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Face hallucination using cascaded super-resolution
and identity priors
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Abstract—In this paper we address the problem of halluci-
nating high-resolution facial images from low-resolution inputs
at high magnification factors. We approach this task with
convolutional neural networks (CNNs) and propose a novel (deep)
face hallucination model that incorporates identity priors into
the learning procedure. The model consists of two main parts:
i) a cascaded super-resolution network that upscales the low-
resolution facial images, and ii) an ensemble of face recognition
models that act as identity priors for the super-resolution network
during training. Different from most competing super-resolution
techniques that rely on a single model for upscaling (even with
large magnification factors), our network uses a cascade of
multiple SR models that progressively upscale the low-resolution
images using steps of 2×. This characteristic allows us to apply
supervision signals (target appearances) at different resolutions
and incorporate identity constraints at multiple-scales. The pro-
posed C-SRIP model (Cascaded Super Resolution with Identity
Priors) is able to upscale (tiny) low-resolution images captured in
unconstrained conditions and produce visually convincing results
for diverse low-resolution inputs. We rigorously evaluate the
proposed model on the Labeled Faces in the Wild (LFW), Helen
and CelebA datasets and report superior performance compared
to the existing state-of-the-art.

Index Terms—Face hallucination, deep learning, CNN, identity.

I. INTRODUCTION

FACE hallucination (FH) represents a domain-specific
super-resolution (SR) problem where the goal is to re-

cover high-resolution (HR) facial images from low-resolution
(LR) inputs [1]. Face hallucination techniques have important
applications in various face-related vision tasks, such as face
editing, face detection, 3D face reconstruction or face recogni-
tion [2]–[10], where they are used to counteract performance
degradations caused by low-resolution input images.

Similarly to general single-image super-resolution tasks,
face hallucination is inherently ill-posed. Given a fixed image-
degradation model, every LR facial image can be shown to
have many possible HR counterparts. Thus, the solution space
for FH problems is extremely large and recent models typically
try to produce plausible SR results by learning to “hallucinate”
high-frequency information using relationships between corre-
sponding HR and LR images from a training dataset. While
significant progress has been made in the area of learning-
based (face) super-resolution over recent years [11]–[24],
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Fig. 1. Face hallucination results generated with the C-SRIP model. The figure
shows (from left to right): a 24 × 24 low-resolution (LR) input face image,
the 8× super-resolved (SR) image, and the high-resolution (HR) ground truth.
Note that C-SRIP is able to ensure visually convincing super-resolution results.

super-resolving facial images of arbitrary characteristics in a
convincing manner, especially at high magnification factors, is
still an unsolved problem, mainly due to:
• The ambiguous nature of the face hallucination task,

where the solution space is known to grow exponentially
with an increase in the desired magnification factor [25].
Despite strong reconstruction constraints it is exception-
ally difficult to find good solutions and devise methods
that work well for a broad range of LR facial images.
Furthermore, even for domain-specific SR problems, such
as face hallucination, where the solution space is already
constrained by facial appearances, there is still an over-
whelming number of plausible HR solutions that explain
the observed LR input equally well.

• The difficulty of integrating strong priors into FH mod-
els that sufficiently constrain the solution space beyond
solely the visual quality of the reconstructions. Most of
the existing priors utilized for super-resolution relate to
specific image characteristics, such as gradient distribu-
tion [26], total variation [27], smoothness [28] and the
like, and hence focus on the perceptual quality of the
super-resolved results. If discernibility of the semantic
content (e.g., facial features) is the goal of the SR
procedure, such priors may not be the most optimal
choice, as they are not sufficiently task-oriented.

The outlined limitation are most evident for challenging face
hallucination problems where tiny low-resolution images (e.g.,
of size 24× 24 pixels) of arbitrary characteristics need to be
super-resolved at high magnification factors (e.g., 8×). In this
paper, we try to address some of these limitations with a new
hallucination model build around deep convolutional neural
networks (CNNs).

Our model, called C-SRIP, uses a Cascade of simple Super-
Resolution models (referred to as SR modules hereafter) for
image upscaling and Identity Priors in the form of pretrained
recognition networks as constraints for the training proce-
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dure. Thus, it combines a powerful (general-purpose) super-
resolution network with prior domain knowledge related to
face recognition. Specifically, our model uses multiple SR
modules to super-resolve LR input images in magnification
increments of 2× and, consequently, allows for intermedi-
ate supervision at every scale. This intermediate supervision
confines the explosion of the solution-space size and con-
tributes towards more accurate hallucination results. To pre-
serve identity-related features in the SR images, we incorpo-
rate pretrained recognition models into the training procedure,
which act as identity constraints for the face hallucination
problem. The recognition models are trained to respond only
to the hallucinated high-frequency parts of the SR images and
ensure that the added facial details are not only plausible, but
as close to the true details as possible. Due to availability of
intermediate SR results, we incorporate the identity constraints
at multiple scales in C-SRIP. For data fidelity, we use a multi-
scale loss derived from the structural similarity index (SSIM,
[29]) that provides a stronger error signal for model training
than the Lp-norm-based loss functions commonly used in
this area. As we show through extensive experiments on the
Labeled Faces in the Wild (LFW), Helen and CelebA datasets,
the combination of reconstruction-oriented and identity-related
losses results in visually convincing super-resolved face im-
ages that compare favourably with state-of-the-art FH models
from literature.

The main motivation for using identity information in C-
SRIP is to exploit high-level cues that relate to facial ap-
pearance (i.e., identity) in addition to commonly used pixel-
level cues when learning to super-resolve facial images. By
relying on an optimization objective that combines a data-
reconstruction loss for data fidelity and a recognition loss for
identity preservation we are able to use the best of both worlds
and infuse the model with domain-knowledge that would be
difficult to learn from pixel-comparisons alone.

In summary, we make the following contributions in this
paper:

1) We introduce C-SRIP, a new CNN-based face halluci-
nation model, that integrates identity priors at multiple
scales into the training procedure of a SR network, and
ensures state-of-the-art FH results. To the best of our
knowledge, the model represents the first attempt to
exploit multi-scale identity information to constrain the
solution space of deep-learning based SR models.

2) We introduce a cascaded SR network architecture that
super-resolves images in magnification steps of 2× and
offers a convenient and transparent way of incorporating
supervision signals at multiple scales. Once trained, the
SR network is able to hallucinate tiny unaligned 24 ×
24 pixel LR images at magnification factors of 8× and
produce realistic and visually convincing hallucination
results as illustrated in Fig. 1.

3) We propose a mechanism for integrating identity priors
into FH models, which constrain the appearance of the
hallucinated (high-frequency) facial details.

4) We make all models, weights and source code used
in the experiments publicly available and provide the
community with strong baselines for future FH research.

II. RELATED WORK

In this section we discuss recent work related to the C-
SRIP model. The reader is referred to some of the existing
surveys on super-resolution and face hallucination for a more
comprehensive coverage of the field, e.g. [30]–[33].

