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Abstract

In this paper, we aim to address the large domain gap
between high-resolution face images, e.g., from profes-
sional portrait photography, and low-quality surveillance
images, e.g., from security cameras. Establishing an iden-
tity match between disparate sources like this is a classical
surveillance face identification scenario, which continues
to be a challenging problem for modern face recognition
techniques. To that end, we propose a method that com-
bines face super-resolution, resolution matching, and multi-
scale template accumulation to reliably recognize faces
from long-range surveillance footage, including from low
quality sources. The proposed approach does not require
training or fine-tuning on the target dataset of real surveil-
lance images. Extensive experiments show that our pro-
posed method is able to outperform even existing methods
fine-tuned to the SCFace dataset.

1. Introduction

Recent advances in deep learning methods, including
model architectures, loss functions, datasets, and training
procedures have enabled considerable improvements in the
performance of face recognition systems. However, real-
life face identification in challenging conditions, such as
surveillance scenarios, remain an open challenge.

Despite common claims that super-resolution and face
hallucination can aid in face recognition performance in
this regime, systematic bias studies have found them to
be poorly applicable to real-life scenarios due to the do-
main gap between real and synthetically downsampled low-
resolution images [14, 38].

In this paper, we present a framework for addressing this
issue, and we make the following novel contributions:

• We develop a face hallucination method that reliably
upsamples low-resolution probe images at multiple
scales.

• We develop a multi-scale face recognition model that
improves recognition performance by matching the
resolution of the probe and gallery images being com-
pared.

• We develop a face template derivation method that re-
duces the effects of image quality by accumulating the
features of a given image over multiple scales.

• The proposed approach is independent of employed
deep face recognition model. That is, it can be com-
bined with any deep face model. Moreover, it does not
require any fine-tuning on the target dataset.

The combination of our contributions results in a
strongly performing face recognition method that achieves
state-of-the-art rank-1 identification rates (IR) on the
challenging Surveillance Cameras Face Database (SC-
Face, [13]).

2. Related work
Super-resolution. Recently, a significant amount of re-

search has gone into applying modern deep learning tech-
niques to the problem of super-resolution. Supervised learn-
ing approaches typically work by generating a dataset of
low-resolution and high-resolution image pairs, for exam-
ple, by using a dataset of high-resolution images as the
ground-truth (target), and subjecting each image to a pre-
defined degradation process to derive the training inputs.
A model, e.g., a Convolutional Neural Network (CNN) or
similar deep neural network, is then trained to upsample the
input image, using gradient descent over a pixel reconstruc-
tion error metric, such as mean square error or mean abso-
lute error [11, 22, 28].

More recent approaches to general super-resolution in-
clude more complex loss functions, such as perceptual
loss [19]. In this case, a secondary loss network is used
as the criterion instead of directly measuring pixel er-
rors. Alternatively, in adversarial approaches, the high-
resolution output is rated by a discriminator, a model trained
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Figure 1: Overall diagram of the proposed method. The inputs to the method are a high-resolution gallery image, and a
low-quality probe image. Our method re-samples both to a series of intermediate scales, and generate multiple hypotheses
at every scale. Our multi-scale matching method then makes use of all the images generated by this process to improve face
verification performance.

to discern between real and generated high-resolution im-
ages [26, 40, 39]. This approach allows super-resolution
models to traverse the trade-off between reconstruction fi-
delity and realistic appearance in a principled manner [6].

Face hallucination. General super-resolution methods,
i.e., methods capable of upsampling images of arbitrary
subjects, are strictly limited in their reconstruction capabil-
ity by the amount of information present in the input im-
age. Face hallucination refers to super-resolution methods
applied specifically to the domain of human faces. By lim-
iting the domain of the training data and the application do-
main, these methods are able to achieve useful reconstruc-
tions at higher magnification factors, up to 8× the resolu-
tion of the input image, than is typical for general super-
resolution methods, i.e., up to 4× [43, 15, 8, 29].

Face recognition. Modern work on large-scale face
recognition has consisted of parallel developments in col-
lecting large face databases and training large-scale deep
learning models to efficiently incorporate them into face
template derivation models [36, 33, 7, 16]. These models
are typically trained using some combination of classifi-
cation and metric learning loss functions. More recently,
research work has been focused on developing novel loss
functions that combine the benefits of classification and
metric learning [37, 10] and explicitly account for the qual-
ity of the input image [23].

