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Abstract. Crowd–counting is a longstanding computer vision used in estimating the crowd sizes for security
purposes at public protests in streets, public gatherings, for collecting crowd statistics at airports, malls, concerts,
conferences, and other similar venues, and for monitoring people and crowds during public health crises (such
as the one caused by COVID-19). Recently, the performance of automated methods for crowd–counting from
single images has improved particularly due to the introduction of deep learning techniques and large labelled
training datasets. However, the robustness of these methods to varying imaging conditions, such as weather,
image perspective, and large variations in the crowd size has not been studied in-depth in the open literature.
To address this gap, a systematic study on the robustness of four recently developed crowd–counting methods
is performed in this paper to evaluate their performance with respect to variable (real-life) imaging scenarios
that include different event types, weather conditions, image sources and crowd sizes. It is shown that the
performance of the tested techniques is degraded in unclear weather conditions (i.e., fog, rain, snow) and also
on images taken from large distances by drones. On the opposite, clear weather conditions, crowd–counting
methods can provide accurate and usable results.
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Vrednotenje postopkov štetja oseb ob različnih
karakteristikah slik

Postopek štetja oseb v množicah je pomemben na različnih
področjih uporabe, kot je zagotavljanje varnosti na protestih
in drugih večjih javnih prireditvah, ali zbiranje statistik o
množicah v večjih prostorih, kot so letališča, nakupovalna
središča in konferenčni centri. V zadnjem času je z uporabo
metod globokega učenja in velikih označenih zbirk učnih
podatkov prišlo do hitrega napredka pri razvoju postopkov za
samodejno štetje oseb v množicah na podlagi ene slike. Kljub
napredku pa robustnost takšnih metod na slikah, posnetih v
slabših vremenskih razmerah, pod različnimi perspektivami in
pri veliki variabilnosti v številu ljudi, ostaja odprt problem.
V tem članku zato izvedemo sistematično študijo uspešnosti
več nedavno predlaganih postopkov štetja ljudi v množicah in
vrednotimo njihovo uspešnost v spremenljivih, realističnih sce-
narijih, vključujoč različne tipe dogodkov, vremenske razmere,
vire slik in velikosti množic. Naše glavne ugotovitve so,
da uspešnost vrednotenih postopkov močno upade v slabših
vremenskih razmerah (tj. v megli, dežju, snegu), obenem pa
delujejo slabše tudi na slikah, posnetih z večje razdalje z
uporabo dronov. Pokažemo tudi, da postopki za samodejno
štetje ljudi v množicah pod ustreznimi pogoji lahko delujejo
natančno in uspešno.

1 INTRODUCTION

Crowd–counting is a well-known computer-vision prob-
lem, where the goal is to estimate the number of people
in a crowded scene. In recent years, the demand for
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Figure 1: Comprehensive performance evaluation of the
existing crowd–counting techniques when applied to im-
ages captured by onboard drone cameras. Four recent deep-
learning models and two publicly available datasets, i.e.,
JHU-CROWD++ and VisDrone ECCV2020, are used. The
impact of weather conditions, scene type and crowd density on
the models overall performance is investigated. Drone image
courtesy of Don Ramey Logan [17].

methods that can quickly estimate crowd counts from
visual information has been increasing due to important
applications in crowd monitoring and prevention of
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dangerous situations such as trampling, suffocation or
violence at public gatherings. Crowd–counting is also
used for statistical and analytical purpose at airports,
malls, stadiums, rallies, concerts, and other public places
and events, or crowd monitoring during public health
crises [27].

Crowd–counting is a complex task due to the presence
of various sources of image variability, such as large
scale variations [33], overlaps, occlusions and perspec-
tive effects [2], [18] that can heavily alter the human
shape and appearance. Perspective effects are especially
significant in surveillance camera footage, where the
angle between the camera and the crowd plane is small
and causes the shape and scale of people to change with
respect to the image location. While these challenges
have been addressed to a certain degree with the use
of deep-learning and convolution neural networks, low-
light conditions and reduced visibility conditions, caused
by different weather conditions, such as fog or snow, still
adversely affect the performance of the existing crowd–
counting techniques [29].

