
Hierarchical Superquadric Decomposition with
Implicit Space Separation

Jaka Šircelj1,2, Peter Peer1, Franc Solina1, Vitomir Štruc2
1Faculty of Computer and Information Science, UNI-LJ, Večna pot 113, Ljubljana, Slovenia

2Faculty of Electrical Engineering, UNI-LJ, Tržaška cesta 25, Ljubljana, Slovenia

Abstract
We introduce a new method to reconstruct 3D objects us-
ing a set of volumetric primitives, i.e., superquadrics. The
method hierarchically decomposes a target 3D object into
pairs of superquadrics recovering finer and finer details.
While such hierarchical methods have been studied before,
we introduce a new way of splitting the object space us-
ing only properties of the predicted superquadrics. The
method is trained and evaluated on the ShapeNet dataset.
The results of our experiments suggest that reasonable re-
constructions can be obtained with the proposed approach
for a diverse set of objects with complex geometry.

1 Introduction
A vital field in 3D vision and robotics is 3D object recon-
struction. By compressing input data into simpler repre-
sentations such as meshgrids or sets of simpler objects,
we can understand and interact which objects and their
surroundings more easily, solving problems like collision
avoidance [7] or grasp planning [2], [9].

A common type of reconstruction is to represent a
given (3D) object with a set of simpler shape primitives,
often referred to as geons. A popular approach in geon
reconstruction is to estimate a fixed amount of geons and,
concurrently, predict which of those should be kept in
the final geon set, thus retaining the variability in geon
numbers [8], [6]. In our previous work, for example, we
used a MaskRCNN model to first segment the input depth
image and then reconstruct the parts using a specific type
of geons, called superquadrics [10].

Following the overall idea of our prior work, we in-
troduce a novel method to reconstruct 3D objects with a
set of superquadrics (SQ) in this paper. However, in this
novel approach we base the procedure on a hierarchical
tree decomposition algorithm. Instead of using a model
that returns a fixed amount of geons at once, we introduce
a hierarchical decomposition model, that incrementally
splits the input object into more and more SQ representa-
tions, as illustrated in Figure 1. While a similar method
was introduced by Paschalidou et al. in [5], we propose a
splitting method based on the superquadrics characteristic,
alleviating the model from determining how the object
should be hierarchically split.

We evaluate the proposed approach on the ShapeNet
dataset. Two models with different reconstruction capabil-

Figure 1: Visualization of the hierarchical decomposition with
superquadrics. Each step splits the object into a pair of su-
perquadrics (a and b). The split is driven by previous su-
perquadrics as shown by the arrows. The tree levels are indexed
with d, whereas the SQ pairs in each level are indexed with i.

ities are trained for the experiments. The first, facilitating
reconstructions with a maximum of 4 superquadric, is
trained and tested on the full ShapeNet dataset. The sec-
ond, enabling reconstructions with up to 8 superquadrics,
is assessed on the pistol ShapeNet subset. Results are pre-
sented in terms of IoU scores and with visual examples,
and point to the feasability of the proposed solution.

2 Method
2.1 Superquadrics
To reconstruct the 3D shapes we use superquadrics, which
are geometric shapes that can describe objects such as
spheres, ellipsoids, cylinders and rectangular cuboids. A
common way to describe the surface of a superquadric
is using the implicit function F (x, y, z) = 1. Here F is
called the inside-outside function and is defined as

F (x, y, z) =

((
x

a1

) 2
ε2

+

(
y

a2

) 2
ε2

) ε2
ε1

+

(
z

a3

) 2
ε1

,

(1)
where a1, a2, a3 define the size of the superquadric and
ε1, ε2 its shape. We can also move the superquadric in
space by offsetting the x, y, z coordinates by t1, t2, t3 re-
spectively and by rotating the coordinates using quaternion
notation q0, q1, q2, q3. To abbreviate the notation we write
the spatial coordinates using vector notation x = [x, y, z],

Figure 2: Recursive model architecture.

and all superquadric parameter as

λ = [a1, a2, a3, ε1, ε2, t1, t2, t3, q1, q2, q3, q4].

A useful property of the inside-outside function, that
will be used further on, is that it contains information
whether the space is inside or outside the superquadric
(hence the name). Points with F (x) < 1 lie inside the
object, F (x) > 1 lie outside, and, as already suggested,
points with F (x) = 1 lie on its surface. For numerical
stability we rather compare F (x)ε1 values [3], the spatial
inequalities remains the same.