Cross-resolution face recognition. The cross-
resolution face recognition approaches can be categorized
into three main groups: resolution-invariant methods [30,
21, 18, 32, 3], face hallucination based methods [43, 41],
and degradation based methods [1, 12].

Resolution-invariant methods try to minimise the dif-

ference between the representations of low-resolution (LR)
and high-resolution (HR) face images. Lu et al. [30] pro-
posed the Deep Coupled ResNet (DCR) model consisting
one trunk network and two branch networks. They first train
the trunk network with face images of different resolutions,
then two branch networks are trained to learn coupled-
mappings between LR and HR face images. Knowledge
distillation based models [21, 18, 32, 3] distill the infor-
mation from a Teacher network, which is pre-trained with
high-resolution face images, to the Student network, which
is trained on images of different resolutions.

Face hallucination based methods reconstruct high-
resolution face images from low-resolution ones and they
perform recognition in the HR domain. In [43], identity
preserving face hallucination method is proposed. It uti-
lizes super-identity loss that penalizes the identity differ-
ence between high-resolution and super-resolved face im-
ages. Feature Adaptation Network (FAN) [41] disentan-
gles the features into identity and non-identity components
and performs face normalization while improving the reso-
lution.

In contrast to the face hallucination based methods,
degradation based methods transform high-resolution faces
to low-resolution ones. In [1], it is shown that a simple res-
olution matching technique that downsamples HR gallery
images to the resolution of LR probe images improves the
cross-resolution face recognition performance. Another ap-
proach employs a GAN based method, Resolution Adaption
Network [12], that realistically transforms HR images into
the LR domain and uses a feature adaption network to ex-
tract LR information from HR embedding.



3. Methodology
To solve the cross-resolution face recognition problem,

we propose a method that will make the quality of low-
resolution and high-resolution images converge in the im-
age domain. Specifically, we increase the quality of the
probe images using face hallucination networks and de-
grade the gallery images by applying combinations of
degradation functions. We propose a multi-hypothesis ap-
proach for face hallucination that is robust to artefacts
caused by image degradations. We also make use of multi-
scale representations of faces by applying different magni-
fication factors. On the other hand, multiple degraded hy-
potheses are generated from each gallery and resolution-
matched to the multi-scale probe hypotheses. Finally, we
use multi-scale template accumulation in order to measure
the similarity between a pair of probe and gallery image.
The overall method is depicted in Figure 1.

3.1. Face template extraction

We use state-of-the-art pretrained face recognition mod-
els to extract templates from degraded gallery images and
super-resolved probe images. We compare different tem-
plate networks, namely, the ResNet [17] family of mod-
els (ResNet-50, ResNet101) trained using the ArcFace [10]
loss function. The networks are trained on the MS1M [16]
and Glint360k [4] datasets, which contain 8M and 17M face
images, respectively.

3.2. Gallery degradations

In order to decrease the domain gap between low-
resolution probe face images and high-resolution gallery
face images, we reduce the quality of the gallery images
by applying multiple types of degradation functions at dif-
ferent scales. Multiple hypotheses for each gallery image
are obtained by applying every possible combination of the
degradations. The length of the combination determines the
number of downsampling that occur between each degrada-
tion of that combination. We set the maximum length of the
combinations to three for this process.

For example, given the gallery image G and given the
combination ci = < ρi1 , ρi2 , ρi3 > consisting of degrada-
tion functions ρij ∈ {ρ1, ρ2, ..., ρl}, where j ∈ {1, 2, 3},
the i-th degraded hypothesis GHi

is obtained using the fol-
lowing equation:

GHi = ρi3
(
↓s

(
ρi2

(
↓s

(
ρi1 (G)

))))
, (1)

where ↓s denotes the downsampling operation with a scale
factor of two and performed by the bicubic function. The
degradation function types {ρ1, ρ2, ..., ρl} are given in Ta-
ble 1.

