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Abstract

Current state-of-the-art segmentation techniques for oc-
ular images are critically dependent on large-scale anno-
tated datasets, which are labor-intensive to gather and of-
ten raise privacy concerns. In this paper, we present a
novel framework, called BiOcularGAN, capable of gener-
ating synthetic large-scale datasets of photorealistic (vis-
ible light and near-infrared) ocular images, together with
corresponding segmentation labels to address these issues.
At its core, the framework relies on a novel Dual-Branch
StyleGAN2 (DB-StyleGAN2) model that facilitates bimodal
image generation, and a Semantic Mask Generator (SMG)
component that produces semantic annotations by exploit-
ing latent features of the DB-StyleGAN2 model. We eval-
uate BiOcularGAN through extensive experiments across
five diverse ocular datasets and analyze the effects of bi-
modal data generation on image quality and the produced
annotations. Our experimental results show that BiOcu-
larGAN is able to produce high-quality matching bimodal
images and annotations (with minimal manual intervention)
that can be used to train highly competitive (deep) segmen-
tation models (in a privacy aware-manner) that perform
well across multiple real-world datasets. The source code
for the BiOcularGAN framework is publicly available at
https://github.com/dariant/BiOcularGAN .

1. Introduction

Modern biometric systems are predominantly based on
convolutional neural networks (CNNs) and transformer
models, which rely on massive annotated (training) datasets
to achieve competitive performance [29]. While large-scale
datasets can today easily be collected from the web for
many biometric modalities, such collection procedures of-
ten raise privacy and copyright-related concerns [12, 25].
Additionally, the annotation of such large-scale datasets is
today (in most cases) still a manual, labor-intensive, and
time-consuming task. These points are especially true for
datasets dedicated to the segmentation of ocular images (in
various imaging domains), where, next to the data collec-

Figure 1: Example data generated with BiOcularGAN.
The proposed framework is based on a novel Dual-Branch
StyleGAN2 model and can generate (synthetic) per-pixel
aligned visible light (VIS) and near-infrared (NIR) ocular
images as well as corresponding segmentation masks.

tion, the generation of high-quality (multi-class) semantic
annotations is known to be a costly endeavor [40, 42].

Researchers are, therefore, increasingly looking into au-
tomatic techniques that allow for the generation of synthetic
datasets that require no (or minimal) human intervention
during the annotation process [8, 24, 30, 44]. However, sev-
eral challenges are associated with such an approach: (i) the
synthetic (training) samples need to be as close as possi-
ble to the expected real-world data to allow for the trained
model to perform well during deployment, (ii) the synthe-
sis procedure must allow for the generation of large and di-
verse datasets that can cater to the data needs of modern
deep learning models, and (iii) data annotations need to be
produced automatically, without (or with minimal) super-
vision. To meet these challenges, existing solutions often
resort to Generative Adversarial Networks (GANs) [10, 13]
due to their ability to generate highly photorealistic and de-
tailed synthetic data and the fact that the model’s internal
representations can be exploited to generate semantic seg-
mentation labels alongside the generated images [44].

Motivated by the needs for large-scale synthetic datasets
and the capabilities of recent generative models, we present
in this paper a novel data generation framework, called
BiOcularGAN, capable of generating aligned photorealis-
tic (bimodal) ocular images in the visible (VIS) and near-
infrared (NIR) spectra along with corresponding segmen-
tation masks, as illustrated in Figure 1. The key compo-
nents of the framework are (i) a novel dual-branch Style-
GAN2 (DB-StyleGAN2) model, which extends the capabil-
ities of previous StyleGAN versions to bimodal data synthe-
sis, and (ii) a data annotation procedure, inspired by [44],
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that exploits the semantic information encoded by the bi-
modal synthesis network for segmentation mask generation.
We evaluate the proposed approach in experiments with five
diverse datasets and investigate the impact of the bimodal
(VIS and NIR) generation process on the quality of the syn-
thesized images. Furthermore, we analyze the ability of
BiOcularGAN to generate useful datasets by observing how
well current semantic segmentation models, trained on syn-
thetic labeled data, generalize to diverse real-world datasets.
In summary, we make the following main contributions:

• We present BiOcularGAN, a powerful framework for
generating large labeled datasets of ocular images
based on bimodal data representations that can be used
to train contemporary segmentation models.

• We design a novel bimodal generative model, i.e., the
Dual-Branch StyleGAN2 (DB-StyleGAN2), capable
of synthesizing visually convincing (aligned) ocular
images in both the visible and near-infrared domains.

• We show that using bimodal information as the basis
for generating ground truth segmentation masks leads
to improvements in the quality of the generated annota-
tions compared to solutions using only a single modal-
ity, e.g., the state-of-the-art DatasetGAN [44].

2. Related work
Image and Dataset Generation. Image synthesis tech-

niques have experienced rapid development in the past
decade, most notably due to the introduction of Generative
Adversarial Networks (GANs) [10]. Over time, a myriad of
improvements and iterations to the GAN model have been
proposed, from manipulating latent space distributions [3]
to using multiple discriminator networks [7]. Despite nu-
merous advancements [13, 27], some of the inner workings
of the generator networks remained poorly understood [1].

More recently, a powerful new generation model, called
StyleGAN, was proposed by Karras et al. in [16]. With
its high-resolution image synthesis capabilities, the model
drastically outperformed other unconditional image gener-
ation techniques across a variety of datasets. Since then,
the authors further iterated on the model (with StyleGAN2
and StyleGAN3) [17, 15] and addressed several of its char-
acteristic artifacts with changes to model architecture and
training procedures. Most notably, Karras et al. [14] also
introduced various image augmentations to the discrimina-
tor, thus immensely lowering the amount of training data
required to train the StyleGAN2 model.

Several approaches have also been proposed to enable
the synthesis of segmentation masks alongside images gen-
erated by StyleGAN, either by using separate generator
branches [24] or by exploiting the feature space of the gen-
erator [30, 44]. The latter approach showcased the ability

to generate high-quality datasets of paired images and seg-
mentation masks, with only a few annotated examples, and
was aptly named DatasetGAN [44]. In this paper, we build
on the outlined advances and present, to the best of our
knowledge, the first StyleGAN2-based model for bimodal
data synthesis. As we demonstrate in the experimental sec-
tion, the model leads to visually convincing generation re-
sults and allows us to synthesize large datasets of matched
ocular images in the VIS and NIR imaging domains with
corresponding ground truth segmentation masks.