Super-resolution models. Recent (single-image) super-
resolution (SR) solutions are dominated by learning-based
techniques that use pairs of corresponding HR and LR images
to train machine learning models capable of predicting HR
outputs from LR evidence [11]–[16]. The learning procedures
used with these models typically aim to minimize an objective
function that quantifies the error between the ground truth HR
images and the SR predictions. Common objectives include the
Lp, Huber or Lorentzian error-norm losses and more recent
error measures that are closer to human image quality per-
ception, such as structural similarity or CCN-based perceptual
losses [17], [34], [35]. Our SR model follows the outlined
learning paradigm, but incorporates a novel learning objective
related to the concept of structural similarity [36] (SSIM).
Specifically, it enforces a SSIM loss on the output of every
SR module (i.e., on 2×, 4× and 8× super-resolved images)
and naturally extends the loss to a multi-scale form.

The C-SRIP model is based on convolutional neural net-
works (CNNs) and in this sense is related to contemporary SR
techniques that exploit CNNs for image upscaling, e.g., [12],
[15], [17]–[24]. While these methods are capable of producing
impressive SR results, the majority relies only on LR-HR
image pairs for training and super-resolves images in a single
step. However, recent developments [37]–[39] have shown the
prospect of so-called cascaded models, where image upsam-
pling is performed progressively using smaller steps (e.g.,
of 2×) to reach the overall magnification factor (e.g., 8×).
This progressive upsampling strategy significantly constrains
the solution space of the ill-posed super-resolution problem
and contributes toward higher quality results. The reason for
this, as argued by the authors [37]–[39], is the possibility
of including intermediate supervision signals that help to
find a better optimum during model learning. Similarly to
these and related approaches [37]–[41], C-SRIP also upscales
LR inputs in a cascaded manner using carefully designed
SR modules that increase the spatial dimension of the input
images in steps of 2×, which in turn allows us to incorporate
reconstruction and identity-related objectives at multiple scales
into the training procedure.

Recent CNN-based SR models, (e.g., [12], [18]) exploit
contemporary network architectures, such as ResNets [42] and
Generative Adversarial Networks (GANs, [43]). These models
are closely related to our work, as we also make heavy use
of residual connections and incorporate a generative and a
discriminative network in our model. While we do not rely
on GANs per se, our model does include a discriminative
(classification) model that constrains the solution space of the
generative SR network. However, our discriminative model
is pre-trained and frozen and is not optimized alternatively
with the generator, which (according to our preliminary ex-
periments) greatly improves training stability and still results
in realistic SR outputs. Finally, our work can also be seen as an
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Fig. 2. Illustration of the C-SRIP model. The model consists of a generative SR network and an ensemble of face recognition models that serve as identity
priors during training. The figure shows all architectural details and is best viewed electronically. The kKnNsS notation introduced in [18] is used in the figure
to denote a convolutional layer with N convolutional filters with K ×K support, applied with stride S in the spatial dimensions.

extreme case of the perceptual-loss (`p) image transformation
model from [17], which relies on comparisons of high-level
features extracted from a pretrained secondary network as
the learning objective for SR, instead of comparisons at
the pixel level. Our model follows a similar idea, but uses
identity (i.e., information at the highest possible semantic
level) to constrain the solution space of the generative SR
network. Thus, instead of network features, C-SRIP considers
the outputs of pretrained recognition networks during training.

Face hallucination and identity constraints. Different
from general single-image SR tasks, the solution space of
face hallucination (or face super-resolution) models is typically
constrained to a set of plausible HR facial appearances. As
a result, much better performance has been achieved with
FH models at high magnification factors than with domain-
agnostic SR models [44]. Similarly to other vision problems,
research in FH is moving increasingly towards deep learning
and numerous CNN-based FH models have been presented
recently in the literature, e.g., [37], [44]–[54]. Here, we
contribute to this body of work with a novel deep face hallu-
cination model. While the SR network of our model is general
and applicable to arbitrary input images, we infuse domain-
specific knowledge into the model through the use of face
images during training as well as through the pretrained face
recognition models that act as a source of prior information
for the SR-model learning procedure.

Note that using identity information as a prior (or con-
straint) for SR models has been examined before [55], [56].
Henning-Yeomans et al. [57], for example, formulated a joint
optimization approach that maximized for super-resolution and
face recognition performance simultaneously. This approach
is conceptually similar to our work, but our approach is
more general in the sense that it can be applied with any
differentiable classification model. The approach from [57],
on the other hand, is focused only on linear feature extraction
techniques, e.g., PCA [58]. A CNN-based approach relying
on identity information was recently proposed in [59]. Here,
the authors proposed several different approaches for joint
training of a face recognition and face hallucination network.

However, they all involve separate loss functions for the
two separate models. C-SRIP, on the other hand, tries to
maximize the recognition performance of multiple pretrained
recognition models during training (via a cross-entropy loss)
by propagating it through the super-resolution network, and,
while pursuing a similar idea, is conceptually very different
from the procedure in [59].

III. PROPOSED METHOD

In this section we describe the proposed C-SRIP face
hallucination model and discuss its characteristics.

A. Overview of C-SRIP

As illustrated in Fig. 2, C-SRIP consists of two main
components: i) a generative SR network for image upscaling,
build around a powerful cascaded residual architecture, and ii)
an ensemble of face recognition models that serve as a source
of identity information during training.

Formally, C-SRIP aims to define a mapping, fθSR
, from a

LR input face image x to a HR counterpart y, i.e.

fθSR
: x→ y, (1)

where θSR denotes the set of C-SRIP parameters that need
to be learned. To learn this mapping (i.e., the parameters
θSR of the SR network), C-SRIP uses a combination of
multi-scale SSIM and cross-entropy losses that jointly drive
the training procedure. Details on the C-SRIP model and its
training procedure are discussed in the following sections.

B. The cascaded SR network

The generative part of the C-SRIP model, the cascaded SR
network, is a 52-layer CNN that takes a LR facial image as
input and super-resolves it at a magnification factor of 8×.
The network progressively upscales the LR input image using
a cascaded series of so-called SR modules, where each module
upscales the image only by a factor of 2× (see Fig. 2). This
progressive upscaling makes it possible to apply a loss function
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TABLE I
ARCHITECTURE OF THE SR NETWORK. THE NETWORK CONSISTS OF A

SERIES OF SR MODULES. THE STRUCTURE OF THE MODULES IS SHOWN IN
BRACKETS IN THE FORM “[FILTER SIZE, NUMBER OF FILTERS, STRIDE]”.

Layer No. Network part Output size Layer type Architectural details

1 Initial layer 24× 24 Conv+LReLU
[
9× 9, 512, stride 1

]
× 1

2− 17 SR module 1

24× 24 Conv+BN+LReLU
[
3× 3, 512, stride 1

3× 3, 512, stride 1

]
× 7

24× 24 Conv+BN+LReLU

24× 24 Conv+LReLU
[
3× 3, 1024, stride 1

]
× 1

48× 48 Upsampling 2× Sub-pixel convolution

18− 33 SR module 2

48× 48 Conv+BN+LReLU
[
3× 3, 256, stride 1

3× 3, 256, stride 1

]
× 7

48× 48 Conv+BN+LReLU

48× 48 Conv+LReLU
[
3× 3, 512, stride 1

]
× 1

96× 96 Upsampling 2× Sub-pixel convolution

34− 49 SR module 3

96× 96 Conv+BN+LReLU
[
3× 3, 128, stride 1

3× 3, 128, stride 1

]
× 7

96× 96 Conv+BN+LReLU

96× 96 Conv+LReLU
[
3× 3, 256, stride 1

]
× 1

192× 192 Upsampling 2× Sub-pixel convolution

40− 52 Final layers

192× 192 Conv+BN+LReLU
[
3× 3, 128, stride 1

3× 3, 128, stride 1

]
× 2

192× 192 Conv+BN+LReLU

192× 192 Conv+Clip
[
9× 9, 3, stride 1

]
× 1

∗BN stands for batch normalization.

on the intermediate SR results and ensures better control of
the training procedure in comparison to competing solutions
that exploit supervision only at the final scale. Furthermore,
the cascaded architecture allows us to solve a series of easier
and better conditioned problems using repeated bottom-up
inference with top-down supervision instead of one complex
problem with an overwhelming amount of possible solutions.