After obtaining the degraded gallery face hypotheses, we
also match the resolution of each hypothesis to the resolu-

Degradation
Function

Description

Additive
Gaussian noise

Additive Gaussian noise with mean
0 and variance 0.02

Speckle noise Multiplicative Gaussian noise is
added to the image with mean 0
and variance 0.02

Color jitter Randomly change hue and
saturation

Brightness jitter Randomly change brightness and
contrast

Motion blur Horizontal motion blur is applied
with a window size 20

Gaussian blur Gaussian blur with sigma 1.1 and
window size 5

Disk blur Disk blur with radius 5

Perspective
transform

Random perspective transform

Shear mapping Random shear transformation

Upscale
following
downscale

First downscale the image, then
upscale back to the original
resolution

Patch shuffle Random patch shuffle [20]

Table 1: List of degradation functions

tion of the probe image of interest. Note that, for the exper-
iments with multi-scale probe images, we obtain multiple
resolution-matched images from each degraded gallery im-
age for each probe scale factor.

3.3. Face hallucination

In order to add high-resolution details to real life low-
resolution surveillance images, we train a variant of the
EDSR [28] super-resolution convolutional neural network
exclusively on face images. By limiting the training set to
face images, as opposed to general computer vision datasets
such as, ImageNet [9] or DIV2K [2] typically used for
super-resolution training, the network is able to learn to up-
sample human faces in more detail, which enables a higher
magnification factor (8×) than is typically used for general
super-resolution methods (up to 4×). Our super-resolution
network is trained on the VGGFace2 [7] dataset with 3M
images. The reference images represent the ground-truth,
and the training inputs are derived by applying a degrada-
tion (downsampling) pipeline to the full-resolution images.

Given a super-resolution model fSR capable of upsam-
pling an input low-resolution image x, i.e., such that y =
fSR(x) where x ∈ Rh×w×3, y ∈ Rkh×kw×3, and k is
the upsampling factor, we adapt a multi-hypothesis upsam-
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Figure 2: Gallery degradation process overview. In the graph above, there are l different degradation options to be applied at
each step. All the possible paths in the graph generate a degraded gallery image and all of them are used in the recognition
pipeline. Note that, downsampling operation is applied between each degradation. We also match the resolution of the
degraded gallery images with the resolution of the probe images, which is done at the block denoted with RM (resolution-
matching). For example, the combination highlighted with yellow lines has three degradations to be applied sequentially. On
the other hand, blue and purple dashed lines show the particular combinations of length 1 and 2, respectively.
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Figure 3: Multi-hypothesis face hallucination results

pling approach. We notice that many low-resolution im-
ages are corrupted beyond their limited spatial resolution,
e.g., by noise and sampling artefacts. In order to alleviate
these artefacts, we blur the input image to different extents.
Specifically, we generate 16 versions of the input images by
blurring them using a Gaussian kernel with σ = 0 through
σ = 1. Each of the images is then upsampled separately us-
ing our super-resolution model. We present examples of the
multi-hypothesis super-resolution in Figure 3. We note that
the unblurred low-resolution image results in a suboptimal
reconstruction, since the super-resolution model amplifies
its noise and artefacts to an extent. Similarly, if the input
image is blurred too much, this results in a blurry recon-
struction.

To determine the best hypothesis to use out of the gen-
erated super-resolved images, we extract a face recognition

template from each of the hypothesis images, and pick the
one with the best similarity score to any of the images in the
gallery set.

In the rest of the sections, we discuss the means to use the
outputs of this multi-hypothesis model in order to improve
face recognition from these images.

3.4. Multi-scale template accumulation

Next, we consider how to optimally combine our ca-
pability to degrade the gallery images to arbitrary resolu-
tions, and our family of face super-resolution models that
can magnify input images by factors of 2×, 4× and 8×. In
this step, we measure the similarity between each probe and
gallery image pair. Then, the identification is performed by
nearest-neighbor classifier.