Ocular Synthesis. Despite the considerable progress in
generative models, only a limited number of solutions ca-
pable of generating photorealistic high-quality ocular im-
ages have so far been presented in literature. Shrivastava et
al. [37] presented one of the initial GAN-based models for
ocular synthesis, capable of converting pre-rendered ocular
images [41] into more realistic ones. Lee et al. [23] built
on this approach with the use of CycleGAN [45]. How-
ever, the resulting images remained rather noisy and often
did not match the original gaze direction. Concurrently,
Kohli et al. [21] explored convolutional GAN models for
iris generation. Despite significant artifacts, they success-
fully performed presentation attacks on the recognition sys-
tems of the time. Based on the need for large datasets,
Facebook organized the OpenEDS Synthetic Eye Genera-
tion challenge [9]. Buhler et al. [4] emerged victorious with
their Seg2Eyes model, a mix of StyleGAN [16] and Gau-
GAN [31], capable of generating identity-preserving ocular
images based on the desired style and input segmentation
masks. Kaur et al. [18] introduced the EyeGAN model for
the same task, and later upgraded it with a cyclic training
mechanism [19] to ensure consistency of gaze direction and
style. Boutros et al. [2] proposed an alternative solution to
the problem with a novel D-ID-network solution. Neverthe-
less, the generated images still featured visible artifacts.

Despite significant improvements in ocular synthesis, all
current approaches generate images of only a single modal-
ity. In addition, they are also mostly focused on identity-
preserving image generation and feature mechanisms that
can limit the diversity of generated synthetic data. Different
from these works, we focus in this paper on the genera-
tion of diverse and appearance-rich datasets of bimodal VIS
and NIR data, along with matching synthetically-generated
reference annotations. The bimodal aspect is especially
useful from a segmentation aspect, since NIR images of-
ten contain important cues that are not present in VIS im-
ages, and vice versa. Furthermore, we base our work on
insights from state-of-the-art image generation techniques,
i.e. StyleGAN2 [14, 17], allowing us to learn highly suc-
cessful models using a limited amount of training data.



Figure 2: High-level overview of the BiOcularGAN framework. The proposed Dual-Branch StyleGAN2 simultaneously
produces pairs of VIS and NIR images. The model is trained using two separate (VIS and NIR) discriminators, DV IS and
DNIR with corresponding losses, LV IS ,LNIR. The combined loss LG is used to train the generator G. The final data
generation process first produces a pair of VIS and NIR images with the DB-synthesis network and then passes the internal
feature maps to the Semantic Mask Generator (SMG), which generates the corresponding ground truth segmentation masks.

3. Methodology
The main contribution of this work is the BiOcularGAN

framework that allows for photo-realistic generation of bi-
modal ocular images and the corresponding reference seg-
mentation masks. In this section, we describe BiOcu-
larGAN in detail and elaborate on its main characteristics.

3.1. Overview of the BiOcularGAN framework

The proposed BiOcularGAN framework, depicted in
Figure 2, consists of two key components. These being
(i) the Dual-Branch StyleGAN2 (DB-StyleGAN2) gener-
ative model (§3.2), which generates pixel-aligned VIS and
NIR ocular images (§3.3), and (ii) the Semantic Mask Gen-
erator (SMG) that produces corresponding semantic seg-
mentation masks (§3.4). Jointly, these components allow
for the generation of matching photo-realistic bimodal oc-
ular images along with corresponding high-quality annota-
tions and, consequently, for the creation of synthetic large-
scale datasets that can be used for training data-hungry deep
learning (segmentation) models in a privacy-aware manner,
e.g., for semantic segmentation tasks.

Formally, the BiOcularGAN generator G begins with
an input latent code z ∈ Z that is first transformed into
an intermediate latent representation w ∈ W and then
fed to the DB-StyleGAN2 synthesis network g, which pro-
duces the pixel-aligned VIS and NIR ocular images, xvis ∈
RW×H×3 and xnir ∈ RW×H , respectively, i.e.:

{xvis,xnir} = G(z) = g(f(z)), (1)

where the latent-space transformation w = f(z) is imple-
mented with a mapping network f , as shown in Figure 2. To
generate the semantic segmentation masks, the feature maps
computed along the different layers of DB-StyleGAN2 are
pooled and then fed to the semantic mask generator S, sim-
ilarly to [44], i.e.: Ω = S(ϕ1(z), ϕ2(z), . . . , ϕk(z)), where
Ω ∈ RW×H is the generated segmentation mask, ϕ is a
mapping implemented within the generator G, and k is the

number of feature maps used. Thus, given a latent code z,
drawn from a normal distribution, BiOcularGAN generates
a triplet of the following form: {xvis,xnir,Ω}.

3.2. Dual-Branch StyleGAN2

The key component of BiOcularGAN is the novel Dual-
Branch (DB) StyleGAN2 generator that extends the origi-
nal StyleGAN2 [14, 17] for bimodal data generation. As
illustrated in Figure 3, the generator consists of a mapping
network f that follows a fully connected design, similarly
to [17], as well as a dual-branch synthesis network, and is
trained using two discriminators, DV IS and DNIR, one for
the VIS and one for the NIR images. Details on the genera-
tor and discriminators are given below.

The Generator (G) is responsible for producing the syn-
thetic (NIR and VIS) ocular images and builds on recent
insights and advancements in image generation [14, 17].
Similarly to the original StyleGAN2 design, it consists of a
succession of synthesis blocks that produce images of pro-
gressively higher resolution, as shown on the left side of
Figure 3. These consist of smaller style blocks (light gray
boxes), which take the intermediate latent representation w,
transformed through k learned affine transformations A, as
the style input. Convolution weights wx are then modulated
based on the style input and later “demodulated” [17] – a
procedure which mimics the effects of instance normaliza-
tion. Style is thus incorporated into the convolution oper-
ation via the processed weights. The network starts from
a constant input c (4 × 4 × 512). After each convolutional
layer, the noise input (from the noise broadcast operation B)
and bias bx are applied to the signal, which is then passed
through a leaky ReLU activation function. A unique fea-
ture of the proposed DB-StyleGAN2 model that enables bi-
modal image generation are the dedicated synthesis blocks
that contain two output branches, one for generating VIS
and the other for generating NIR data at a specific resolu-
tion. Here, each branch features a 1 × 1 convolution layer,
denoted tVIS (“toVIS”) and tNIR (“toNIR”) in Figure 3.



