 (B) 0.518 (6.1%) 0.438 (B) 0.576 (31.5%) 0.572 (30.6%) 0.539 (23.1%)
FaceQAN 0.507 0.542 (8.8%) 0.498 (B) 0.432 (B) 0.556 (28.7%) 0.547 (26.6%) 0.569 (31.7%)

V
G

G
Fa

ce
2

BRISQUE 1.088 1.121 (1.4%) 1.106 (B) 1.135 (11.4%) 1.049 (2.9%) 1.019 (B) 1.090 (7.0%)
NIQE 0.795 0.781 (B) 0.809 (3.6%) 0.809 (B) 0.841 (4.0%) 0.855 (5.7%) 0.832 (2.8%)
RankIQA 1.088 1.083 (1.3%) 1.069 (B) 1.090 (10.1%) 1.054 (6.5%) 0.990 (B) 1.106 (11.7%)
SDD-FIQA 0.614 0.605 (B) 0.622 (2.8%) 0.562 (B) 0.634 (12.8%) 0.673 (19.8%) 0.597 (6.2%)
MagFace 0.561 0.576 (4.0%) 0.554 (B) 0.501 (B) 0.584 (16.6%) 0.601 (20.0%) 0.560 (11.8%)
CR-FIQA 0.522 0.538 (3.1%) 0.522 (B) 0.466 (B) 0.542 (16.3%) 0.575 (23.4%) 0.532 (14.2%)
SER-FIQ 0.631 0.632 (0.8%) 0.627 (B) 0.626 (B) 0.704 (12.5%) 0.699 (11.7%) 0.673 (7.5%)
FaceQAN 0.601 0.602 (B) 0.632 (5.0%) 0.598 (B) 0.605 (1.2%) 0.647 (8.2%) 0.623 (4.2%)

Fa
ce

N
et

BRISQUE 1.058 1.141 (7.4%) 1.062 (B) 1.156 (15.6%) 1.108 (10.8%) 1.000 (B) 1.123 (12.3%)
NIQE 0.831 0.799 (B) 0.851 (6.5%) 0.786 (B) 0.844 (7.4%) 0.881 (12.1%) 0.818 (4.1%)
RankIQA 1.048 1.069 (3.3%) 1.035 (B) 1.126 (13.6%) 1.047 (5.7%) 0.991 (B) 1.085 (9.5%)
SDD-FIQA 0.630 0.602 (B) 0.635 (5.5%) 0.557 (B) 0.644 (15.6%) 0.701 (25.9%) 0.616 (10.6%)
MagFace 0.554 0.539 (0.9%) 0.534 (B) 0.466 (B) 0.585 (25.5%) 0.620 (33.0%) 0.529 (13.5%)
CR-FIQA 0.524 0.514 (B) 0.520 (1.2%) 0.437 (B) 0.551 (26.1%) 0.597 (36.6%) 0.528 (20.8%)
SER-FIQ 0.882 0.857 (B) 0.881 (2.8%) 0.900 (5.4%) 0.994 (16.4%) 0.854 (B) 0.884 (3.5%)
FaceQAN 0.550 0.555 (B) 0.556 (0.2%) 0.449 (B) 0.574 (27.8%) 0.617 (37.4%) 0.577 (28.5%)

– weakest IQA performance , – weakest sFIQA performance, – weakest uFIQA performance.

visual quality rather than biometric utility of the samples.
The bias experiments showed stronger results for supervised
and unsupervised methods with respect to White subjects,
with the worst results for individuals from the Black and
Asian group. In addition, methods that exhibited greater bias
appeared to perform better overall, leading to the assumption
that the observed bias is related to a considerable extent to the
underlying face recognition model. This observation opens up
possibilities for future research, as debiasing schemes would
have to consider quality assessment and face recognition in
a joint setting to be able to effectively reduce performance
differentials across different demographic groups.
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