We use face recognition (template extraction) models
fFR, which take a face image as an input and generate a
face template vector as an output. We assume that the tem-
plates extracted from each of the scales, fFR(xsi)∀si ∈
{48px, 96px, 192px}, include useful information about the
identity of the subjects, as well as noise related to the reso-
lution and quality of the image, i.e.,

fFR(xsi) = Ix + ϵsi , (2)

where xsi is an input image at scale si, Ix is the use-
ful information about the subject of the image x, and ϵsi
is the template noise arising from the unwanted effects of
image resolution and quality. Under the assumption that
ϵsi is normally distributed for all scales, i.e., that ϵsi ∼
N (0,Σ)∀si ∈ {48px, 96px, 192px}, we try to reduce the
impact of the noise term by accumulating the three scale
representations to derive the final templates. Under the
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Figure 4: Different combinations of fusion methods while comparing a pair of probe image and gallery image. We start
with obtaining hypotheses for the probe image P and the gallery image G. Then, a face template is obtained from each
hypothesis image using face recognition model fFR. Finally, template and/or score fusion methods are applied to obtain a
single similarity score.

above assumption, we expect this to suppress the resolution-
related noise while preserving the identity information.

Given the probe image P and the gallery image G,
we obtain the multi-hypothesis super resolved images{
PH1

, PH2
, ..., PHm×|s|

}
and the degraded and resolution-

matched gallery images
{
GH1

, GH2
, ..., GHn×|s|

}
, where

m is the number of super-resolution hypotheses for each
scale, n is the number of degraded images, and |s| is the
number of scales. Using a face recognition model fFR, we
then extract a face template from each of the images, such
that

{
tPHi

= fFR (PHi
)
}

and
{
tGHj

= fFR

(
GHj

)}
.

To compare two given face templates, we calculate their
similarity scores using the correlation distance metric:

r(tPHi
, tGHj

) =
(tPHi

− tPHi
) · (tGHj

− tGHj
)T

||(tPHi
− tPHi

)||
2
||(tGHj

− tGHj
)||

2

,

(3)
where tPHi

is the template of the i-th probe hypothesis
and tGHj

is the template of the j-th gallery hypothesis be-
ing compared, and tPHi

and tGHj
are the mean probe and

gallery templates, respectively.
We use different strategies to compare the templates of

a probe image and the templates of a gallery image. These
strategies include template fusion and similarity score fu-
sion. We also use a hybrid approach in which both the tem-
plate fusion and the similarity score fusion are applied.

Template fusion. The first fusion strategy is to obtain
a single template for the probe image and a single template
for the gallery image, before calculating the similarity score
between them. By doing so, we reduce the number of hy-
potheses to be compared to a single hypothesis. In order to
do that, we use two types of fusion methods, namely, tem-
plate addition and template concatenation. The template ad-

dition is element-wise summation of the templates. Given
multi-scale probe templates

{
tPHi

∈ RD
}

and multi-scale

gallery templates
{
tGHj

∈ RD
}

, where D is the dimen-
sionality of the template vector, the template addition is per-
formed as:

taccP =
∑
i

tPHi
, taccG =

∑
j

tGHj
, (4)

where taccP ∈ RD and taccG ∈ RD are the accumulated face
templates for the probe image and the gallery image, re-
spectively.

The template concatenation requires some care before
applying because the dimensions should match after the
concatenation operation for similarity calculation. We first
accumulate the templates of each scale separately using the
template addition to obtain

{
tPsx

}
and

{
tGsx

}
, where sx

refers to the x× magnification scale with regards to the low
resolution image. Then, we concatenate the feature vectors
obtained at each scale:

taccP = ++
x

(
tPsx

)
, taccG = ++

x

(
tGsx

)
, (5)

where ++ is the concatenation operator and joins the face
templates derived from individual scale images into a single
vector. Here, taccP ∈ RD|s| and taccG ∈ RD|s| are the accu-
mulated face templates for the probe image and the gallery
image, where |s| is the number of scales.

Similarity score fusion. In this strategy, we do not fuse
the face templates, instead, we calculate every possible sim-
ilarity score between the face templates of a probe image
and the face templates of a gallery image. Then, we fuse
these similarity scores by either adding them up as proposed
in [24] or by defining the similarity between the given un-
derlying gallery and probe image as the maximal similarity
between any pair of hypotheses generated.



The different combinations of the fusion methods are il-
lustrated in Figure 4. Here, the correlation similarity met-
ric r measures the similarity scores between each possible
probe and gallery template pairs. The template addition in
equation (4) can be applied to both probe hypotheses and
gallery hypotheses, or it can be applied to only one of them,
as shown in Figure 4(b). However, while using template
concatenation, it should be applied to both probe hypothe-
ses and gallery hypotheses, since the dimensions should be
compatible for similarity measurement.