In terms of deployment, the use of drones is becoming
a viable option for the crowd–counting techniques and
surveillance applications [19], [31], [13], [38]. Cameras
mounted on drones and other types of micro aerial ve-
hicles (MAVs) can capture images in a bird’s–eye view
that do not suffer from the perspective issues discussed
above. Because of their portability, drones can also be
deployed quickly in cases where unexpected crowds
emerge and need to be monitored, e.g., at public protests.
While the interest in the crowd–counting technology for
drones and MAVs is growing and a significant research
effort is being directed towards this area, the charac-
teristics of contemporary deep-learning techniques used
in this area are still not well understood. It is not
immediately clear how well these methods perform with
images captured in a bird’s-eye view, where significant
appearance and scale changes can be expected with re-
spect to the humans in the crowd. Moreover, the impact
of adverse weather conditions and scene types is also
underexplored. For real–life deployment, it is important
to have an in-depth understanding of these and related
characteristics as well as of the limitations of the existing
crowd–counting solutions. There are no comprehensive
studies on this topic found in the literature.

This paper aims to address this gap and presents
results of a performance evaluation of four recent (deep-
learning) crowd–counting models using two diverse
crowd datasets. The overview of the evaluation is pre-
sented in Figure 1. The study analyzes: (i) the overall
performance of the considered crowd–counting models,
(ii) the impact of imaging conditions, and (iii) the effect
of the crowd density on performance. The results show
that weather conditions can severely affect the accuracy
of the crowd–counting methods with snowy conditions
causing the largest performance degradations among the
considered weather conditions. Furthermore, the quality

of crowd–counting performance in different scenarios
highly depends on the used technique, since different
models were trained on crowds of different scales.

The main contributions of the paper are:

• An comprehensive evaluation of four state–of–the–
art crowd–counting models with crowd footage
captured in a bird’s-eye view using a drone camera.

• A performance study of the four methods in chal-
lenging weather conditions (fog, rain, and snow)
and a discussion of the reasons for the observed
performance differences.

• An analysis of the impact of different scene types
and crowd counts on the methods performance and
identification of their weak points.

The rest of the paper is structured as follows. Sec-
tion 2 reviews existing crowd–counting methods and
current state-of-the art solutions. Section 3 presents
the methodology used to evaluate the selected models.
Section 4 provides experimental results and discusses the
main findings. Section 5 draws conclusions and proposes
directions for future work.

2 RELATED WORK

Crowd–counting technology has a rich history, but has
greatly advanced recently with the introduction of the
deep neural networks. In this section, a brief overview
of the field is given. First, traditional methods that
dominated the field for years are discusses, followed by
an overview of the more recent deep-learning methods.

Traditional methods. Early crowd–counting methods
mainly rely on object detection with counting. Lin
et al. [25] utilize the Haar wavelet transform to de-
tect head-like contours and a support vector machine
(SVM) to determine whether the detected contour is
actually a head or not. Similarly, human-shape models
are used in [30], [9], [14] to detect people in image se-
quences with a subtracted background. Dalal and Triggs
introduce Histograms of Oriented Gradients (HOGs)
for image representation and combine the computed
descriptors with an SVM model for classification [7].
Idrees et al. [10] propose a method utilizing HOG fea-
tures, Fourier analysis, and SIFT descriptors for counting
dense crowds. The authors of [3], [21] provide solutions
to track image features across video frames, cluster the
features, and then count the generated clusters.

A notable group of techniques relies on direct-count
regression and aims to directly map image features (or
their segments) to people counts. Examples of these
techniques are given in [5], [24], and use hand-crafted
features computed from image segments as the basis for
regression. Kong et al. [12] utilize a similar framework
and propose a feature-normalization method to deal with
camera orientation and perspective challenges. Chen et
al. [6] present a model to learn the importance of low-
level features used for a direct-count regression.
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An alternative to the direct-count regression is the
estimation of crowd-density maps and integration over
the densities to obtain crowd counts. The models of
this type usually use for training dot-annotated images
that are converted to density functions using kernel-
density estimation with Gaussian kernels [1]. There
are many learning methods of the kind presented in
the literature, including methods based on regression
forests [8], random forests [20] and others.

Due to the increasing number of annotated datasets
for crowd–counting, the data-driven direct approaches
have also received interest from the computer vision
community. Early methods from this group aim to learn
motion patterns associated with crowd counts [23].