We design the SR network around a fully-convolutional
architecture that relies heavily on residual blocks [42] for all
processing within one SR module and sub-pixel convolutions
(i.e., expanding convolutional layers followed by pixel shuffle
operations, [60]) for image upscaling. Our design choices are
motivated by the success of fully-convolutional CNN models
in various vision problems [42], [61], [62] and the state-of-the-
art performance ensured by the sub-pixel convolutions in prior
SR work [18], [60]. Similarly to [18], the residual blocks of the
SR modules consist of two convolution–batch-norm–activation
sub-blocks, followed by a post-activation element-wise sum.
We ensure a constant memory footprint of all SR modules by
decreasing the number of filters in the convolutional layers
by a factor of 2 with every upscaling step. This maximizes
the capacity of the network and balances the computational
complexity across the SR modules. To upscale the feature
maps at the output of each SR module, we rely on sub-pixel
convolution layers proposed in [60]. These layers increase
the spatial dimensions of the feature maps by reshuffling and
aggregating pixels from multiple LR feature maps and, thus,
for every upscaling step of 2× reduce the number of available
feature maps by a factor of 4. We counteract this effect
by doubling the number of filters in the convolutional layer
preceding the sub-pixel convolutions and, consequently, ensure
that the capacity of the SR modules is not compromised due to
the upscaling procedure. After reaching the target resolution,
the feature maps are passed through one last residual block
and a final convolutional layer (with 3 output channels) that
produce the 8× super-resolved output RGB image.

SR Module -
Bicubic upscaling 𝑓(𝒙)

𝒙 𝒚

Δ𝒚 = 𝒚 − 𝑓(𝒙)

Recognition
model

{Δ𝒚}

Fig. 3. Each SR module adds high-frequency facial details during upscaling
(left). The recognition models are pretrained to respond to these details only
(right) and are, therefore, used as identity priors during training.

The network branches off after each SR module to allow
for intermediate top-down supervision during training. Each
branch applies a series of large-filter convolutions to produce
intermediate SR resolution results at different scales (i.e., at
2× and 4× the initial scale) that are incorporated into the loss
functions discussed in Section III-D. The large filter (9 × 9)
convolutions are also applied at the beginning of the network
to increase the model’s receptive field size. Details on the SR
network architecture are given in Fig. 2 and Table I.

C. The identity prior
Using prior information to constrain the solution space

of SR models during training is a key mechanism in the
area of super-resolution [8], [26]–[28], [63], [64]. The main
motivation for incorporating priors into SR models is to
provide a source of additional information for the learning
procedure that supplements the data-fidelity objectives and
contributes towards sharper and more accurate SR results.

An exceptionally strong prior in this context is identity.
Because identity information relates to the semantic content
(i.e.: Who is in the image?) and not the perceptual quality (i.e.:
How visually convincing is the image?) of the SR images, it
represents a natural choice for constraining the solution space
of FH models. In fact, it seem intuitive to think about FH
from both i) an image-enhancement as well as a ii) content-
preservation perspective and to incorporate both views into the
FH model for optimal results. While the image enhancement
perspective is covered in C-SRIP by a reconstruction-based
loss (see Section III-D), the content-preservation aspect is
addressed through an ensemble of face recognition models that
ensure that identity information is not altered during upscaling.

For C-SRIP we associate each recognition model with one
of the SR modules and use it as an identity prior for the
corresponding SR output, as illustrated in Fig. 2. Since each
SR module can be shown to add only high-frequency details to
the input images (see Fig. 3 left), we pre-train all recognition
models to respond only to the hallucinated details and ignore
the low-resolution content that is shared by the input and SR
images (see Fig. 3 right). By focusing exclusively on the added
details, we are able to directly link the recognition models to
the desired SR outputs and penalize the results in case they
alter the facial identity. This mechanism allows us to learn
the parameters of the SR network by considering an identity-
dependent loss in the overall learning objective.

While in principle any differentiable recognition model
could be used as the identity prior for the FH model, we
select SqueezeNets for this work [65]. The main reason for our
choice is the lightweight architecture of SqueezeNet, which
does not impose significant runtime slowdowns due to its
relatively small memory and FLOPS footprint.
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Fig. 4. Training data generation. The figure shows (from left to right): an example of the training image quadruplets generated with Guassing blurring and
decimation, residual images at three different spatial resolutions (corresponding to the residuals added by the 8×, 4× and 2× super-resolution steps). Note
that the residuals are generated by subtracting a blurred version of the reference image at the given resolution from the original reference image.

D. Training details and SSIM loss

We train the C-SRIP model in two stages. In the first stage,
we learn the parameters of the SqueezeNet models for all three
SR outputs (i.e, at 2×, 4× and 8× upscaling). In the second
stage, we freeze the the weights of the recognition models and
train the SR network with the combined (reconstruction and
identity) loss. Details of both stages are presented next.

Recognition-model training. Next to LR and HR image
pairs, we also require two intermediate reference images
between the lowest and the highest resolution to learn the
parameters of the recognition models and SR modules, as
illustrated in Fig. 2. To this end, we take a training set
of N high-resolution facial images {yi}Ni=1 and apply a
simple degradation model on the images to generate N image
quadruplets for training, i.e., {xi,y2×

i ,y4×
i ,y8×

i }Ni=1, where
xi represents the LR input image, y2×

i and y4×
i stand for the

intermediate SR reference images at 2× and 4× the initial
scale, respectively, and the HR image y8×

i = yi corresponds
to the ground truth for the final 8× super-resolved output.
The degradation model uses Gaussian blurring and image
decimation for down-sampling and produces training data (i.e.,
image quadruplets at different scales) as shown in Fig. 4 (left).