2.2 Model architecture
Similarly to Paschalidou et al. [5] we use a hierarchical
decomposition procedure to reconstruct a complex 3D
object using a set of superquadrics. This allows the de-
composition to predict different numbers of superquadrics,
increasing their number for fine detail, and decreasing for
larger parts of the object. The procedure works by first
extracting a feature vector out of the input depth image,
which we refer to as a depth feature. This is concatenated
with a hierarchical feature and passed into a recursive neu-
ral network which predicts two new hierarchical features
each encoding data to predict a new superquadric. This
prediction is done with an SQ predictor network which
predicts the parameters λ previously described. Each of
the two hierarchical features can again be concatenated
with the depth feature vector and passed into the recursive
neural network, thus splitting the initial superquadric fea-
ture into two. A hierarchical feature in the first step can be
a simple vector filled with zeroes. The model architecture
corresponding to the outlined idea is shown in Figure 2.

Such a model produces a superquadric-pair binary
tree, where each node contains two sets of parameters and
two links to two children, again containing two sets of
parameters. We use the following notation to reference
the superquadric parameters in the tree:

SQ paird,i = [λa,λb], (2)

where d is the depth of the node and i is the index of the
node in the tree. This notation is also shown in the tree
example in Figure 1.

2.3 Training
For training, we use the natural property of the inside-
outside function, whose sign describes the inside and the
outside space of the superquadric. Similarly to [5], we

Figure 3: Rows: top - computations on the f = F ε1 function,
bottom - computations on the radial Euclidean distance function
(f = d). Columns: first - values of the f function around the
first superquadric, shown in red, second - values of f around the
second superquadric, shown in blue, third - space split according
to the f function. We can see that F and F ε1 split space better
inside of the superquadrics while the radial distance function
splits space more evenly outside of the superquadrics.

define the occupancy function g(x;λ), which translates
this property to act as a binary classifier of the inside space

g(x;λ) = σ(s ∗ (1− F ϵ1(x;λ))), (3)

where σ is the sigmoid function, and s is a scaling param-
eter that defines the slant of the values around the surface
of the superquadric – for more information see [5].

Since we want to use this occupancy property of the
superquadrics, we generate the training dataset by sam-
pling points in space and annotating them with 1 if they
lie inside the 3D object and 0 if they lie outside. The root
node of the superquadric pair tree, Eq. (2), is trained on
these sets of initial ground-truth points and labels, denoted
as P and L1,1 respectively.

The child SQ pairs should only cover the space in prox-
imity to the space occupied by their parent superquadric,
and should not be fitted to the full inside of the 3D model
i.e. L1,1. Paschalidou et al. [5] solve this problem by
also predicting the centroid of the part covered by a pre-
dicted superquadric. The space is then split by matching
every point to its closest centroid (see [5] and Figure 4).
In this paper, we use the mathematical properties of su-
perquadrics to split the space. More specifically, we found
that it is best to split the space inside and outside of the
superquadric pairs differently. The space inside of the
superquadrics is split using the inside-outside function by
finding the maximum of the inside-outside function, i.e.:

argmax
i=a,b

F ε1(x;λi). (4)

Conversely, the space outside of the superquadric pair is
split using the radial Euclidean distance

d(x) = |x||1− F− ε1
2 |, (5)

taking the superquadric with the minimum value

argmin
i=a,b

di(x). (6)

This distance function is used outside because it behaves
more properly as a distance function further away from a
superquadric. For more information on the radial distance
function, look at Jaklič et al. [3]. The space-splitting

^

Figure 4: Left: Airplane with its insides noted dark L1,1, center
top: outline of SQ 1 with its assigned space after split, center
bottom: outline of SQ 2 with its assigned space, right: two
outcomes of Equation (7), top is L2,1, bottom L2,2.

Table 1: IoU scores of ModelS (full ShapeNet).

SQ tree level 1 2

IoU [in %] 56.7% 58.8%

properties of the inside-outside function and the radial
Euclidean distance function are illustrated in Figure 3.
The proposed splitting method is simpler than the one
used in [5], since we don’t need to predict any additional
values, and uses the space splitting capabilities of the
superquadrics, thus, splitting the space more naturally and
in accordance with the geometry of the superquadrics.