DB-synthesis network DB-StyleGAN2 design

Figure 3: Overview of Dual-Branch StyleGAN2. Each
synthesis block simultaneously generates VIS and NIR im-
ages, via the tVIS and tNIR layers, which transform high-
dimensional per-pixel data to images (fVIS and fNIR per-
form the opposite action). Outputs are then upsampled and
passed to separate discriminators. In the synthesis network,
A and B represent the style and noise inputs respectively.
Leaky ReLU is applied after each (+) in the generator.

The outputs of these branches are upsampled and merged
with the output of the higher-resolution synthesis block to
construct the final VIS and NIR images, thus, forming the
DB-synthesis network, as seen on the right part of Figure 3.

The Discriminators (DV IS , DNIS) aim to determine,
whether images are real or artificially generated, and help
to ensure that the data generated by the DB generator is as
close to the training data distribution as possible. For BiOc-
ularGAN, we utilize two discriminators, DV IS , DNIS , one
for each branch of the DB-synthesis network, correspond-
ing to the VIS and NIR image modalities, as shown on the
right side of Figure 3. The discriminators take a pair of
real (or fake) bimodal images as input and first pass them
through 1 × 1 convolutional layers denoted as fVIS (“from
VIS”) and fNIR (“from NIR”). The processed input is then
passed through a ResNet-like [11] downsampling architec-
ture, with each block consisting of two convolution layers
and a separate skip connection. The output of each of the
discriminators is a binary decision, i.e., real or fake. The
two discriminators share the same architecture.

3.3. DB-StyleGAN2 training

Different from StyleGAN2, our dual-branch model pro-
duces two semantically similar output images in two dis-
tinct imaging domains. The training is, therefore, done
with adversarial learning objectives involving two discrim-
inators. Because of the (dual) bimodal output produced
by DB-StyleGAN2, the training follows a multi-task learn-
ing regime, where the correlations between the two tasks
(i.e., VIS and NIR image generation) help to efficiently
capture the shared semantic content of the ocular images.
Following the unimodal learning strategy used with Style-
GAN2 [14, 17] and insight from [22, 26], we use a non-
saturating soft-plus loss s(x) = log(1 + exp(x)) with R1

and path length regularization for the learning objectives:

Lω = s(Dω(xω)) + s(−Dω(yω)) +
γ

2
E
[
||∇Dω(yω)||2

]
and (2)

LG =
∑
ω

s(−Dω(xω)) + γ2 E
(∥∥∥∑

ω

∇(xωqω)

∥∥∥− a
)2

, (3)

where ω = {V IS,NIR}, the synthetic images x are
produced with Eq. (1) and y denotes real images, while q
represents an image with normally distributed pixel intensi-
ties and a is the norm average. Regularization parameters
are computed using the resolution r and batch size bs via
γ1 = 10−4 2r2

bs and γ2 = ln 2/(r2(ln r − ln 2) [17].

3.4. Semantic Mask Generator (SMG)

To generate ground truth semantic masks for the bimodal
images generated by the DB-StyleGAN2 model, we rely on
the semantic information encoded in the feature maps pro-
duced along the DB-StyleGAN2 model during the synthe-
sis process. To interpret the encoded information, we use an
ensemble of Multi-layer Perceptron (MLP) classifiers, sim-
ilarly to [44], which are utilized within our Semantic Mask
Generator (SMG) to predict the semantic class label of each
pixel in the generated bimodal ocular data.

However, different from the procedure of Zhang et
al. [44], we extract feature maps from each Leaky ReLU
activation function in the dual-branch synthesis network (in
Figure 3), related to a single style and resolution. This al-
lows us to capture the semantic information of the bimodal
ocular images before they are rendered in a certain imaging
domain. We then upsample these feature maps to the output
resolution and construct a W × H × d tensor, from which
d-dimensional feature vectors1 corresponding to each of the
WH image pixels can be obtained. Using the obtained
high-dimensional feature vectors as input, we train an en-
semble of 10 three-layer MLPs to classify pixels into the
semantic classes. Here, manual annotations over an incred-
ibly small set (< 10) of generated bimodal images are used
as the ground truth for the training procedure. We note that

1Here, d denotes the combined length of all extracted feature maps.



Dataset # Images # IDs # Eyes Resolution Modality† Purpose‡

PolyU [28] 12540 209 518 640× 480 NIR/VIS TR/SV
CrossEyed [35, 36] 3840 120 240 400× 300 NIR/VIS TR/SV

SMD [6] 500 25 50 3264× 2448 VIS SE
MOBIUS [39] 3542 35 70 3000× 1700 VIS SE
SBVPI [40, 34] 1858 55 110 3000× 1700 VIS SE
†NIR – near-infrared, VIS – visible light
‡TR – training, SV – synthesis validation, SE – segmentation experiments

Table 1: Summary of the experimental dataset. We
train (and validate) all components of BiOcularGAN on
the cross-spectral datasets and evaluate segmentation per-
formance on the visible spectrum datasets.

a majority voting strategy is utilized over the predictions of
the MLP ensemble to minimize the randomness of the learn-
ing stage. Once trained, the SMG can be used together with
the DB-StyleGAN2 model to generate unlimited amounts
of pixel-level aligned bimodal ocular images with corre-
sponding semantic ground truth masks. Here, a single for-
ward pass is needed to generate one triplet {xvis,xnir,Ω}.