To train the recognition models, we construct residual
images that reflect the facial details that need to be learned by
the SR modules. The residual images, shown on the right side
of Fig. 4, are computed by smoothing the ground truth images
by a Gaussian kernel and subtracting the smoothed image from
the original, i.e., ∆yji = yji − g ∗ yji , for j ∈ {2×, 4×, 8×},
where σ values of σ2× = 1/3, σ4× = 1 and σ8× = 7/3
are used with images at 2×, 4×, and 8× the LR image size,
respectively. We train the SqueezeNet models for classification
based on the generated residual images using the categorical
cross-entropy loss function LCE :

LCE(θSN ,∆y) = −
K∑
k=1

p∆y(k) log p̂∆y(k), (2)

where p∆y denotes the ground truth class probability distribu-
tion of the residual image ∆y (i.e., p∆y ∈ {0, 1}K is a class-
encoded one-hot vector), p̂∆y ∈ RK stands for the output
probability distribution produced by SqueezeNet’s softmax
layer based on ∆y, K stands for the number of classes in
the training data and θSN represents the parameters of the
network. We learn the parameters of all three recognition
models through backpropagation by minimizing the LCE loss
over the training dataset, i.e.:

θ̂jSN = arg min
θjSN

E∆yj

[
LCE(θjSN ,∆yj)

]
. (3)

The results of this first training stage are three SqueezeNet
face recognition models (parameterized with θ̂2×

SN , θ̂
4×
SN , θ̂hrSN ),

one for each image resolution, that respond only to the hal-
lucinated facial details. These trained models are then frozen
and serve as identity priors for the SR network.

SR network training. Standard reconstruction-oriented loss
functions used for learning SR models, such as Lp error norms,
are known to produce overly smooth and often blurry SR
results [18]. We therefore design a new loss function for our
SR network around the structural similarity index (SSIM, [29],
[36]), and integrate it directly into our learning algorithm.
Specifically, we use a novel multi-scale version of SSIM as a
learning objective for the C-SRIP hallucination model.

Given a ground truth HR image y8× and the corresponding
SR network prediction ŷ8× = fθSR

(x), we first define a
(single-scale) SSIM-based loss over the 8× super-resolved
image. Different from the original patch-based SSIM formu-
lation from [29], we formulate SSIM using Gaussian kernels
and convolutional operations that are easily implemented using
common deep learning frameworks. Note that we drop the 8×
superscript in the equations to keep the notation uncluttered:

LSSIM (θSR,y) =
1

2

(
1− Ex

[
ˆSSIM(y, ŷ)

])
, (4)

where the SR network f is parameterized by θSR, Ex [·] stands
for the expectation operator over the spatial coordinates and

ˆSSIM(y, ŷ) is a spatial similarity map between y and ŷ, i.e.:

ˆSSIM(y, ŷ) =
(2µ12 + C1)� (2σ12 + C2)

(µ2
1 + µ2

2 + C1)� (σ2
1 + σ2

2 + C2)
, (5)

where

µ1 = y ∗ g, µ2
1 = µ1 � µ1,

µ2 = ŷ ∗ g, µ2
2 = µ2 � µ2,

σ2
1 = (y � y) ∗ g − µ2

1, σ2
2 = (ŷ � ŷ) ∗ g − µ2

2,

µ12 = µ1 � µ2, σ12 = (y � ŷ) ∗ g − µ12.

In the above equations ∗ denotes the convolution operator, �
denotes the Hadamard product, and the open parameters, g, C1

and C2, are defined as per the SSIM reference implementation
(given in [29]), i.e., g is an 11 × 11 Gaussian kernel with
σ = 1.5 and C1 ≈ 6.55, C2 ≈ 58.98. If we define a similar
loss for the intermediate SR results at 2× and 4× the LR
image size, we arrive at the final multi-scale form of SSIM
that we use to learn the parameters of the SR network of C-
SRIP, i.e.:

LMSSIM (θSR, {yj}) =
∑
j∈D

LSSIM (θSR,y
j), (6)
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where D = {2×, 4×, 8×}. It needs to be noted that this
multi-scale form of SSIM is different from existing multi-scale
formulations of structural similarity (e.g., [36]), where images
are down-sampled to capture image statistics at multiple
resolutions. With our multi-scale SSIM formulation, structural
similarity is measured between the ground truth images of dif-
ferent resolutions and the progressively upsampled LR images.
As we discuss in the experimental section, the proposed loss
results in better training characteristics compared to standard
Lp norm based losses, which makes it easier to train (very)
deep SR networks, such as the one devised for C-SRIP.

Based on the pre-trained SqueezeNet models and the loss
introduced above, we define the overall loss of the C-SRIP
model as follows:

L(θSR, {yj}) =
∑
j∈D

LSSIM (θSR,y
j) + αLCE(θjSN ,∆yj),

(7)
where D = {2×, 4×, hr}, α is a weight parameter that
balances the relative impact of the reconstruction- and
recognition-based losses and θSR stands for the parameters
of the SR network that we aim to learn. The residual images
∆yj are constructed during training as illustrated in Fig. 4
(right). We use backpropagation to minimize the loss over our
training data and find the parameters of the SR network θ̂SR,
i.e., θ̂SR = arg minθSR

Eyj

[
L(θSR, {yj})

]
.

Once the training is complete, we remove the recognition
models and network branches used to generate the intermedi-
ate SR results at 2× and 4× magnification factors and use only
the main output of the SR network for face hallucination. The
final SR network takes a LR image x of size 24 × 24 pixels
as input and returns an 8× upscaled 192 × 192 facial image
y8× at the output.

E. Implementation details

Recognition model. The recognition models for all three
output scales are implemented in accordance with the so-
called complex SqueezeNet architecture from [65]. The models
consist of 9 fire modules with intermediate shortcut con-
nections, followed by a global average pooling layer and a
softmax classifier on top. We train the first recognition model
to classify residual images at 2× the initial LR scale, i.e.,
48× 48 pixels, the second to classify images at 4× the initial
scale, i.e., 96 × 96 pixels, and the last for recognition of
residual images of 192 × 192 pixels in size. To learn the
model parameters we use backpropagation and the Adam [66]
minibatch gradient descent algorithm, with a batch size of
128 and an initial learning rate of 10−4. The learning rate
is multiplied by a factor of 1

3 every 20 epochs. To avoid
over-fitting, we resort to data augmentation in the form of
random horizontal flipping and random crops. We employ an
early stopping criterion based on accuracy improvements on
the validation set. If no improvements are observed over 10
consecutive training epochs we stop the learning procedure
and assume the recognition model has converged.

The SR network. The SR network consist of three SR
modules that are preceded by a convolutional layer with 512
large-scale filters of size 9 × 9 pixels. The SR modules are

implemented with p = 7 residual blocks that contain 512 filters
in the first SR module, 256 filters in the second SR module,
and 128 filters in the last SR module, as shown in Fig. 2. We
set the number of filters for the final convolutional layer of the
SR modules, to 1024 for the first, 512 for the second and 256
for the third module. All filters are of size 3 × 3 pixels. For
the activations, we use Leaky Rectified Linear Units (LReLU).
The last residual block of the SR network has 128 filters 3×3
pixels in size. Before generating SR results at the output of
the network and in the off-branches, a convolutional layer with
three 9×9 filters is used followed by a clipping layer to ensure
that the SR RGB images are within the valid intensity range
of [0, 255]. A summary of the architecture is given in Table I.

IV. EXPERIMENTS

In this section, we present extensive experiments to validate
the performance of our model. We start the section with
a description of the datasets and performance metrics used
for the evaluation. Next, we report comparative results with
the state-of-the-art, conduct a fine-grained ablation study to
highlight the impact of our contributions and finally explore
the robustness and limitations of the proposed FH model.

A. Experimental Datasets

We select four popular face datasets for the experiments, i.e.,
CASIA WebFace [67], Labeled Faces in the Wild (LFW) [68],
HELEN [68] and CelebA [69].