In Figure 4(c), we first obtain the similarity scores be-
tween each pair of probe templates and gallery templates,
resulting in a m×n similarity score matrix. In this similar-
ity matrix, i-th row contains the similarity of the i-th probe
hypothesis with each gallery hypothesis. Next, we first se-
lect a score fusion method and use that method to calcu-
late row-wise score. Then, we choose another score fusion
method and use it to obtain a single similarity value from
the similarity score vector produced in the previous step.

4. Experiments

4.1. Dataset

We use the SCFace dataset [13] for the experiments,
which contain 130 subjects. The gallery set consists of one
high-quality, high resolution, frontal image of each of the
subjects. The probe set consists of a series of low resolution
images of the same subjects. Probe face images are captured
using five different surveillance cameras and from three dif-
ferent distances, namely, 4.2m, 2.6m and 1m. Sample im-
ages from the dataset are shown in Figure 5. As modern
face recognition methods are capable of achieving close to
100% rank-1 recognition accuracy on the closer 1m and
2.6m probe sets, we focus our experiments on the 4.2m
probe image set. Faces are detected using MTCNN [44],
then cropped by enlarging the bounding boxes with a scale
factor of 1.3 following the findings in [1]. The average res-

Figure 5: Sample images from SCFace dataset. Gallery im-
ages (first three images of the first column) and probe im-
ages from five different cameras at 4.2m distance.

Model Rank-1 IR (%)

Baseline

MS1MV3-R50 39.84
MS1MV3-R101 50.61
Glint360k-R50 64.00
Glint360k-R101 74.61

+Single Hypothesis SR 2× 4× 8×
MS1MV3-R50 41.23 32.92 27.69
MS1MV3-R101 50.15 41.07 36.92
Glint360k-R50 67.07 55.07 47.53
Glint360k-R101 73.07 60.92 52.92

+Multi Hypothesis SR 2× 4× 8×
MS1MV3-R50 50.92 53.07 52.61
MS1MV3-R101 56.00 58.46 60.15
Glint360k-R50 67.84 74.15 72.00
Glint360k-R101 74.15 76.61 76.30

+Resolution Matching 2× 4× 8×
MS1MV3-R50 60.61 54.92 50.92
MS1MV3-R101 70.00 62.00 57.53
Glint360k-R50 83.53 74.76 70.92
Glint360k-R101 86.61 80.00 76.61

+Gallery Degradations 2× 4× 8×
MS1MV3-R50 70.61 68.61 65.53
MS1MV3-R101 79.38 77.84 76.30
Glint360k-R50 84.61 83.84 84.61
Glint360k-R101 90.00 89.69 88.00

+Multi-scale Accumulation Smax Sadd Tadd Tconcat

MS1MV3-R50 78.46 72.00 70.61 71.69
MS1MV3-R101 78.92 75.84 79.38 79.23
Glint360k-R50 86.76 88.15 88.61 89.23
Glint360k-R101 90.15 90.76 90.15 91.07

Table 2: Ablation studies on the d1 distance of the SCFace
dataset. 2×, 4×, and 8× correspond to the magnification
factors applied to the probe faces. Smax, Sadd, Tadd, and
Tconcat correspond to finding the maximum score, score ad-
dition, template addition and template concatenation opera-
tions, respectively.

olution of the cropped faces is 22× 29 for d1 = 4.2m.
Ablation experiments are conducted on the entire

dataset, whereas for comparison with the previous work
10 Repeated Random Sub-Sampling Validation (RRSSV)
is performed for randomly selected 80 subjects.

4.2. Ablation study

In order to determine the contributions of the individual
components of our proposed method, we conduct an exten-
sive ablation study on the SCFace dataset. The results are
given in Table 2. In the baseline method, we simply use
only the original probe faces and gallery faces, and resize
them to the input size of the face recognition model fFR.