4. Experiments and result
4.1. Experimental setup

Datasets. We use five datasets for training and evalu-
ation of BiOcularGAN, i.e., the PolyU cross-spectral Iris
database (PolyU) [28], CrossEyed [35, 36], the Sclera Mo-
bile Dataset (SMD) [6], SBVPI [34, 40] and MOBIUS [39].
The main characteristics of the datasets are summarized in
Table 1, while the key details are provided below:

• Cross-spectral datasets: The PolyU and CrossEyed
datasets contain ocular images captured in the near-
infrared (NIR) and visible light (VIS) spectra. The ac-
quisition procedure for both datasets was performed
with custom sensors capable of simultaneous acquisi-
tion of the NIR and VIS images. The images in PolyU
are aligned with pixel-level correspondences, while the
CrossEyed data is loosely aligned, i.e., with small (ran-
dom) perturbations in scale and position in the NIR-
VIS image pairs. For our experiments, the image pairs
of both datasets are split into subject disjoint training
and evaluation parts in a ratio of 9 : 1. The training part
is used to learn the DB-StyleGAN2 model and SMG
annotation procedure, whereas the (hold-out) evalua-
tion part is reserved for the performance evaluation.

• Visible spectrum datasets: The SMD, SBVPI and
MOBIUS datasets consist of high-resolution VIS oc-
ular images captured primarily for research into sclera
biometrics. All three datasets have manual annotations
of some key regions of the ocular images, e.g., the
sclera, iris or pupil, and are therefore used to evaluate
the performance of the segmentation models trained
with the annotated data generated by BiOcularGAN.

Implementation Details. All components of BiOcu-
larGAN were implemented in PyTorch and are made pub-
licly available from URL2. The Dual-Branch StyleGAN2 is
implemented based on the StyleGAN2-ADA variant [14].
The main part of the DB-StyleGAN2 is initialized with
weights pretrained on the FFHQ dataset (of resolution
256× 256) and then optimized further using the Adam op-
timizer [20] with a learning rate of 0.0025 and a batch size
of 16. For the other hyperparameters, we use the recom-
mended values β1 = 0, β2 = 0.99, and ϵ = 10−8 for both,
the generator and the two discriminators. We train all mod-
els for 2500 kimgs or until training diverges, due to the low
amount of training data. To combat model divergence, we
enable data augmentation in the form of horizontal image
flipping and additionally employ the adaptive discriminator
augmentation procedure proposed in [14]. For the Seman-
tic Mask Generator (SMG), training is performed based on
the cross-entropy loss and the Adam optimizer [20], with a
learning rate of 10−3. Each MLP classifier is trained on ran-
domly sampled image pixels in batches of 64. The training
is stopped once no improvement is observed in the learning
objective over 50 batches following the third epoch, sim-
ilarly to [44]. Additional implementation details can be
found in the publicly released source code.

Experimental Hardware. All experiments are con-
ducted on a Desktop PC with an Intel i9-10900KF CPU
with 64 GB of RAM and an Nvidia 3090 GPU with 24 GB
of video RAM. Using this hardware, we trained two DB-
StyleGAN2 models, one on PolyU and one on CrossEyed,
denoted as DB-StyleGAN2-P and DB-StyleGAN2-CE
hereafter. Once converged, the models are able to gener-
ate visually convincing bimodal ocular images of 256×256
pixels in size, as demonstrated in the following sections.

4.2. Synthesis evaluation

In the first set of experiments, we explore the capabilities
of the trained DB-StyleGAN2 models.

Visual Evaluation. Figure 4 shows a selection of
(real) VIS and NIR images from the PolyU and CrossEyed
datasets, as well as a few examples generated by the two
trained DB-StyleGAN2 models. As can be seen, both mod-
els are capable of generating high-quality and visually con-
vincing images that well match the visual characteristics
of the training data in the visual as well as near-infrared
domain. The trained models are able to synthesize crisp
image details, such as individual eyelashes, eyebrows, skin
textures and even reproduce the specular reflections present
in the training samples. Due to the dual-branch design of
the DB-StyleGAN2 model, these fine image details are also
consistent across the bimodal image pairs.

VIS-NIR Pair Alignment. While DB-StyleGAN2-P
was trained on the per-pixel aligned data from PolyU, the

2https://github.com/dariant/BiOcularGAN
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Figure 4: Visual examples of original and generated ocular images in both domains. The first two columns show samples
from the PolyU and CrossEyed datasets and the last two columns show examples of images generated by the DB-StyleGAN2
models trained on the PolyU (DB-StyleGAN2-P) and CrossEyed (DB-StyleGAN2-CE) datasets.

PolyU DB-StyleGAN2-P CrossEyed DB-StyleGAN2-CE

Figure 5: Illustration of NIR-VIS alignment. Shown are
composite images, where the luma channel in the VIS im-
age (in the YCbCr space) was replaced by the NIR image.

DB-StyleGAN2-P/PolyU DB-StyleGAN2-CE/CrossEyed

Figure 6: Generated sample images (left) and nearest
samples (right) from the training set. Note that the mod-
els learn to generate novel data instances that share impor-
tant semantic characteristics with the training images.

training of DB-StyleGAN2-CE was performed with the
loosely aligned images from CrossEyed. Nonetheless, both
models produce well-aligned NIR and VIS images due to

the shared style blocks in the StyleGAN2 model that capture
the semantics of the ocular images, while the two branches
generate the final output images within the specific imaging
domains. To visualize the alignment of the original and syn-
thesized image pairs, we generate composite images, where
the RGB data from the VIS samples is first transformed into
the YCbCr color space and the luma (Y) component is then
replaced by the NIR channel. This composition changes the
overall color characteristics of the images, as most clearly
seen by the PolyU examples in Figure 5, which now ex-
hibit eye-color and skin-tone changes, but also highlights
the misalignment between the two image domains in the
form of color artifacts.

As can be observed, there is little color artifacts in the
original PolyU data and corresponding composite image
generated with the DB-StyleGAN2-P model, suggesting
that the VIS and NIR data are well aligned in both cases.
The only artifacts present are due to differences in specu-
lar reflections. Conversely, there is obvious misalignment
in the CrossEyed data, as evidenced by the eyelash-shaped
color artifacts. Nevertheless, the trained DB-StyleGAN2-
CE model still generates well aligned bimodal ocular im-
ages. The loose alignment of the training data has no ad-
verse effect on the alignment of the synthesized images.