We use the CASIA WebFace dataset to learn the parameters
of C-SRIP. The dataset contains a total of 494, 414 images of
10, 575 distinct identities, (i.e., N = 494, 414; K = 10, 575)
and represents a mid-sized dataset very well suited for learning
CNNs for various face-related vision tasks. Because the dataset
ships with images of size 250× 250 pixels that are relatively
loosely cropped around the face, we take only the central
192 × 192 pixel patches of the images and use these as the
basis for the experiments. Finally, we smooth the images using
a Gaussian kernel (with σ = 0.25 × down-sampling factor)
and sub-sample the images using bicubic interpolation. We
do this several times for each image to produce the image
quadruplets needed for training of the recognition models and
the SR network of C-SRIP - see Fig. 4 for an illustration.

For testing, we use the complete Labeled Faces in the Wild
(LFW) [68] dataset with 13, 233 facial images and 5, 749
subjects as well as images from HELEN [70] CelebA [69].
We select LFW for the experiments because it features images
of variable quality captured in unconstrained conditions and
thus represent a significant challenge for SR models. More
importantly, it contains no overlap with CASIA WebFace in
terms of identity, which is paramount to ensure a fair and
unbiased evaluation of the C-SRIP model. The HELEN and
CelebA datasets, on the other hand, are selected to test the
performance of C-SRIP on images of different characteristics
than LFW and, hence, assess the generalization capabilities of
our FH model.

We observe that the HELEN and CelebA datasets contain
images of high resolutions, but also considerable amounts of
JPEG-compression artifacts. Therefore, we take the following
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(a) CASIA WebFace examples (b) LFW examples (c) HELEN examples (d) CelebA examples

Fig. 5. Visual examples of the pre-processed images used in the experiments: (a) CASIA WebFace, (b) LFW, (c) HELEN and (d) CelebA. The presented
images are of size 192× 192 pixels and represent the high-resolution ground truth. All images are cropped to contain only (or mostly) the facial area.

steps to preprocess the datasets. We first crop the facial regions
using the provided landmark coordinates to achieve similar
crops to the images present in the LFW and CASIA WebFace
datasets. Next, we take the highest-resolution images from
both datasets and down-sample them to 192×192 pixels using
Gaussian blur and bicubic interpolation. We then treat the
resulting square 192 × 192 pixel images as the target high-
resolution images. With this procedure we process a total of
330 images from HELEN and 1126 images from CelebA that
form the test set for our experiments. A comparison of the
face images from the four datasets is shown in Fig. 5.

B. Performance metrics

To measure the performance of the tested SR techniques
we follow standard methodology from the literature [12], [16],
[18], [38], [71] and report our results using:
• The Peak Signal-to-Noise Ratio (PSNR), which is defined

as follows:

PSNR(y, ŷ) = 20 log10

(
L√

MSE(y, ŷ)

)
[dB] , (8)

where L is the maximum possible pixel value of an image
(i.e., 255 for images stored with 8 bits per channel) and
MSE is the mean squared error between the original high-
resolution ground truth y and the super-resolved image
ŷ. PSNR transforms the squared-error measure into the
logarithmic space (in decibels) and considers only errors
between individual pixels. It is defined in the range of
(0,∞], where higher values indicate better resemblance
between the ground-truth and the SR images.

• The Structural Similarity (SSIM) index given by [29]:

SSIM(y, ŷ) =
1

M

M∑
i=1

s(yi, ŷi), (9)

where the local similarity function s(·, ·) that measures
the structural similarity between the M image patches yi
and ŷi (sampled from y and ŷ), is defined as

s(yi, ŷi) =
(2µ1µ2 + C1) (2σ12 + C2)

(µ2
1 + µ2

2 + C1) (σ2
1 + σ2

2 + C2)
. (10)

In the above equation µ1 and µ2 denote the means of the
local patches yi and ŷi, σ2

1 and σ2
2 stand for their local

variances, σ12 represents the local covariance of yi and
ŷi, and C1 and C2 are hyperparameters that are set based

TABLE II
RECOGNITION PERFORMANCE OF THE SQUEEZENET MODELS FOR

DIFFERENT IMAGE SIZES OF THE TRAINING AND VALIDATION DATA.
RESULTS ARE REPORTED IN TERMS OF RANK-1 RECOGNITION RATES.

Model† Image size [px] Training data Validation data
SqueezeNet at 2× 48× 48 0.5138 0.2974

SqueezeNet at 4× 96× 96 0.7215 0.4266

SqueezeNet at 8× 192× 192 0.8569 0.5713
† Note that the models are trained to classify residual images.

on the reference implementation of the SSIM authors, i.e.,
C1 = 6.55, C2 = 58.98. The valid range of the SSIM
index is (0, 1], where 1 indicates that the ground truth y
and the super-resolved image ŷ are identical.

• The Visual Information Fidelity (VIF) [72] which quan-
tifies the fraction of the Shannon information in the
wavelet domain that is shared between the ground truth
face image y and the super-resolution result ŷ relative
to the information contained in y. The range of output
values for VIF is (0, 1], where the value is 1 for identical
ground truth and super-resolved images y and ŷ. It needs
to be noted that most of the SR models included in
the experimental evaluation are (implicitly) trained to
maximize either PSNR or SSIM (by minimizing MSE or
our SSIM-derived loss). Hence, we select VIF as a (third)
unbiased performance measure for the experiments, as it
is not directly related to PSNR or SSIM.

C. Model training

Training of the C-SRIP model involves two sequential
stages: i) training of the three SqueezeNet face recognition
models that act as constraints for the C-SRIP learning proce-
dure, and ii) training of the actual SR-network.

For the first stage (i.e., the SqueezeNet training) we ran-
domly sample identities from CASIA WebFace, utilizing 90%
of the images for training and 10% for validation. We use
the standard cross-entropy loss and the Adam [66] optimiza-
tion algorithm with an initial learning rate of 10−3 and an
annealing factor of 10 every 50 epochs for the learning
procedure. As shown by the results in Table II, the recognition
models converge to the rank one recognition rate of 0.5138
(0.2974†) with 48 × 48px residual images, 0.7215 (0.4266†)
with 96 × 96px residual images and 0.8569 (0.5713†) with
192×192px residual images on the training (†validation) data.
As expected, the performance decreases with a decreasing
size of the residual images and is adversely affected by
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LR Input SICNN SRCNN VDSR `p CARN LapSRN SRGAN URDGN EDSR C-SRIP Target

Fig. 6. Qualitative comparison with nine state-of-the-art SR models from the literature. The first two rows show sample results from LFW, the second two
rows show results from HELEN and the last two rows show results from the CelebA dataset. The first column of each row shows the input 24 × 24 pixel
LR image, upscaled with nearest neighbor interpolation for display purposes. The figure is best viewed zoomed in.

TABLE III
COMPARISON OF C-SRIP WITH NINE STATE-OF-THE-ART SR MODELS ON THE MOST CHALLENGING TASKS, WHERE 24× 24 PIXEL IMAGES ARE

UPSCALED TO THE FINAL SIZE OF 192× 192 PIXELS USING A MAGNIFICATION FACTOR OF 8×. THE BEST AND SECOND-BEST RESULTS ARE
HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY. OUR C-SRIP MODEL ATTAINS HIGHLY COMPETITIVE PERFORMANCE ON ALL THREE DATASETS.

