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Abstract
Single-image super-resolution can be posed as a self -
supervised machine learning task where the training in-
puts and targets are derived from an unlabelled dataset
of high-resolution images. For super-resolution training,
the derivation takes the form of a degradation function
that yields low-resolution images given high-resolution
ones. Typically, the degradation function is selected man-
ually based on heuristics such as the desired magnifica-
tion ratio of the super-resolution method being trained.
In this paper, we instead propose principled, optimization-
based methods for picking the image filter of the degra-
dation function based on its desired properties in the fre-
quency domain. We develop implicit and explicit methods
for filter optimization and demonstrate the resulting fil-
ters are better at rejecting aliasing and matching the fre-
quency domain characteristics of real-life low-resolution
images than commonly used heuristic picks.

1 Introduction
Single-image super-resolution is the task of recovering
high-resolution details from low-resolution observations.
Existing work on super-resolution commonly relies on
machine learning techniques (e.g., [3, 6, 4, 5, 7]) that
learn from artifically generated pairs of aligned low-reso-
lution and high-resolution images, x and y, respectively.
The training data required for the training procedure is
typically generated by starting with a high-resolution im-
age dataset and downsampling the images through a pro-
cess of the following form:

x = Hy ↓d + N, (1)

where H is an image filtering operator, ↓ is the sub-sampl-
ing operation, d is the sub-sampling factor, and N is a
noise component. In existing work on machine-learning
based super-resolution, the degradation process is typi-
cally picked using basic heuristics, e.g., a separable Gaus-
sian or Lanczos filter with appropriate width given the de-
sired magnification factor d. Given the generated dataset
of (x,y) pairs, a differentiable model mθ with free pa-
rameters θ is then trained to approximate the inverse pro-
cess, i.e., to predict an approximation of the high resolu-
tion image ŷ given a low-resolution image x as an input,
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i.e.:
ŷ = mθ(x), (2)

by setting the model parameters θ through gradient de-
scent on some appropriate loss function. Here, the loss is
typically a distortion measure between the model predic-
tions and the ground-truth high-resolution images, e.g.,

L(x,y) = ∥mθ(x)− y∥pp , (3)

where p is the order of the norm used to measure the dis-
tortion between the model approximations and expected
(i.e., ground truth) high-resolution images.

In this paper, we develop a principled methodology to
determine the optimal degradation function from (1), i.e.,
by picking an appropriate discrete image filtering opera-
tor for the given super-resolution training problem. Un-
like previous approaches, where the filter is heuristically
picked based on known classes of continuous filters with
desired characteristics in the frequency domain (e.g., the
Gaussian and Lanczos family of filters) and extended for
image filtering as a separable filter, we develop implicit
and explicit methods to design optimal image filters in-
cluding sampling constraints. Also unlike previous ap-
proaches, we separate the filter design into two discrete
stages, namely: (i) determining constraints on the filter
structure and its desired frequency characteristics, and
(ii), finding a filter that satisfies the constraints and re-
quirements, using either implicit or explicit optimization.
The derived image filters more closely follow the sam-
pling laws than typical heuristic choices used in existing
super-resolution work, and are guaranteed to avoid sam-
pling artefacts such as aliasing, ringing and oversharpen-
ing. Our work leads to the following key contribution that
are presented in this paper:

1. We develop a set of soft- and hard-constraint based
filter specifications that allow us to enforce the de-
sired filter structure in the learned filters, i.e., sym-
metric, separable, or neither;

2. We develop an optimization strategy to find filters
that satisfy the above specified constraints with fil-
ters that approximate the desired characteristics in
the frequency domain, using explicit or implicit fil-
ter modeling;

3. We evaluate the resulting filters by comparing the
frequency characteristics of filtered images with a
real-life dataset of low-resolution images.



2 Methodology
In self-supervised super-resolution training, we begin wi-
th a set of high-resolution images, which we downsample
into low-resolution training inputs using the process de-
scribed in the Eq (1). We would like the artificially down-
sampled images to have similar spatial and frequency do-
main characteristics to real-world low-resolution images
in order to ensure that models trained on the artificially
derived training pairs can then be applied to real-world
super-resolution problems.