Image Diversity. Next, we qualitatively analyze the
diversity of the images generated by the trained DB-
StyleGAN2 models. Specifically, we are interested in the
variations of ocular images the models are able to produce
with respect to the data seen during training. To this end,
we show in Figure 6 a randomly generated image pair pro-
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Figure 7: State-of-the-art comparison and ablation re-
sults. The figure shows visual examples of images synthe-
sized with the standard unimodal StyleGAN2 and the pro-
posed bimodal DB-StyleGAN2.

Data Model Domain LPIPS ↓ (T)† LPIPS ↓ (H)†

Po
ly

U

StyleGAN2 VIS 0.561± 0.084 0.561± 0.083
StyleGAN2 NIR 0.491± 0.066 0.492± 0.068

DB-StyleGAN2 VIS 0.559± 0.082 0.561± 0.085
NIR 0.504± 0.064 0.504± 0.064

C
ro

ss
E

ye
d StyleGAN2 VIS 0.476± 0.064 0.473± 0.064

StyleGAN2 NIR 0.415± 0.060 0.422± 0.063

DB-StyleGAN2 VIS 0.453± 0.068 0.456± 0.063
NIR 0.391± 0.063 0.392± 0.058

(T) – training set; (H) – hold-out validation set; (↓) – lower is better

Table 2: Comparison of the computed LPIPS scores. The
scores are computed between 5000 generated images and
(i) the training (T) or (ii) hold-out validation set (H).

duced by the DB-StyleGAN2-P and DB-StyleGAN2-CE
models (left column of each presented example) as well
as the most similar VIS-NIR pair from the training data –
where the similarity is measured in terms of Mean Squared
Error (MSE) between the VIS images. Several interesting
observations can be made from the presented examples, i.e.:
(i) the generated images share obvious similarities with the
training data in terms of visual appearance, (ii) the models
generate distinct data samples that differ from the training
examples in terms of gaze direction, eye shape and color
(for VIS), eyelash arrangement, eyelid appearance, pupil
size, skin and iris texture, and other factors, and (iii) de-
spite appearing similar in the VIS domain at first glance,
considerable differences are present in the NIR domain in
the presented examples, suggesting that the combined (bi-
modal) ocular images generated by the models are distinct.

State-of-the-Art Comparison and Ablations. We com-
pare the DB-StyleGAN2 models to the standard (unimodal)
StyleGAN2 model from [16]. We note that StyleGAN2 rep-
resents a state-of-the-art model for image generation and
while StyleGAN version 3 (StyleGAN3) was also intro-
duced recently [15], it only offers superior performance (in
terms of texture consistency) when generating sequences of
images (or videos) but does not ensure improvements in
the quality of the generated images. We train four Style-

PolyU VIS CrossEyed VIS
Gen. VIS/NIR
Gen. VIS
Real

Gen. VIS/NIR
Gen. VIS
Real

Gen. VIS/NIR
Gen. NIR
Real

Gen. VIS/NIR
Gen. NIR
Real

PolyU NIR CrossEyed NIR

Figure 8: t-SNE plots (in 2D) generated for the differ-
ently synthesized images. Both types of models (unimodal
and bimodal) produce synthetic data that corresponds well
to the training data distribution.

GAN2 versions for the comparisons using the NIR and
VIS images from the two training datasets, i.e., PolyU and
CrossEyed. The experiments presented in this section serve
a dual purpose: (i) they compare the image generation ca-
pabilities of DB-StyleGAN2 to a state-of-the-art competi-
tor, and (ii) they ablate parts of the DB-StyleGAN2 models
to show the effect of bimodal image synthesis.

Figure 7 shows a visual comparison between the
four unimodal StyleGAN2 models and the proposed DB-
StyleGAN2. Note that all models generate images of com-
parable visual quality for both datasets in the VIS and NIR
domains. However, the DB-StyleGAN2 models are able to
synthesize the bimodal images through a single generation
step, whereas separate models need to be trained for the
off-the-shelf StyleGAN2 generators. Because the genera-
tion process is based on latent space sampling, it is also
challenging to produce matching samples in both domains
using the unimodal models, whereas this is handled seam-
lessly in DB-StyleGAN2 through the dual-branch design.
In Table 2 we show a comparison of the Learned Percep-
tual Image Patch Similarities (LPIPS) [43] between 5000
randomly generated images and the training (T) and hold-
out validation (H) data from each dataset. As can be seen,
on PolyU all models perform similarly (within the standard
deviations), whereas our bimodal design has a slight advan-
tage on CrossEyed, suggesting that the generated images
are somewhat closer to the real data on average.

To get further insight into the synthesis capabilities of
DB-StyleGAN2, we use t-distributed Stochastic Neighbor
Embedding (t-SNE) [38] and visualize the distribution of
features extracted from different types of images in Fig-
ure 8. For this purpose, we select a ResNet-101 model
pretrained on ImageNet (from PyTorch) as a feature ex-



Model Training time [hours]† Run-time [ms]PolyU CrossEyed

DB-StyleGAN2 ∼ 20h ∼ 24h 13.994± 0.068
StyleGAN2 ∼ 18h ∼ 18h 11.232± 0.071
†Approximate estimate

Table 3: Training and run-time requirements. The bi-
modal DB-StyleGAN2 model takes longer to train than the
unimodal StyleGAN2, but is able to match the run-time per-
formance of its unimodal counterpart.
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Figure 9: Sample segmentation results. The results were
generated with two U-Net models, trained on artificial data
generated by the DatasetGAN and BiOcularGAN frame-
works, learned with the DB-StyleGAN2-P model.

tractor and use the 2048-dimensional output of the penulti-
mate model layer as the feature representation of the ocular
images [11]. We generate 250 test images for the analy-
sis by randomly sampling the latent space of the two DB-
StyleGAN2 and all four unimodal StyleGAN2 models. As
can be seen, the distributions corresponding to the gener-
ated images overlap reasonably well with the distributions
of the original images (marked Real) for both types of mod-
els. However, in certain cases the unimodal models generate
less overlap with the training-data distribution than the bi-
modal models – see results for CrossEyed VIS for example.