SR Model LFW HELEN CelebA
PSNR SSIM VIF PSNR SSIM VIF PSNR SSIM VIF

Bicubic 24.256 0.7060 0.3157 24.410 0.7077 0.3231 23.215 0.6642 0.3020
SICNN [59] 25.857 0.7610 0.4387 26.855 0.7973 0.5232 25.916 0.7505 0.5028
SRCNN [15] 24.793 0.7211 0.3923 24.821 0.7146 0.4413 24.487 0.7019 0.4177
VDSR [12] 25.285 0.7361 0.4246 25.173 0.7406 0.4550 24.241 0.7265 0.4310
`p [17] 26.985 0.7897 0.5641 26.915 0.7951 0.6016 26.136 0.7735 0.5707
CARN [38] 26.811 0.7873 0.4938 26.618 0.7761 0.5537 25.972 0.7862 0.5228
LapSRN [39] 25.216 0.7330 0.4777 25.417 0.7513 0.5139 25.103 0.7365 0.4820
SRGAN [18] 25.669 0.6993 0.5181 26.047 0.7263 0.5682 25.830 0.7193 0.5684
URDGN [44] 25.575 0.7516 0.4494 26.882 0.7916 0.4639 25.136 0.7411 0.4379
EDSR [73] 25.648 0.7559 0.5381 25.317 0.7480 0.5396 25.909 0.7554 0.5418
C-SRIP (ours) 27.164 0.8171 0.6323 27.074 0.8235 0.6263 26.028 0.7945 0.6306

the lack of low-frequency information during training (see,
e.g., [74] for the expected performance of SqueezeNet for
face recognition). Nevertheless, the models contribute towards
accurate and visually convincing SR results, as evidenced by
the results in the following sections.

In the second training stage, we fix the weights of the
SqueezeNet models and learn the parameters of the SR-
network of C-SRIP. Because we need identity labels in this
stage as well, we again use the 90% vs. 10% data split per
identity for training and validation. With this setup we train
the SR network on 494, 414 CASIA WebFace images using
the objective in Eq. (7) that includes the SSIM-based image-
reconstruction loss and the recognition performance of the
SqueezeNet models. We balance the contribution of both loss
terms with a value of α = 0.001 and use backpropagation

with the Adam [66] minibatch gradient descent algorithm for
training. Due to the large memory footprint of the SR network
and the face recognition models, we select a relatively small
batch size of 8. The initial learning rate is set to 10

3 × 10−3

and is multiplied by 1
3 at the end of epochs 10, 25, 50 and

80. The learning procedure is stopped early if both the SSIM
and MSE values exhibit no improvements over 10 epochs.

We train all models on a workstation with two Nvidia GTX
Titan Xp GPUs. On this hardware, the SqueezeNet training
takes 1, 2, and 5 days, respectively, for the 2×, 4× and 8×
scale models. The training of the SR network with the identity
constraints included takes around 8 days. Once trained, the SR
network is capable of processing images at an average speed
of 19 ms/image on GPU in batch mode, or 30 ms/image in
real-time (i.e., single-sample batch) mode.
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TABLE IV
COMPARISON WITH STATE-OF-THE-ART SR MODELS IN TERMS OF AVERAGE PSNR, SSIM AND VIF ACHIEVED ON LFW, HELEN AND CELEBA. THE

TABLE SHOWS RESULTS FOR UPSCALING FACTORS OF 2× AND 4× WITH LOW-RESOLUTION 24× 24 PIXEL INPUT IMAGES. THE BEST AND SECOND-BEST
RESULTS FOR EACH UPSCALING FACTOR ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY.

SR Model Scale LFW HELEN CelebA
PSNR SSIM VIF PSNR SSIM VIF PSNR SSIM VIF

Bicubic 2× 27.275 0.8775 0.4851 27.511 0.8835 0.4867 26.684 0.8780 0.4895
SICNN [59] 2× 29.107 0.9275 0.6451 29.350 0.9245 0.6684 30.086 0.9317 0.6488
SRCNN [15] 2× 28.584 0.9142 0.5314 28.428 0.9133 0.5281 28.369 0.9164 0.5377
VDSR [12] 2× 28.717 0.9216 0.5688 28.993 0.9191 0.5745 28.832 0.9237 0.5843
`p [17] 2× 29.716 0.9306 0.6574 30.830 0.9481 0.6702 30.714 0.9358 0.6575
URDGN [44] 2× 28.616 0.9178 0.6173 28.727 0.9131 0.6348 28.769 0.9215 0.6283
LapSRN [39] 2× 28.611 0.9180 0.6195 28.503 0.9153 0.6035 29.017 0.9199 0.6207
CARN [38] 2× 29.862 0.9351 0.6309 30.141 0.9318 0.6447 30.311 0.9248 0.6514
SRGAN [18] 2× 30.254 0.9587 0.6831 31.412 0.9416 0.6720 30.572 0.9413 0.6685
EDSR [73] 2× 29.219 0.9251 0.6267 29.572 0.9106 0.6492 30.184 0.9335 0.6418
C-SRIP (ours) 2× 30.831 0.9459 0.6704 31.271 0.9551 0.6803 30.891 0.9525 0.6591
Bicubic 4× 24.829 0.7619 0.4086 24.950 0.7666 0.4128 23.956 0.7449 0.4018
SICNN [59] 4× 27.638 0.8398 0.6270 27.914 0.8425 0.5990 26.138 0.8340 0.6142
SRCNN [15] 4× 25.762 0.7941 0.4407 25.318 0.7865 0.4355 25.479 0.8084 0.4381
VDSR [12] 4× 25.875 0.8167 0.4385 25.576 0.7891 0.4236 25.816 0.8137 0.4413
`p [17] 4× 27.716 0.8553 0.6153 27.931 0.8745 0.6285 27.362 0.8691 0.6092
URDGN [44] 4× 25.989 0.8407 0.6420 25.678 0.8222 0.6471 25.958 0.8176 0.6379
LapSRN [39] 4× 25.897 0.8255 0.4931 25.725 0.8164 0.5132 26.016 0.8309 0.5518
CARN [38] 4× 27.734 0.8691 0.5538 28.018 0.8710 0.5843 27.460 0.8608 0.5476
SRGAN [18] 4× 27.839 0.8567 0.5216 28.052 0.8697 0.5396 27.454 0.8569 0.5405
EDSR [73] 4× 27.509 0.8621 0.6038 27.957 0.8679 0.6233 27.283 0.8471 0.5675
C-SRIP (ours) 4× 27.995 0.8769 0.6503 28.226 0.8880 0.6434 27.635 0.8777 0.6425

LR Input SICNN SRCNN VDSR p CARN

LapSRN SRGAN URDGN EDSR C-SRIP (ours) GT-48px

LR Input SICNN SRCNN VDSR p CARN

LapSRN SRGAN URDGN EDSR C-SRIP (ours) GT-96px

Fig. 7. Visual comparison of the SR results for magnification factors of 2× and 4×. The left block of images shows results for the magnification factor
of 2× and the right block of images shows results for 4×. Note that C-SRIP achieves the most convincing visual results. GT-48px and GT-96px stands for
ground truth images of size 48× 48 and 96× 96 pixels, respectively. The figure is best viewed electronically.