Deep-learning methods. With the advent of CNNs,
many new approaches have been proposed in the litera-
ture. One of the first crowd–counting CNNs is presented
by Zhang et al. [35]. Multiple single-image to density
map network architectures trained using dot-annotated
images are proposed in [2], [37], [33], [26]. Ma et
al. [18] propose a Bayesian loss function for learning
crowd–counting with point supervision instead of the
commonly used Gaussian kernels.

To deal with large scale variations in crowd images,
[4], [34], [11] employ encoder-decoder networks, where
the encoder extracts multi-scale features that are then
fed to the decoder for generating high-resolution density
maps. To improve this basic setup, Liu et al. [15]
propose the use of a perspective map to encode the local
scale in the feature maps. Xiong et al. [32] introduce a
method for image sequences that uses a perspective map
and temporal information in video sequences to improve
the count reliability.

As deep-learning models require a considerable
amount of the training data, the aim of many approaches
is to reduce the amount of training data, by adopting data
augmentation techniques that rely on image scaling and
cropping [2], [34], [36], [33], flipping [4], [18], [33],
noise addition [26], or sub-sampling [16]. Some hybrid
training approaches are also developed. Zhang et al.
propose a hybrid training scheme altering between the
crowd–count and density estimation tasks during learn-
ing [35]. Zhang et al. [36] adopt a multi-task strategy
to optimize both the crowd count and the density map.
Ranjan et al. [22] introduce a two-branch CNN archi-
tecture, where a low-resolution density map is generated
by the first branch and the second branch incorporates
a low-resolution prediction and feature maps from the
first branch to generate a high resolution density map.

While the above deep-learning solutions outperform
earlier techniques, they are still sensitive to certain data
characteristics that adversely affect the crowd–counting
performance. This particularly applies to imagery cap-
tured by drones, where their behavior is not yet com-
pletely understood. Following the above, this paper eval-
uates the performance of four advanced crowd–counting
models with images captured in different weather con-

ditions and scenarios and assesses their suitability for
drone footage.

3 METHODOLOGY

The models and datasets selected for the performance
evaluation and performance measures used to report
resutls are described below.

3.1 Crowd Counting Models
In our study, four recently developed crowd–counting

models are evaluated. They are selected because of
their state-of-the-art performance and to facilitate repro-
ducibility – all models are publicly available. Details on
the selected models are given below.
• VGG-19. The first model, proposed by Ma et al. [18],

is based on the standard VGG-19 image classification
network (pretrained on ImageNet) with the last pool-
ing layer and fully connected layers removed. The
output of the VGG-19 backbone is upsampled by a
bilinear interpolation and fed into a regression head
consisting of two 3 × 3 convolutional layers and a
1× 1 convolutional layer that outputs a density map.
To produce crowd–count estimates, the density map is
integrated to convert it to a count estimate for a given
input image. All models are evaluated the same way.
The models are trained using dot-annotated images,
where dots are considered as priors for the probability
function used in the Bayesian learning objective.

• CANNet. The second model is the Context-Aware
crowd–counting Neural Network (CANNet) intro-
duced by Liu et al. in [15]. It combines features
generated using multiple receptive field sizes and
learns the importance of the computed features for
each image location. Thus, it encodes images both in
terms of scale as well as contextual information and as
a result ensures robustness to perspective distortions.
To train the model, the ground-truth dot annotations
are converted into a density map using Gaussian
kernels. The Euclidean distance between the estimated
and the ground-truth density maps is used as a loss
function.

• CMTL. The third model selected for the study is
the Cascaded Multi-Task Learning (CMTL) Network
proposed by Sindagi et al. [26]. It uses a multi-
task learning approach to jointly learn the crowd–
count classification and density map estimation. The
model implements a two-stage approach. In the first
stage, CMTL estimates the crowd count by classifying
the image into one of the ten possible count-amount
labels. In the second stage, the estimated count is
used to estimate the crowd-density map. Similarly
to the CANNet model, Gaussian kernels are used
to generate the ground-truth density maps, and the
Euclidean distance is used as a loss function.