Real-world Time Requirements. In Table 3 we sum-
marize the training and run-time requirements of the DB-
StyleGAN2 model on both datasets in comparison to
the unimodal StyleGAN2 versions using our experimental
hardware. Here, run-time is estimated over 1000 random
samples. Note that training of the bimodal models takes
longer, as twice the amount of data needs to processed
compared to the unimodal models. However, because of
the significantly better convergence, the training time is in-
creased only around 11% with the PolyU data and by 33%
on CrossEyed. At run-time, we observe comparable results,
around 14ms for the bimodal and 11ms for the unimodal
models. However, we note again that for generating ocular
images in the NIR and VIS domain, the unimodal Style-
GAN2 models need to be run twice.

4.3. Bimodal data annotation and segmentation

In the second set of experiments, we explore the advan-
tages that bimodal information brings to the ground truth
segmentation-mask generation process. To this end, we
manually annotate 8 ocular images generated by each of
the two DB-StyleGAN models using 4 target segmentation
classes, i.e., the pupil, the iris, the sclera and the back-
ground. We use the NIR images as the basis for the manual
annotation procedure (due to better contrast, distinct bor-
ders, etc.), but due to the alignment of the artificial bimodal
images, these segmentation masks are also applicable to the
VIS data. Using the generated annotations, we then train the
mask generation procedure and synthesize a training dataset
of 5000 pairs of VIS and NIR images with corresponding
reference segmentation masks (and 500 for validation). Fi-
nally, we train a DeepLab-V3 [5] and U-Net [32] segmenta-
tion model using the synthetic datasets. Public implementa-
tions are used to foster reproducibility3. To test the perfor-
mance of the trained models, we use the (frontal gaze) VIS
images from SMD, MOBIUS and SBVPI. Thus, segmenta-
tion performance with VIS images is used as a proxy for the
quality of the generated segmentation masks.

State-of-the-art Comparison. In Table 4, we report
the results of the segmentation experiments in terms of the
Intersection-Over-Union (IoU), F1 score and overall Pixel
error following established methodology [33, 39] and com-
pare the performance ensured by the data generated by our
BiOcularGAN to that produced by the unimodal Dataset-
GAN procedure from [44]. Here, the DatasetGAN approach
is learned from the unimodal StyleGAN2 model trained on
VIS images, and with 8 manually annotated images.

Interestingly, the segmentation models trained with the
artificial dataset generated by the proposed BiOcularGAN
framework clearly outperform the models trained with
DatasetGAN on all three test datasets and across all three
performance measures. This suggests that the joint bimodal
supervision used to train the DB-StyleGAN model helps to
better capture the semantic information of the images in the
model layers and consequently leads to higher quality train-
ing data. This observation is further supported by the sam-
ple results in Figure 9, where we again see better segmen-
tation performance following the use of the BiOcularGAN
framework for data generation. Here, the examples were
produced with U-Net and the BiOcularGAN and Dataset-
GAN frameworks trained using the PolyU data.

Fine-grained Segmentation. Because only a few man-
ual annotations are needed to produce large amounts of
training data for learning segmentation models, we manu-
ally annotate 2 images with a 10-class markup as shown on
the left side of Figure 10. We then train a segmentation

3U-Net: https://github.com/milesial/Pytorch-UNet
Deeplab-V3: https://github.com/jnkl314/DeepLabV3FineTuning

https://github.com/milesial/Pytorch-UNet
https://github.com/jnkl314/DeepLabV3FineTuning


Data generated by Seg. Model
Trained on CrossEyed

SMD†,‡ MOBIUS† SBVPI†
IoU ↑ F1 ↑ Pixel error ↓ [%] IoU ↑ F1 ↑ Pixel error ↓ [%] IoU ↑ F1 ↑ Pixel error ↓ [%]

DatasetGAN [44] DeepLab-V3 0.601± 0.097 0.703± 0.101 0.123± 0.046 0.554± 0.185 0.652± 0.181 0.148± 0.136 0.832± 0.052 0.902± 0.038 0.046± 0.019
BiOcularGAN (ours) 0.658± 0.084 0.756± 0.085 0.082± 0.033 0.587± 0.117 0.683± 0.120 0.095± 0.041 0.834± 0.049 0.902± 0.038 0.037± 0.012

DatasetGAN[44] U-Net 0.655± 0.083 0.754± 0.085 0.085± 0.032 0.541± 0.141 0.635± 0.155 0.098± 0.049 0.809± 0.052 0.885± 0.041 0.045± 0.012
BiOcularGAN (ours) 0.722± 0.070 0.812± 0.066 0.048± 0.021 0.551± 0.133 0.638± 0.142 0.086± 0.047 0.839± 0.045 0.906± 0.035 0.035± 0.011

Data generated by Seg. Model
Trained on PolyU

SMD† MOBIUS†,‡ SBVPI†,‡
IoU ↑ F1 ↑ Pixel error ↓ [%] IoU ↑ F1 ↑ Pixel error ↓ [%] IoU ↑ F1 ↑ Pixel error ↓ [%]

DatasetGAN [44] DeepLab-V3 0.728± 0.084 0.818± 0.077 0.058± 0.027 0.607± 0.154 0.701± 0.151 0.103± 0.122 0.808± 0.062 0.884± 0.047 0.047± 0.019
BiOcularGAN (ours) 0.787± 0.056 0.867± 0.045 0.036± 0.016 0.638± 0.167 0.725± 0.175 0.065± 0.048 0.834± 0.046 0.903± 0.037 0.035± 0.009

DatasetGAN [44] U-Net 0.679± 0.089 0.771± 0.093 0.064± 0.028 0.519± 0.137 0.605± 0.150 0.092± 0.053 0.757± 0.058 0.848± 0.047 0.064± 0.024
BiOcularGAN (ours) 0.772± 0.081 0.853± 0.070 0.041± 0.025 0.584± 0.173 0.674± 0.187 0.082± 0.051 0.818± 0.052 0.891± 0.041 0.040± 0.015
†Cross-dataset experiments; ‡Cross-ethnicity experiments; ↑ Higher is better; ↓ Lower is better

Table 4: Cross-dataset segmentation performance comparison of models trained on artificially generated datasets.
The segmentation models trained on 5000 images generated by BiOcularGAN outperform the ones trained on 5000 images
generated by DatasetGAN across all datasets and performance measures (IoU and F1 scores along with pixel errors).

model (i.e., U-Net) with the dataset generated by BiOc-
ularGAN using this fine-grained markup. The right part
of Figure 10 shows some qualitative segmentation results
generated with images from the SMD, MOBIUS and SB-
VPI datasets. Note that despite the fact the BiOcularGAN
framework relied only on the DB-StyleGAN2-P model (that
generates ocular images of mostly Asian subjects) and was
learned with only 2 manually annotated images, the trained
segmentation model still perform reasonably well on im-
ages from all three test datasets.