Next, we add the components of our proposed method
one by one. First, we obtain single hypothesis super-
resolved probe faces using the face hallucination network
with the magnification factors of 2×, 4×, 8×. There is a
slight improvement when the magnification factor is 2×.
However, the performance reduces when the scale factor
is increased, as can be seen from the results of the exper-
iments with 4× and 8× scale factors. This may be due to
high-frequency artefacts caused by real-world image degra-
dations being amplified at high magnification factors.

Then, we examined the effect of using multi hypothe-
sis face hallucination method instead of single-hypothesis
method. In this method, we try to minimize the artefacts by
super-resolving probe images at different blur levels and ob-
tain multiple hypotheses for each probe image. We then find
the maximum similarity between the templates obtained
from a given probe image’s hypotheses and the template of
a given gallery image. After that, the recognition is done
by assigning the subject whose gallery image has the high-
est similarity score. In all of the scale factors, the perfor-
mance improves against both the baseline and the single-
hypothesis face hallucination method.

So far, we have only worked on the probe face images.
With resolution matching, we match the size of the gallery
face images to the size of the probe faces. Then, they are
resized to the input size of the face recognition model. The
results of the experiments with 2× and 4× scale factors
show that the resolution matching helps to cross-resolution
matching process. However, since the probe face sizes at
scale factor 8× (192px) are larger than the network input
size (112px), we do not see any improvement in experi-
ments with this scale factor. The best results were obtained
when the scale factor is taken 2×, where the gallery images
have been degraded most compared to other scales.

By applying different types of degradation combina-
tions, we aim to model real-world image degradations. This
will reduce the image quality difference between probe and
gallery images. Using the method described in section 3.2,
we generate multiple hypotheses for each gallery face im-
age. Then, we compare the multi-hypothesis probe tem-
plates and multi-hypothesis gallery templates as illustrated
in Figure 4(c) using the maximum score fusion. The recog-
nition performance is increased at all scales when gallery
degradations are used.

Finally, by adding multi-scale template accumulation,
we obtain the entire proposed face recognition pipeline.
Here, we try to benefit from multi-scale representations of
the probe images and gallery images. In order to do that, we
use different types of fusion methods to accumulate the in-
formation at different scales (2×, 4×, and 8×). As a general
trend, performance has improved in all fusion methods. We
also examined the combinations of different fusion methods
in Table 3. In the first part of the table, we fix the template

model Tadd Sadd Smax

Fix Tadd on the probe templates

MS1MV3-R50 70.61 70.30 78.15
MS1MV3-R101 79.38 78.61 85.53
Glint360k-R50 88.61 88.15 92.46
Glint360k-R101 90.15 91.07 92.00

Fix Tadd on the gallery templates

MS1MV3-R50 70.61 71.23 78.46
MS1MV3-R101 79.38 77.07 78.92
Glint360k-R50 88.61 89.07 86.76
Glint360k-R101 90.15 90.76 90.15

Table 3: Ablation study on different fusion methods on the
d1 distance of the SCFace dataset. Rank-1 IR (%) results
are given. In the first part of the table, templates of the
probe hypotheses are fused with template addition Tadd and
followed by different types of fusion methods as shown in
the columns. In the second part of the table, the templates of
the gallery hypotheses are first fused with template addition
Tadd, unlike the first part.

addition Tadd on probe images and afterwards combine it
with different fusion methods. There is no significant differ-
ence between the fusion methods Tadd (on gallery images)
and score addition Sadd, which were later combined. How-
ever, using the max rule (Smax) improves the performance.
In this case, we have a single accumulated template for the
probe image and the score fusion is performed with respect
to multiple gallery hypotheses. We see that selecting the
most similar gallery hypotheses is better than accumulating
them. In the second part of the Table 3, this time, we fix the
template addition Tadd on gallery images. In this case, there
is no significant difference between any of the combined
fusion methods.

We can apply Smax and Sadd sequentially as described
in section 3.4. Following the findings from the ablation
studies, we first apply Smax on the similarity matrix in or-
der to obtain the most similar gallery hypotheses, then Sadd

is performed to obtain a single similarity score. By applying
Smax and Sadd respectively with a ResNet-101 based face
recognition model trained on Glint360k dataset, we achieve
93.53% Rank-1 IR on the d1 distance of the SCFace dataset.