• MCNN. The fourth model is the Multi-column Con-
volutional Neural Network (MCNN), proposed by
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Figure 2: Example images from the JHU-CROWD++ dataset.
They include foggy conditions, snow, and rain.
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Figure 3: Distribution of the crowd–count across the images
in the JHU-CROWD++ dataset.

Zhang et al. in [37]. It consists of three processing
branches of a similar network topology, but differently
sized filters that have different receptive fields to
detect heads of different scales in the crowd. To
generate the final density map, the output of each
branch is merged in the final part of the model. The
model loss function is again the Euclidean distance
between the estimated and the ground-truth density
maps. Dot annotations are converted to the ground-
truth density maps using Gaussian kernels with a
spread that depends on the average distance from the
neighbouring annotations.

3.2 Datasets
Each evaluated model is trained on 300 images from

the training part of the Shanghaitech part A dataset [37].
The images for this dataset are crawled from the internet.
The crowd count on most of the images is between 250
and 500 people, with some images containing up to 3000
people annotations.

To evaluate the performance of the selected crowd–
counting methods, the below two datasets are used:

• JHU-CROWD++. The first dataset is the JHU-
CROWD++ dataset [28], [29]and consists of 1600

Figure 4: Examples of images from the VisDrone ECCV2020
dataset. People are imaged from considerable heights making
it challenging for a reliable estimation of the crowd count.
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Figure 5: Distribution of the crowd–count across the images
in the VisDrone ECCV2020 dataset.

images - only the test part is used. Because of
GPU limitations, the images with the width above
1920 pixels are not used, leaving 1303 images
for the final evaluation. All images come with
weather condition (Figure 2 for some examples)
and scene type annotations, which allows for an in-
depth analysis of the methods in different scenarios.
Their average crowd count is 228, with the highest
count of 8994 people in one image. Figure 3 shows
the distribution of the crowd count across the JHU-
CROWD++ dataset.

• VisDrone. The second dataset used for the eval-
uation is the VisDrone ECCV2020 Challenge
DroneCrowd dataset [38]. It contains 112 image
sequences taken from a drone camera in a bird’s-
eye view. Because the focus of the analysis is on
single imae crowd–counting techniques, only the
first image from each sequence is considered in
the experiments. Due to the height the images are
taken at, the people in the images are very small
(Figure 4). As only the training part of the dataset
is annotated, this part is also used for testing of
the crowd–counting models – note that we use
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Table 1: Overall MAE and MSE scores for the evaluated
models obtained on the two experimental datasets.

Dataset JHU-CROWD++ VisDrone
Model MAE MSE MAE MSE
VGG-19 80.8 291.3 76.7 105.7
CANNet 69.3 283.3 78.2 105.8
CMTL 130.6 365.2 109.6 172.6
MCNN 111.3 326.3 86.6 120.2

pretrained models for the anaylsis. The average
crowd count on this dataset is 146.12 people with
the highest count of 417 people in a single image.
Figure 5 shows the distribution of the crowd count
across the images in this dataset.

3.3 Performance Measures

Two widely used performance measures are utilized
to evaluate the four crowd–counting models: the Mean
Absolute Error (MAE) and the Mean Squared Error
(MSE):

MAE =
1

N

N∑
i=1

|yi − y′i|, (1)

and

MSE =

√√√√ 1

N

N∑
i=1

|yi − y′i|2, (2)

where N is the number of images used in the evaluation,
yi is the ground-truth crowd count of the i-th image, and
y′i is the crowd count of the i-th image predicted by the
evaluated model.

Both the MSE and MAE scores yield smaller values
for better estimates. The MAE score is more intuitive to
understand, but MSE gives more weight to bigger errors.
The total MSE and MAE scores are determined for each
dataset. For the JHU-CROWD++ dataset, the MSE and
MAE values for various weather conditions and scene
types are reported. The performance of the models with
respect to the number of people in the images is also
studied.