Training data Testing data (SMD/MOBIUS/SBVPI)
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Figure 10: Fine-grained segmentation examples. On the
left are training images and corresponding 10 class masks
generated by BiOcularGAN (pupil, pupil boundary, iris, iris
boundary, sclera, upper eyelid, lower eyelid, inner lower
eyelid, lacrimal caruncle and background). The right part
shows sample results generated for the test images.

Real-world Time Requirements. The training of the
data annotation procedure takes around 13 minutes on
PolyU and 11 minutes on CrossEyed using 8 annotated im-
ages per dataset with our hardware setup. At run-time, a
single segmentation mask is produced in 77.8 ms on aver-
age for an 256× 256 image produced by DB-StyleGAN2.

5. Conclusion

In this paper, we presented BiOcularGAN, a framework
for generating synthetic datasets of ocular images with cor-
responding ground truth segmentation masks. At the heart
of the framework is a novel generative model, i.e., the dual-
branch StyleGAN2 (DB-StyleGAN2), capable of generat-
ing photorealistic aligned bimodal (VIS and NIR) ocular

images. Using the proposed BiOcularGAN framework, we
showed that it is possible to generate large and representa-
tive synthetic datasets that can be used to train competitive
segmentation models that generalize well across a diverse
set of ocular images. As part of our future work, we plan to
further explore the DB-StyleGAN2 models for cross-modal
recognition tasks and investigate image editing possibilities
within the DB-StyleGAN2 latent space.
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A. Appendix
In this appendix, we present some additional results and

discussions not included in the main part of the paper.
Specifically, we (i) analyze the impact the number of man-
ually annotated images has on the quality of the training
data generated by the BiOcularGAN framework, (ii) show
examples of qualitative segmentation results as a function
of the number of manually annotated images used to learn
the BiOcularGAN framework, (iii) present a broader cross-
section of qualitative results generated based on the fine-
grained 10-class markup, (iv) report style-mixing experi-
ments, (v) provide additional implementation details, and
(vi) some final discussions.

A.1. Impact of manual annotations

To get a better insight into the behavior of the BiOcu-
larGAN framework, we investigate in this section how the
number of manually annotated images affects the perfor-
mance of the segmentation models trained with the syn-
thetic training data produced by the BiOcularGAN frame-
work. For this experiment, we train a U-Net segmentation
model with training data generated by BiOcularGAN and
the DB-StyleGAN2-P model. To learn the segmentation-
mask generation procedure, we use either 2, 4 or 8 manu-
ally annotated images, where the annotations again consist
of four classes (iris, pupil, sclera and background). Sim-
ilarly, as in the main part of the paper, we again use the
(frontal gaze) VIS images from SMD, MOBIUS and SB-
VPI for testing.

Quantitative Results. From Table 5 we observe that
(as expected) the segmentation performance increases with
the number of manually annotated images across all test
datasets and with respect to all performance measures
reported. If we focus on the F1 score, for example, we see
an increase from 0.767 when using 2 annotated images to
0.853 when using 8 on the SMD dataset. Similarly, the
F1 results are also improved on the MOBIUS and SBVPI
dataset, where an increase from 0.651 and 0.866 (with 2
annotated images) to 0.674 and 0.891 (with 8 annotated
images) is seen, respectively. Nonetheless, even with only
2 manually annotated images, BiOcularGAN is still able to
produce training data of reasonable quality for learning the
segmentation model. Thus, if a higher level of granularity
is needed in the segmentation masks, a suitable trade-off
can be selected between the labor-intensive manual an-
notation process and the desired segmentation performance.

Qualitative Results. To put the quantitative results re-
ported in Table 5 into perspective, we show in Figure 11
visual examples of the training data produced by BiOcu-
larGAN with respect to the number of manually annotated
images used. Note how the quality of the automatically gen-
erated reference annotations gets refined with a larger num-

2
an

no
ta

tio
ns

4
an

no
ta

tio
ns

8
an

no
ta

tio
ns

Figure 11: Example training data generated by BiOcu-
larGAN. The figure shows a comparison in the quality of
segmentation masks generated as a function of the num-
ber of manually annotated images used to learn the mask-
generation procedure of BiOcularGAN.
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Figure 12: Example segmentation results as a function of
the number of images used for training BiOcularGAN.
Note how the quality of the segmentations increases when
more images are used to learn the mask-generation proce-
dure of BiOcularGAN (see results down the columns).

ber of manually annotated images. This quality increase is
then also reflected in the performance of the trained seg-
mentation models, as seen by the sample segmentation re-
sults in Figure 12. Here, U-Net models were used again to
generate the sample results, as they ensured somewhat bet-
ter performance than the DeepLab-V3 competitors in the
experiments presented in the main part of the paper.

A.2. Fine-grained segmentation

In the main part of the paper, we showed examples of
segmentation results generated based on a detailed 10-class
markup that included the pupil, the boundary of the pupil,
the iris and its boundary, the sclera, the upper eyelid, the
lower eyelid, the inner part of the lower eyelid, the lacrimal
caruncle and the background. Because the number of ex-
amples presented was limited due to space constraints, we
show in Figure 13 a broader cross-section of visual results
from all three previously mentioned test datasets, i.e., SMD,
MOBIUS and SBVPI. The results were again generated
with a U-Net model trained using the synthetic data pro-
duced by BiOcularGAN, where the mask generation proce-



Seg. Model Labels from
Trained on PolyU (DB-StyleGAN2-P)

SMD† MOBIUS†,‡ SBVPI†,‡
IoU ↑ F1 ↑ Pixel error ↓ [%] IoU ↑ F1 ↑ Pixel error ↓ [%] IoU ↑ F1 ↑ Pixel error ↓ [%]