4.3. Face template comparison

We use four different face template models (fFR) in
the above experiments, namely, ResNet-50 and ResNet-101
networks trained on either MS1MV3 or Glint360k datasets.

From the results in Table 2, we notice that as a gen-
eral trend, face templates derived using ResNet-101 based
models tend to perform better than the ones derived using
the ResNet-50 based models. This implies that the model
capacity is not yet saturated on either of these large-scale



Model Fine-Tuning d1 (%)

Martinez et al. [31] ✗ 68.3
Fang et al. [12] ✗ 70.5
Aghdam et al. [1] ✗ 78.5
Lai et al. [25] ✗ 79.7
Khalid et al. [34] ✗ 85.7
Khalid et al. [21] ✗ 88.3

Sun et al. [35] ✓ 65.5
DCR [30] ✓ 73.3
TCN [42] ✓ 74.6
FAN [41] ✓ 77.5
Fang et al. [12] ✓ 81.3
Huang et al. [18] ✓ 86.8
Li et al. [27] ✓ 90.4
Lai et al. [25] ✓ 93.0
Martinez et al. [31] ✓ 95.3

Ours ✗ 95.4

Table 4: Comparison of Rank-1 IR (%) results on the SC-
Face dataset with previous works. Models fine-tuned on
the SCFace dataset are denoted with a checkmark on Fine-
Tuning column. The average of 10 RRSSV for 80 subjects
out of 130 subjects is reported for our models.

training datasets, and recognition performance could bene-
fit from larger CNN models.

It is also clear that all else being equal, using templates
from the models trained on the larger Glint360k datasets is
always preferable to the ones trained on MS1MV3. This
shows that larger datasets and more expressive deep models
continue to be the main driver of advances in face recog-
nition performance. In addition, the distribution of images
over the dataset subjects in Glint360k is closer to previously
established heuristics regarding the optimal number of sub-
jects given a fixed dataset size [5].

4.4. Comparison with previous works

In Table 4, we compare our results on the SCFace dataset
with the ones from the previous works. To be compara-
ble with the previous works, in this section, we report the
mean of 10 Repeated Random Sub-Sampling Validation
(RRSSV) result for randomly selected 80 subjects. These
results are obtained using ResNet-101 model trained on
Glint360k dataset. We applied all of the proposed blocks
– multi-hypothesis face hallucination, resolution matching,
gallery degradations, and multi-scale accumulation. The
multi-scale accumulation is implemented by applying Smax

and Sadd to the gallery and probe templates, respectively.
Methods that perform fine-tuning on randomly selected

50 subjects are specified in Table 4 with a check mark
on Fine-Tuning column. Our model achieves the high-
est performance with 95.4% accuracy for distance d1=

Probe Rank-1

✔

Rank-1Probe

✔

Probe Rank-1 Rank-2

✔✖

Rank-1 Rank-2 Rank-3

✔✖✖

Probe

Rank-2Rank-1 Rank-10

✖✖

Probe Rank-3

✔✖

Probe Rank-1

✔

Figure 6: Samples of correctly identified probe images (top
row) and failure cases (rest of the figure). The failure cases
are ordered by the identification rank of the correct gallery
image.

4.2m over randomly selected 80 subjects. This model
achieves 93.53% accuracy over all 130 subjects of the SC-
Face dataset. The next best result among the methods that
do not use the SCFace dataset for training purposes, 88.3%,
is achieved with [21]. These results are obtained without
performing any training or fine-tuning on the target dataset,
yet performed close to or even better than the ones that uti-
lize a part of the dataset for training purposes.

5. Conclusion

We have presented a novel method that enables reliable
cross-resolution face recognition. The experimental results
show that each of the components of our proposed method,
including the face hallucination, gallery degradation, and
multi-scale matching, contributes towards our final result.

Given the high rank-1 accuracy of our method, we are in-
terested in studying the individual failure cases on the SC-
Face dataset. We present some failure cases in Figure 6.
We note that the failure cases in the SCFace dataset mostly
correspond to very low-quality probe images where a large
amount of ambiguity as to the identity of the subjects ex-
ists. Even then, the proposed method matches it to a sen-
sible identity, e.g., one that matches the gender, haircut, or
hair colour of the probe image - the only attributes that can
be reliably determined from the failure cases presented.
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