Explicit design. We first develop an optimization
strategy where the ideal image filter for use in (1) is opti-
mized explicitly. For the purposes of this paper, we limit
ourselves to the single task of super-resolution with an
8× magnification factor. Let y be an RGB image sam-
pled with the sampling frequency fs. Given the chosen
magnification factor, we would ideally like an image fil-
tering operator H , implementing a spatial filter w, such
that y∗w retains all the frequency components of y from
0 to fs

8 , and suppresses all the higher frequency compo-
nents. In classical filter design theory, this is represented
by a desired gain of −20dB at the threshold frequency,
and a limitingly narrow transition band. For the contin-
uous case, there are known analytical solutions such as
Gaussian and Lanczos (sinc) filters which, given a filter
size budget, offer an optimal tradeoff between the gain
in the passband, the width of the transition band, and the
suppression of the stopband, as shown in the Figure 1.

However, the continuous case for 1-dimensional sig-
nals is not trivially extensible to sampled and re-sampled
two dimensional signals, such as the images we are con-
sidering using for the self-supervised training of super-
resolution models. Firstly, an ideal filter in the continu-
ous case has infinite spatial support, whereas the support
of useful filters in our case is limited by the resolution of
the images. This is due to the fact that the window size
of the discrete filters used has to be considerably smaller
than the resolution of our groundtruth (high resolution)
images, otherwise the boundary conditions of convolu-
tion (e.g., zero-padding or reflection-padding) dominate
the resulting filtered image. We show the discrepancy be-
tween the mean axial spectrum gain of ideal continuous
Gaussian and sinc filters, and the real-life results on an
extensive image dataset, in the Figure 2.

We notice that when comparing the analytical gain
to the observed image spectra, the ideal Gaussian filter
has a stronger gain in the passband and far more suppres-
sion of the stopband. In turn, the gain characteristic com-
puted from the filtered and re-sampled images has a sig-
nificantly lower threshold frequency, and its suppression
in the stopband is limited by the 8-bit image quantization.

The experimental results of the sinc filter match its
analytically determined gain more closely, but the thresh-
old frequency is still lowered significantly, and the pass-
band overamplification (i.e., ringing) effect is even larger
than in the analytically determined gain characteristic.

Given the discrepancy between analytical and experi-
mental results, we would like to learn an optimal discrete,
resampling filter from the data itself. The learning objec-

tive is the contents of a discrete filter window, w ∈ Rs×s,
where s is the size of the window (measured in samples).
In the explicit case, we directly optimize the contents of
w by minimizing the loss function:

L(y,w) = |y − ((y ∗w) ↓) ↑| , (4)

where y is an image from the dataset, and ↓ and ↑ are
the 8× downsampling and upsampling operators, respec-
tively. The explicit formulation of the optimization prob-
lem allows us to directly specify a number of hard con-
straints on the optimization problem, namely,

1. separability, by setting
k = [w1, w2, ..., ws]

⊤
;w = kk⊤,

2. symmetry, by setting

k =
[
w1, w2, ..., w⌊ s

2⌋, w⌊ s
2⌋−1, ..., w1

]⊤
;

w = kk⊤, and

3. normalization, by setting w = (
∑

i ki)
−2

kk⊤,

where either k ∈ Rs (cases 1. and 3.), or otherwise k ∈
R⌊

s
2⌋ (case 2.). The hard constraints reduce the dimen-

sionality of the optimization problem, making it more
tractable when optimizing (4) over a large dataset of di-
verse images using stochastic gradient descent with re-
gards to the explicit kernel. When explicitly optimizing
the filter without constraints, the optimization diverges
towards the suboptimal solution shown in Figure 3.

Implicit design. For the implicit approach, we use
the deep linear generator model from [1]. Here, the net-
work used to design the image filter consists of a se-
quence of convolutional neural network layers without
biases and non-linear activations. This means the layer
sequence has the same expressive power as a single larger
filter, however, as an optimization task, learning the pa-
rameters of the deep linear generator is much better con-
ditioned than learning the same large filter explicitly.