D. Comparison to the state-of-the-art

We compare the C-SRIP model with 9 state-of-the-art SR
and FH models, i.e.: the Super-identity convolutional neural
network (SICNN) from [59], the Super-Resolution Convolu-
tional Neural Network (SRCNN) from [15], the Very Deep
Super Resolution Network (VDSR) from [12], the perceptual-
loss based SR model (`p) from [17], the Cascading Residual
Network (CARN) from [38], the Deep Laplacian Pyramid
Super-Resolution Network (LapSRN) from [39], the Super-
Resolution Generative Adversarial Network (SRGAN) from
[18], the Enhanced Deep Residual Network (EDSR) from [73]
and the Ultra Resolving Discriminative Generative Network
(URDGN) from [44]. Since some of these models were
introduced for general super-resolution problems, we re-train
all models on the 494, 414 CASIA WebFace dataset and use
open-source implementations of the authors (where available)
for a fair comparison. For `p we use features from the fire2,
fire3 and fire4 layers of our full-scale SqueezeNet recognition
network for the perceptual loss during training. We include
results for bicubic interpolation, a standard image processing
technique, as a baseline for the lower bound of the image
reconstruction performance. To make our results reproducible,

we make all code, model definitions and weights publicly
available from https://lmi.fe.uni-lj.si/en/research/fh/.

1) Comparison at the highest magnification factor: In our
first series of experiments, we compare the performance of
all SR models in the most challenging setting, i.e., with
upsampling factors of 8×. The input to the models are 24×24
pixel images and the task is to generate 192×192 pixel outputs.
In this experiment, a staggering amount of 98.43% of image
pixels need to be hallucinated from the low-resolution inputs.

From the visual results in Figs. 6 we see that with such high
magnification factors general SR models, such as SRCNN and
VDSR, do not manage to generate convincing face hallucina-
tion results and amplify noise present in the LR images. These
models fail to make use of the available facial context due to
their relatively low receptive fields. The LapSRN and CARN
models, which use a cascaded model topology similarly to
C-SRIP, produce better results, but still struggle to produce
crisp high-resolution face images. The EDSR [73] model is
able to generate more facial details despite not including any
priors or face-specific modifications, which is likely due to
its deper structure and higher model capacity. The SRGAN,
URDGN, SICNN and `p models further improve on this

https://lmi.fe.uni-lj.si/en/research/fh/
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by including secondary networks as constraints during SR
training. `p is consistently the best-performing model included
in our comparison, only slightly behind C-SRIP. However,
we notice it often adds high-frequency noise when trying to
minimize the perceptual loss of the convolutional maps of the
secondary network. We speculate the reason our model is not
susceptible to these errors is because it uses a global cross-
entropy loss defined over the secondary recognition networks
as opposed to the loss defined over local convolutional features
exploited by `p. We also observe competitive performance for
CARN, which performs slightly worse than C-SRIP and `p.

The findings made based on the visual results are also sup-
ported by the average PSNR, SSIM and VIF values reported
in Table III. C-SRIP results in the best overall performance in
terms of PSNR, SSIM and VIF values across all three datasets,
followed by `p, CARN, SICNN, EDSR, and URDGN, which
all produce strong performance metrics on the test datasets.
While providing reasonably convincing visual results, SRGAN
produces only average PSNR, SSIM and VIF scores and even
results in the lowest SSIM score among all tested models on
LFW. This result is expected and is observed regularly in the
literature [18] with GAN-based SR methods. SRCNN, VDSR
and LapSRN improve upon the Bicubic baseline in terms of
performance scores, but are less competitive in comparison to
the top performers of this experiment.

2) Comparison at smaller magnification factors: The ar-
chitecture of C-SRIP allows us to super-resolve images at
several magnification factors (i.e., at 2×, 4×, and 8×) in one
forward pass through the model. To put the quality of the
generated upscaling results at the smaller magnification factors
into perspective, we re-train the nine competing models for the
2× and 4× upscaling tasks and report average PSNR, SSIM
and VIF scores for the three datasets in Table IV. While we
again use 24× 24 pixel images as input, this problem is still
easier than the one explored in the previous section, as less
image content needs to be filled in by the SR models.

If we compare the reported results to the results in Table III
we see that most methods achieve consistently higher per-
formance scores as the magnifaction factor gets smaller. C-
SRIP is again very competitive and achieves clearly the best
performance among all tested methods for the 4× upsampling
task. For 2× upscaling, the C-SRIP model never ranks worse
than second, but is overall close to the runner up, the SRGAN
model, in this experiment. Interestingly, while the SRGAN
model was among the worst performers (in terms of perfor-
mance metrics, not visual quality) on the more challenging
8× uspcaling problem, it is very competitive in these simpler
tasks. However, we already see a collapse of the VIF score
when going from the 2× to the 4× upscaling tasks for SRGAN
- a trend that is even more evident in the transition from the 4×
to the 8× upsampling problem. We also observe considerable
performance from the `p, CARN, EDSR and SICNN models,
which produce relatively competitive performance scores and
result in visually solid HR reconstructions. SRCNN, VDSR,
URDGN and LapSRN clearly outperform the baseline inter-
polation procedure, but produce lower average PSNR, SSIM
and VIF scores on all three datasets compared to the best
performing models. A visual comparison of all SR models

TABLE V
SUMMARY OF MODEL CHARACTERISTICS USED IN THE ABLATION STUDY.

Component SSIM Cascaded Multi-scale Identity
Loss supervision prior

Baseline 7 7 7 7
B-SSIM 3 7 7 7
C-SSIM 3 3 7 7
C-SSIM-M 3 3 3 7
C-SRIP 3 3 3 3

with upscaling factors of 2× and 4× is shown in Fig. 7.

E. Ablation study

In the next series of experiments, we perform an ablation
study (for the 8× upscaling problem) to assess the contribution
of the individual components of the proposed C-SRIP model.
Towards this end, we train the following models using the
methodology and data described in Section IV-C and evaluate
their performance:
• Baseline: A baseline SR model without the cascaded SR

modules and intermediate supervision. The model consist
of 21 residual blocks similarly to the C-SRIP model, but
the three sub-pixel convolution layers for upscaling are all
placed at the end of the model. The model is trained using
standard MSE loss. This model is in essence equivalent
to the generator of the SRGAN approach from [18] and
is included here to demonstrate the importance of the
loss-functions and cascaded architecture used in C-SRIP.

• B+SSIM: The baseline SR model (Baseline), but trained
with the proposed SSIM-based loss. This model is again
equivalent to the SRGAN generator from [18] in terms of
topology and is included in the here to show the impact of
the loss-functions and cascaded architecture of C-SRIP.

• C+SSIM: The cascaded SR model, trained with the pro-
posed SSIM-based loss, but without the identity priors
and without multi-scale supervision i.e., the loss function
is only applied at the output of the model. This model is
used to demonstrate the effect of the cascaded architec-
ture and the importance of multi-scale supervision.