Since our model obtains a hierarchy of superquadrics,
we must also construct a hierarchy of labels Ld,i on which
we compute the losses. These labels are computed recur-
sively according to how the space is split using the su-
perquadric pairs. The inside of the object is considered in-
side for the SQ-pair child only if its parent superquadrics’
split space also contains it (see Figure 4). This translates
to a logical AND operation between the parents ground
truth occupancy Ld,i and the space split of the parent

ld,i = lparent node(d,i) ∧
split(x,λparent sq(d,i),λuncle sq(d,i)),

(7)

where ld,i ∈ Ld,i is the label belonging to point x ∈
X , parent node(d, i) denotes the parent SQ pair node,
parent sq(d, i) is the parent superquadric (a or b) and
uncle sq(d, i) is the other superquadric from the parent
pair node. For example, for node (d, i) = (2, 2):

parent node(2, 2) = (1, 1)

parent sq(2, 2) = (1, 1, a)

uncle sq(2, 2) = (1, 1, b).

Finally the occupancy loss is calculated using the oc-
cupancy values for each pair tree node and the ground
truth occupancy values Ld,i

L =
∑
d=1

2d−1∑
i=1

∑
x∈X

ld,i∈Ld,i

LBCE(max
sq=a,b

g(x;λsq), ld,i),

(8)
where LBCE is the binary cross entropy loss. This loss is
similar to the part-reconstruction loss term from Paschali-
dou et al. [5], but differs in that we look at how accurately
an SQ pair matches the designated space of its parent
superquadric.

Table 2: Per object category IoU scores of ModelS (full
ShapeNet). Superquadrics taken from the last/second tree layer.

Label IoU [in %] Label IoU [in %]
dishwasher 86.9% rocket 64.7%

microwave 84.3% printer 64.2%

bus 82.1% monitor 62.9%

washer 81.2% watercraft 61.9%

file 80.4% bag 61.4%

can 78.1% piano 60.4%

pillow 77.9% plane 57.6%

car 76.8% rifle 52.2%

phone 76.1% knife 50.8%

laptop 73.1% chair 47.5%

cabinet 71.8% table 47.4%

speaker 69.9% bench 46.7%

sofa 68.8% lamp 41.9%

camera 67.4% bathtub 41.2%

pistol 67.2% bookcase 40.2%

mailbox 65.3% bowl 34.3%

basket 23.8%

Table 3: IoU scores of ModelP (pistols).

SQ tree level 1 2 3

IoU 63.5% 65.6% 64.7%

3 Results
In this section, we present the results for two trained hi-
erarchic decomposition models. We use the ShapeNet
dataset [1] for training along with the NVIDIA Kaolin
v0.1 library [4], which is used to compute signed distance
function values of the 3D objects and to infer the ground
truth inside-outside space. The first model (abbreviated as
ModelP) is trained on the Pistol subset of ShapeNet with
the maximum depth of the superquadric pair tree set to 3
levels. The second model (ModelS) is trained on the full
ShapeNet dataset with the maximum depth set to 2 level.

Performance Indicator. After a train-validation-test
split, both models are evaluated on the test subset using
the intersection-over-union metric (IoU)

IoU(Λd,L0,0) =

∑
x∈X
l∈L0,0

l̂d(x) ∧ l∑
x∈X
l∈L0,0

l̂d(x) ∨ l
, (9)

where Λd denotes all predicted superquadric parameters
in the tree at layer d, Λd = {λd,i|i ∈

[
1, 2d−1

]
} and l̂d(x)

denotes the predicted inside-outside label for point x. The
latter is inferred as inside or l̂d(x) = 1 if g(x;λd,i) > 0.5,
for any superquadric in layer d, otherwise the point is
outside of the reconstruction.

Model Comparison. The IoU results of the ModelS
on the full ShapeNet dataset are shown in Table 1 and for
separate subsets of Shapenet in Table 2. The IoU results of
ModelP for the pistol subset are reported in Table 3. Since
the full ShapeNet dataset contains much more variability,
ModelS scores a lower IoU over the full ShapeNet dataset,
than ModelP over the pistol subset. An interesting obser-
vation is that ModelS still performs better on the pistol

Figure 5: Reconstruction examples of ModelS on full ShapeNet.
The 1st and 3rd columns show the original object. The 2nd and
4th show the reconstruction from the second SQ tree layer.

subset than ModelP, even though the latter was trained
exclusively on pistols. This suggests that training on more
complex and diverse sets can improve results on specific
subsets. However, training on the full ShapeNet did prove
more difficult. For instance, we managed to train ModelS
for only up to 2 tree levels, while we managed to train
ModelP to predict trees up to 3 levels deep.