U-Net
2 annotations 0.686± 0.102 0.767± 0.116 0.046± 0.022 0.554± 0.177 0.651± 0.198 0.091± 0.055 0.782± 0.046 0.866± 0.038 0.047± 0.015
4 annotations 0.696± 0.091 0.781± 0.099 0.046± 0.021 0.564± 0.166 0.659± 0.181 0.087± 0.051 0.789± 0.042 0.871± 0.035 0.046± 0.014
8 annotations 0.772± 0.081 0.853± 0.070 0.041± 0.025 0.584± 0.173 0.674± 0.187 0.082± 0.051 0.818± 0.052 0.891± 0.041 0.040± 0.015

†Cross-dataset experiments; ‡Cross-ethnicity experiments

Table 5: Impact of the number of manually annotated images on segmentation performance. The table shows segmen-
tation results generated with a U-Net model learned based on training data produced with the BiOcularGAN framework,
where the framework itself was learned with either 2, 4 or 8 manually annotated images.
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Figure 13: Example (fine-grained) segmentation results on four test datasets. The test datasets include VIS images
(SMD, MOBIUS, SBVPI), but also NIR data (CASIA-Iris V4). The presented examples were generated with a U-Net model
trained with synthetic data produced by the BiOcularGAN framework. The mask-generation procedure of BiOcularGAN
was learned with 2 manually annotated images that included 10 classes, i.e., the pupil, the pupil boundary, the iris, the iris
boundary, the sclera, the upper eyelid, the lower eyelid, the inner part of the lower eyelid, the lacrimal caruncle and the
background. The figure is best viewed electronically and zoomed-in for details.

dure was learned with only 2 manually annotated images.
Furthermore, we also include segmentation results on NIR
images of the CASIA-Iris V4 dataset, which are obtained
in a similar fashion, with a U-Net model trained on the
NIR counterpart of the synthetic data produced by BiOc-
ularGAN.

As can be seen from the presented examples, we are able
to learn well-performing segmentation models, capable of
locating a large amount of semantic classes in highly diverse
ocular images in both the VIS and NIR domain, despite
training the models on synthetic data only. Note, for exam-
ple, that the ocular data produced by the DB-StyleGAN2-P
model corresponds largely to subject of Asian origin. While
this is well-matched by the SMD dataset, images in MO-

BIUS and SBVPI come exclusively from Caucasian sub-
jects. Nonetheless, the training data produced by the BiOc-
ularGAN framework contains sufficiently rich information
to allow the trained segmentation model to also generalize
reasonably well to the two Caucasian datasets.

Additionally, our results show that the NIR data gener-
ated by BiOcularGAN can also be used, in conjunction with
the generated ground truth semantic masks, to train deep
models for fine-grained segmentation of NIR images. Dif-
ferently from other VIS spectrum results, segmentation er-
rors are mostly present in the periocular region, especially
near the eyebrows. This is most likely caused by the sim-
ilarity between eyebrows and eyelashes, and the clear dif-
ference between eyebrows and the rest of the periocular re-
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Figure 14: Style mixing results of DB-StyleGAN2-CE. La-
tent codes of source X images determine the shape and Y
codes determine the texture.

gion, which is substantially more evident in the NIR data.
This also explains why similar errors are not present on VIS
images.

A.3. Style mixing experiments

To further evaluate the proposed BiOcularGAN frame-
work, we explore its capabilities for generating data with
desired characteristics. For this, we rely on the Style mix-
ing procedure [17], which entails the use of two separate
intermediate latent codes w to determine the style of a sin-
gle generated image. By switching the w input at a certain
point during the image synthesis process, we are able to
merge the styles of two different images. Here, the style
inputs corresponding to the lower resolution layers in the
DB-StlyeGAN2 model dictate the high-level features of the
image and vice versa. By analyzing the style mixing re-
sults, we are able to assess how entangled the various fea-
tures are in the intermediate space W . This is important, as
style mixing can serve as an additional mechanism for data
augmentation that can ensure a higher level of diversity in
the synthetic data, while also ensuring control over the data
characteristics.

Figure 14 depicts style mixing results of 7 different la-
tent codes, corresponding to the images in the first column
and row. Source X latent codes are used as style inputs up
to, and including, the 16 × 16 resolution layer, after which
source Y codes are used. The results show that it is pos-
sible to control the overall shapes present in the generated

images with source X codes. This includes features such
as the position, size and shape of the various eye regions
and the eyelids. Meanwhile, source Y codes determine the
color and texture of the iris and the skin.

The presented results showcase that low-level and high-
level features are fairly disentangled in the intermediate la-
tent space of the DB-StyleGAN2 model. This property can
be exploited to generate synthetic ocular images with a de-
sired shape and texture, which could be utilized to address
the problem of underrepresented samples in real-world or
synthetic ocular datasets, and thus balance the distribution
of data characteristics.

A.4. Additional implementation details

Mapping network. The mapping network of the DB-
StyleGAN2 follows the design from [16] and consists of 8
fully-connected layers. As input it takes a 512-dimensional
randomly sampled latent vector z ∈ Z , and converts it into
a 512-dimensional intermediate latent vector w ∈ W . The
network shares training parameters with the generator.

Segmentation models. All segmentation experiments in
the main part of the paper as well as the appendix were con-
ducted with the DeepLab-V3 [5] and U-Net [32] segmen-
tation models. For all experiments, the two models were
trained using the Adam optimizer [20] with a learning rate
of 10−4 and a batch size of 8. To guide learning, the cross-
entropy loss function was used. During training, the learn-
ing rate was decreased by a factor of 10, if the validation
loss did not improve for 5 consecutive epochs. The train-
ing procedure was stopped once the validation loss did not
improve for 10 epochs in a row.

A.5. Discussion

The proposed BiOcularGAN framework allows for high-
quality bimodal ocular image generation, as we have
demonstrated throughout the paper. While we mostly fo-
cused on images of 256 × 256 pixels in size, which was
sufficient for the segmentation experiments presented, the
progressive structure of the DB-StyleGAN2 model also al-
lows for the generation of larger images, e.g., 512× 512. It
is also important to note that the overall characteristics (e.g.,
resolution, appearance, diversity, or quality – as defined, for
instance, by ISO/IEC 29794-6) of the generated data are in-
herited from the characteristics of the training data, in our
case from the PolyU and the CrossEyed datasets.