The filter implicitly learned by the deep linear gener-
ator can also be recovered, simply by taking the discrete
finite impulse response of the network - i.e., its output
given a Dirac δ-signal as an input. Recovering the learned
filter in this manner allows us to use the implicitly learned
filter directly, without needing to perform inference over
the deep linear generator network. It also allows us to
regularize the learning process by forcing the learned fil-
ter’s centre of mass to lie in the center of the kernel win-
dow (to eliminate kernel shift), and by forcing the sum of
the learned filter towards 1, to enforce unit gain at DC.
Specifically, if ki,j ; i, j ∈ ω is the recovered implicitly
learned kernel, we enforce the zero-phase centre of mass
for an odd filter using the regularization term

Lc =

∥∥∥∥∥(x0, y0)−
∑

i,j ki,j · (i, j)∑
i,j ki,j

∥∥∥∥∥
2

, (5)

where (x0, y0) are the coordinates of the window centre.
The regularization term directly penalizes the Euclidean
distance between the actual centre of mass of the kernel
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Figure 1: Impulse responses of ideal odd (zero-phase) downsampling filters for −20dB gain at fs
8

in the continuous case. (a),
Gaussian, 23 taps; (b), sinc, 23 taps; (c), Lanczos, 23 taps; (d), sinc, 101 taps; and their gain characteristics in the frequency
domain (top). Impractically large filters are required for the desired frequency characteristic.
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Figure 2: A comparison of analytical gain characteristics in the continuous case and the observed gains averaged over a large image
dataset, for the Gaussian (left) and sinc filters (right). Note that the experimentally determined gain characteristics bottom out
faster due to the 8-bit image quantization.

and the desired zero-phase centre of mass. Furthermore,
we enforce kernel normalization (i.e., unit gain at DC)
using the following regularization term

Ln =

∣∣∣∣∣∣1−
∑
i,j

ki,j

∣∣∣∣∣∣ . (6)

Let y be the input image, and mk(·) be the implicit kernel
model, which models the kernel k, the final loss used to
train the implicit kernel model is then

L(y,mk) = |y −mk(y) ↓↑|+
+ λcLc(mk(δ)) + λnLn(mk(δ)),

(7)

where λc and λn are weights for the centre-of-mass and
normalization regularization terms. We set them as λc =
10−2, λn = 10−3 using a logarithmic grid search.

3 Results
We train the implicit and explicit models on the VGGFace2
image dataset [2] to convergence using the above described
loss functions and constraints.

We show the filters learned by the explicit model in
the Figure 3. Note that without constraints, the learned
filter does not have the desired structure, and fails to sup-
press the frequency components in the stopband. The fil-



Figure 3: Filters learned by the explicit model without con-
straints (top), using the separability constraint (centre), and us-
ing the symmetry constraint (bottom). The figure shows the fil-
ters (left) and the result of applying the filters to an image from
the test set (right).

Figure 4: Filters learned by the implicit model without kernel
regularization (top) and with the described regularization terms
(bottom).

ters learned by the implicit model are shown in Figure 4.
Without the regularization terms described in the previ-
ous section, the implicit model learns a sinc-like filter,
whereas if we use the regularization terms, the structure
of the filter is less regular. In this case, the regularized
model has better frequency characteristics, and is consid-
ered the main result of this paper.

Next, we evaluate the filters learned by the proposed
method by using them to filter and downsample images
from the test set of the VGGFace2 dataset, using a down-
sampling factor of 8. We compare the frequency char-
acteristics of the downsampled images and small patches

Table 1: Results of the spectrum matching experiment.

Filter Spectral deviation (↓)
Gaussian (analytical) 7.1dB
sinc (analytical) 6.9dB
Lanczos (analytical) 6.9dB
Explicit model, no constraints 9.1dB
Explicit model, constraints 7.3dB
Implicit model, no regularization 6.8dB
Implicit model, regularization 6.6dB

of the high-resolution images with the same resolution.
We take the average axial spectrum of both over the en-
tire dataset and compare the mean absolute deviation in
dB. The results are shown in the Table 1. Using the de-
scribed loss function and regularization terms, the im-
plicit model is able to learn better image filters than the
analytically derived separable filters that don’t account
for sampling artefacts. The explicit kernel model requires
hard constraints to tractably learn filters with the desired
frequency characteristics, which prevents it from surpass-
ing the performance of analytically derived filter kernels.

4 Conclusion
In this paper, we have presented a data-based filter design
technique to prepare pairs of low- and high-resolution im-
ages for super-resolution training. The results show that
our learned filters are better suited for image downsam-
pling for this task than the heuristically picked, analyti-
cally designed filters typically used for this purpose. As
part of our future work we plan to apply the learned filters
for generating aligned pairs of high- and low-resolution
face images and evaluate their influence on the perfor-
mance of the learned super-resolution models.
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