Object-specific Results. Regarding the specific sub-
sets of ShapeNet, the model performed best on simpler
object classes, e.g., dishwasher or microwave, which have
a box-like shape and are, thus, easier to reconstruct using
superquadrics. The poorest results are on concave objects,
such as bowl or bathtub, since only two levels of SQ-pairs
don’t give enough capacity to cover the object.

Qualitative Evaluation. In Figure 5 we show a few
reconstruction examples of ModelS. As we can see, the
largest issue is the low number of predicted superquadrics,
given that ModelS has been trained for only 2 levels, and
being capable to reproduce an object with a maximum of 4
superquadrics. While simpler objects like the two cars are
well reconstructed, more complex objects prove impossi-
ble to reconstruct with 4 superquadrics. For example, both
tables have four leg stands, which in this case get covered
by two rectangular superquadrics in the left case, and a
cylindrical one on the right. The same problem can be
observed on both of the planes, where the wings and the
engine prove much too complex for only 4 superquadrics.

In Figure 6 we show a few ModelP reconstructions,
from worst to best, using the 2nd and 3rd tree level. Here,
we observe that the least performing objects were those
pistol models that have been rare in the pistol subset, like
the 1stst and 2nd pistol. The most common handgun in
the last two rows performed best in terms of IoU.

4 Conclusion
The hierarchical decomposition has proven to successfully
decompose the targeted input objects, even with single
point-of-view depth images, which give a highly occluded
representation of the 3D object. We showed that, unlike in
Paschalidou et al. [5], we don’t need to predict centroids

Figure 6: Reconstruction examples of ModelP on the pistol
subset. First column - original object, second - reconstruction
from the second SQ tree level, third - reconstruction from the
third SQ tree level. The reconstructions are sorted from worst to
best with the reconstruction IoU annotated above.

to split the space into two. It is sufficient to use the already
predicted superquadrics for space splitting. These results
have been supported byfairly good IoU scores and good
visual representations. There is also much to improve in
the model. The largest issue we faced was the maximum
allowed depth of the SQ pair tree, where we achieved the
max depth of 3 with 8 predicted superquadrics.

References
[1] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,

Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and
F. Yu. ShapeNet: An Information-Rich 3D Model Repository.
Technical Report arXiv:1512.03012 [cs.GR], 2015.

[2] C. Goldfeder, P. Allen, C. Lackner, and R. Pelossof. Grasp planning
via decomposition trees. In ICRA, 2007.

[3] A. Jaklic, A. Leonardis, and F. Solina. Segmentation and recovery
of superquadrics. Kluwer, 2000.

[4] K. M. Jatavallabhula, E. Smith, J.-F. Lafleche, C. F. Tsang,
A. Rozantsev, W. Chen, T. Xiang, R. Lebaredian, and S. Fi-
dler. Kaolin: A pytorch library for accelerating 3d deep learn-
ing research. https://github.com/NVIDIAGameWorks/
kaolin, 2022.

[5] D. Paschalidou, L. V. Gool, and A. Geiger. Learning unsupervised
hierarchical part decomposition of 3D objects from a single RGB
image. In CVPR, pages 1060–1070, 2020.

[6] D. Paschalidou, A. O. Ulusoy, and A. Geiger. Superquadrics
revisited: Learning 3D shape parsing beyond cuboids. In CVPR,
pages 10344–10353, 2019.

[7] N. E. Smith, R. G. Cobb, and W. P. Baker. Incorporating stochastics
into optimal collision avoidance problems using superquadrics.
Journal of Air Transportation, 28:65–69, 2020.

[8] S. Tulsiani, H. Su, L. J. Guibas, A. A. Efros, and J. Malik. Learning
shape abstractions by assembling volumetric primitives. In CVPR,
pages 2635–2643, 2017.

[9] G. Vezzani, U. Pattacini, and L. Natale. A grasping approach based
on superquadric models. In ICRA, pages 1579–1586, 2017.

[10] J. Šircelj, T. Oblak, K. Grm, U. Petkovič, A. Jaklič, P. Peer, V. Štruc,
and F. Solina. Segmentation and recovery of superquadric models
using convolutional neural networks. In CVWW, 2020.

https://github.com/NVIDIAGameWorks/kaolin
https://github.com/NVIDIAGameWorks/kaolin