3.4 Implementation Details

For the VGG-19 and CANNet models, RGB images
are used for the experiments. The input images, x, are
normalized

x′ =
x− µ

σ
, (3)

where µ is defined as µ =
[
0.485 0.456 0.406

]T
,

σ equals σ =
[
0.229 0.224 0.225

]T
, and x′ is the

normalized image. The CMTL and MCNN models use
gray-scale images and require no normalization.
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Figure 6: Crowd–count error in relation to the number of
people on the images from the JHU-CROWD++ dataset.
Results are filtered with the Gaussian filter with σ = 30 to
eliminate outliers due to the image specifics.
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Figure 7: Crowd–count error in relation to the number of
people in the images from the VisDrone ECCV2020 dataset.
Results are filtered with the Gaussian filter with σ = 10 to
eliminate outliers due to the image specifics.

4 EXPERIMENTAL RESULTS

The evaluation is performed on a GeForce GTX 960
graphics card with 4 GB of video RAM. The evaluation
of all models for both datasets takes about an hour.

Overall results. Table 1 shows the overall MAE and
MSE scores for both datasets. On the JHU-CROWD++
dataset, CANNet performs best, while on the VisDrone
dataset, VGG-19 is also competitive and performs com-
parably to CANNet. All in all, CANNet is the top
performer and as a result of its adaptive design, it
accounts for the different scales and density situations
present in the JHU-CROWD++ dataset, which contains
very diverse scene types.

The overall results are better for the VisDrone dataset
in which there are little-to-no perspective changes in the
images, the crowd scale is constant, the crowd density in
smaller, and the images are taken in weather conditions
suitable for drone operation (no fog, rain or snow). These
results point to the feasibility of drone–based crowd–
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Figure 8: Crowd density and count estimates for two images that represent cases where the evaluated models produce small
(Case 1) and big (Case 2) count-estimation errors on the JHU-CROWD++ dataset. The bad estimate in Case 2 is attributed to
the huge crowd density, fog, scale of most of the people, as well as to the scale differences present. yGT is the ground-truth
count, and y′

X is the count prediction for model X .
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Figure 9: Crowd density and count estimates for two images that represent cases where methods produce small (Case 1) and
big (Case 2) count estimation errors on the VisDrone dataset. As seen, the methods perform much worse when images are taken
from bigger heights, as the crowd scale becomes too small for a reliable crowd count estimation. yGT is the ground-truth count,
and y′

X is the count prediction for model X .

counting applications and the suitability of drone footage
for crowd–counting.

Impact of the crowd count. Figures 6 and 7 show the
correlation between the absolute count error (MAE) and
the ground-truth crowd count of the images. The JHU-
CROWD++ dataset shows a general trend for each of the
four methods that the error increases with the ground-
truth crowd count. CANNet performs the best for all
crowd counts. For smaller crowd counts (below 500
people), VGG-19 outperforms MCNN, but falls behind
MCNN on larger crowds. CMLT performs the worst
across the tested models at any crowd count.

The VisDrone dataset shows a different trend than
the JHU-CROWD++ dataset. Here, the absolute error
increases with the crowd size for VGG-19 and CANNet,

and decreases for CMTL and MCNN. The model com-
parison shows that VGG-19 performs best for smaller
crowd counts (comparably to CANNet) and that for
larger crowd counts CMTL and MCNN provide better
results than VGG-19 and CANNet. However, for crowd
counts over 200, there is only a small number of images
available for the evaluation (Figure 5), so the scores may
be due to specific images that work better with some
crowd–counting approaches and not necessarily due to
the models conceptual differences.

Figures 8 and 9 show the crowd density and count
predictions for two images that represent cases where
the tested methods produce big and small count-
estimation errors for the JHU-CROWD++ and VisDrone
ECCV2020 datasets, respectively. The JHU-CROWD++
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Table 2: MAE and MSE scores for the evaluated models with respect to weather conditions in the JHU-CROWD++ dataset.

Weather Neutral Fog Rain Snow
Model MAE MSE MAE MSE MAE MSE MAE MSE

VGG-19 71.0 144.1 85.6 246.0 110.1 305.0 215.1 1059.0
CANNet 58.1 121.3 80.4 197.8 120.9 335.2 206.2 1067.0
CMTL 109.6 216.5 131.5 314.2 228.5 415.3 403.4 1231.0
MCNN 92.4 181.7 139.7 105.7 205.8 376.9 332.5 1115.0

Table 3: MAE and MSE scores for the evaluated models for some of the more common scene types present in the JHU-
CROWD++ dataset.

Scene Stadium Street Protest Airport Conference Rally
Model MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

VGG-19 168.6 629.3 50.7 84.0 64.8 101.8 71.9 111.2 33.7 63.0 77.5 156.3
CANNet 150.6 620.2 43.4 79.3 53.1 94.5 55.4 81.2 34.3 67.9 60.8 108.9
CMTL 260.4 735.2 93.2 166.4 92.1 173.1 57.3 72.2 38.7 70.1 119.5 183.1
MCNN 215.9 666.7 83.2 149.4 71.4 108.5 44.2 58.7 32.7 53.8 84.02 125.5

dataset provides good results for crowds where the
people appearance is homogeneous. Bigger errors are
generated in images showing people at different scales.
With the VisDrone dataset, the performance appears to
be related to the height at which the images are taken.
For images where people appear at a reasonable scale,
small prediction errors are generated, while for images
with very small people, the count error is commonly
larger.

Impact of the weather conditions. The performance
of the four crowd–counting models is analysed in dif-
ferent weather conditions using the JHU-CROWD++
dataset. Table 2 shows the MAE and MSE scores for
the weather conditions annotated in the dataset. Again,
CANNet performs best at any weather condition except
for rain, in which the VGG-19 dataset performs slightly
better. Such a degradation is likely due to the scale
estimation mechanism used in CANNet, where image
artifact caused by rain might be misinterpreted as a
crowd of a high density, thus reducing the accuracy of
the crowd–counting task. A comparison of the results
for images taken at different weather conditions shows
that the performance of the models degrades rapidly
when fog, rain, or snow are present in the images.
This performance deterioration is presumably due to
reduced visibility at such weather conditions, and due
to image artifacts caused b snowflakes and raindrops,
which greatly reduce the accuracy of the evaluated
models.

Impact of the scene types. Experiments are also con-
ducted to evaluate the performance of the four crowd–
counting models for some of the most common scene
types present in the JHU-CROWD++ dataset. The results
for this part of the analysis are shown in Table 3.
CANNet performs best for most of the scene types,
except for airports and conferences for which the MCNN

model is the top performer. The outstanding performance
of MCNN with images of airports and conference is
likely due to one of the network branches being trained
very closely to a particular people scale that appears
on such scenes. For the airport-scene type, the VGG-
19 model performs worst, despite competitive overall
results (see Table 1). A comparison of the CANNet
model performance with its average performance over
the whole JHU-CROWD++ dataset shows that it per-
forms better than average (see Table 1) with images
of streets, protests, airports, conferences, and rallies. In
all these scenarios, the crowd density is generally high.
So, compared to the other models, it outperforms them
presumably due to the mechanism used to account for
crowds and people of different scales.

5 CONCLUSION

The performance of four advanced crowd–counting
models using two crowd image datasets was analyzed in
this paper. One of the datasets was used to evaluate the
impact of weather conditions and the type of scene on
the crowd–counting accuracy and the other the efficiency
of the evaluated models for crowd–counting from aerial
drone footage.

The results obtained with the JHU-CROWD++ dataset
showed that the model performance in different sce-
narios highly depends on the training data used for
a specific model, since different event types typically
result in crowd images at different scales, and the
evaluated models do not deal well with the crowd-
scale variability. None of the evaluated crowd–counting
models outperformed the others in all event types.

It was shown that (i) the current state-of-the-art, deep-
learning-based models have not yet solved issues related
to low light scenarios and images taken in weather
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conditions such as fog, rain, and snow, and (ii) the
crowd-count error grows with the crowd size. The goal
of our future research is solving these two issues.

Using the VisDrone ECCV2020 dataset, the study also
analyzed the performance of the four selected crowd-
counting models on areal drone images. The models per-
formance was found to be comparable to that observed
on the JHU-CROWD++ dataset. However, performance
degradations were observed with crowd images taken
from higher altitudes. This indicates the inefficiency of
the studied methods in detecting people on very small
scales. Moreover, false positive crowd detections are
numerous, especially on the tree tops and roof tops.
This could to some extend be solved by providing more
distractors of the type in the training samples. Consid-
ering the increasing demand for crowd surveillance and
rapidly developing drone technology, such limitations
are an important challenge that calls for and offers many
research and development commitments.
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