• C+SSIM+M: The cascaded SR model, trained with multi-
scale supervision and the proposed SSIM-based loss
function, but without the identity priors. C+SSIM+M is
included in the ablation study to highlight the importance
of the of the multi-scale supervision, but also the identity
prior used during C-SRIP training.

• C-SRIP: The C-SRIP model with multi-scale SSIM and
identity supervision. The complete C-SRIP model shows
the effect of putting all components together and, specifi-
cally, demonstrates the impact of the identity prior - when
compared to C+SSIM+M.

The main model characteristics of the models used in the
ablation study are summarized in Table V.

1) Impact of C-SRIP components: The first thing to notice
from the results in Table VI is that with each additional
component, the performance of the model increases for the
majority of performance metrics - as indicated by the arrow
next to the performance scores. One performance decrease
we see is when switching from the MSE loss (Baseline) to
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TABLE VI
RESULTS OF THE C-SRIP ABLATION STUDY. THE BEST AND SECOND-BEST RESULTS ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY. WE SEE

THAT WITH EACH ADDITIONAL COMPONENT THE PERFORMANCE OF THE MODEL INCREASES ON AVERAGE. THE OVERALL BEST PERFORMANCE ACROSS
ALL THREE DATASETS IS OBSERVED FOR THE COMPLETE C-SRIP MODEL.

SR Model LFW HELEN CelebA
PSNR SSIM VIF PSNR SSIM VIF PSNR SSIM VIF

Baseline 26.175 0.7547 0.5527 26.229 0.7597 0.5462 25.873 0.7345 0.5435
B-SSIM 26.025 ↓ 0.7597 ↑ 0.5764 ↑ 25.964 ↓ 0.7624 ↑ 0.5714 ↑ 25.924 ↑ 0.7669 ↑ 0.5692 ↑
C-SSIM 26.414 ↑ 0.7731 ↑ 0.6334 ↑ 26.577 ↑ 0.7638 ↑ 0.6408 ↑ 26.525 ↑ 0.7719 ↑ 0.6366 ↑
C-SSIM-M 26.451 ↑ 0.7841 ↑ 0.6575 ↑ 26.669 ↑ 0.7694 ↑ 0.6613 ↑ 26.313 ↑ 0.7755 ↑ 0.6632 ↑
C-SRIP 27.164 ↑ 0.8171 ↑ 0.6617 ↑ 27.073 ↑ 0.8235 ↑ 0.6659 ↑ 26.028 ↓ 0.7945 ↑ 0.6674 ↑

LR Input Baseline B+SSIM C+SSIM C+SSIM+M C-SRIP Target

- - - - -

- - - - -

Fig. 8. Visual results of the ablation study. The figure shows examples of super-resolved images generated by the models included in the experiments (the
top row of each example) and the details that are added by each model compared to the previous one (bottom row in each example). The images on the left
(marked LR Input) show the low-resolution inputs upscaled using nearest neighbor (NN) interpolation. We see that the Baseline model already ensures better
visual characteristics that the NN interpolation. We also observe significant jumps in visual quality when switching to the cascaded architecture (observe the
increase in image sharpness in the zoomed in images) and when adding identity information (see. for example, the eye details in the first example image).
The impact of including identity information is also clearly visible in the bottom row of each of the two examples, where the high-frequency details that are
added when going from C+SSIM-M to C-SRIP are presented. Best viewed zoomed in.
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Fig. 9. Fine-grained ablation study. The graphs show (from left to right): average PSNR, SSIM, and VIF scores achieved across attribute-dependent subsets
of the CelebA dataset. The individual subsets have different numbers of images, i.e.: young (437), old (319), bald (51), hair (83), male (212), female (326),
crisp (247), blurry (52). Results show that the cascaded architecture, the multi-scale supervision and identity prior have the biggest impact on performance.

the SSIM-based loss (B-SSIM), which slightly lowers the
average PSNR score on LFW and HELEN, but results in
higher SSIM and VIF scores on all three datasets. This result is
expected, as PSNR is directly proportional to MSE and, thus,
SR models optimizing for MSE typically achieve lower PSNR
values than models using other loss functions. Nevertheless,
overall the SSIM-based loss contributes towards improved

performance and results in much better training characteristics,
since our models converged faster and achieved significantly
better SSIM and MSE scores on the training and validation
data than the MSE-based models.

When looking at the impact of the cascaded architecture
and multi-scale supervision (going from B-SSIM to C-SSIM
and C-SSIM-M), we again observe considerable performance



12

TABLE VII
EFFECT OF USING DIFFERENT LOSS FUNCTIONS TO TRAIN THE SR NETWORK OF C-SRIP.

Model/Loss LFW HELEN CelebA
PSNR SSIM VIF PSNR SSIM VIF PSNR SSIM VIF

Perceptual Loss [17] (PL) 25.695 0.7387 0.4472 25.602 0.7415 0.4352 25.738 0.7496 0.4673
Super-identity Loss [59] (SL) 26.944 0.7935 0.5860 26.726 0.8013 0.5602 26.503 0.7791 0.5585
Adversarial Loss [18] (AL) 26.164 0.7654 0.5531 25.947 0.7785 0.5496 25.408 0.7655 0.5712
C-SRIP - Proposed (P) 27.164 0.8171 0.6617 27.073 0.8235 0.6263 26.028 0.7945 0.6306
C-SRIP - No Residuals (NR) 27.213 0.8064 0.6605 27.018 0.8196 0.6308 26.071 0.7895 0.6258

LR input AL PL SL C-SRIP Target

Fig. 10. Qualitative comparison of the effect of using different loss functions
to train the SR network of the C-SRIP model. The recognition loss of C-SRIP
ensures the most convincing results, followed closely by the super-identity loss
from [59]. Best viewed zoomed in.

improvements for all performance scores on LFW, HELEN
and CelebA. In fact, the change to the cascaded architecture
has the biggest impact of the average VIF scores among all
contributions on all three datasets.

On LFW and HELEN we see the biggest increase in the
average PSNR and SSIM scores when adding the multi-scale
identity supervision - see comparison between C-SSIM-M and
C-SRIP. This addition also results in one of the biggest visual
improvements of the SR images as seen in Fig. 8 - compare
details (e.g., details around the eyes, etc.) in the zoomed in
regions between C-SRIP and C+SSIM+M.

2) Fine-grained ablation study: In order to investigate
the performance of C-SRIP with respect to specific image
characteristics and further assess the impact of the model
components, we perform a fine-grained ablation study using
the attribute labels of the CelebA dataset. Each label in CelebA
is binary and indicates the presence or absence of attribute in
the given image. We conduct our fine-grained ablation study
using the following attributes:

• Age or gender bias: We are interested in whether C-SRIP
performs differently on facial images of different age or
gender groups and how the individual model components
contribute towards the overall performance. To this end,
we run experiments on subsets of the data based on the
“male/female” and “young/old”attributes.

• Image quality: We are interested in how image recon-
struction quality is affected when the ground truth image
is of low quality. We, therefore, evaluate reconstruc-
tion performance on subsets of the dataset using the
“blurry/crisp” attribute, respectively.

• Hair: Hair is an obvious source of high-frequency details

C-SRIP - No Residuals C-SRIP - Proposed Target

Fig. 11. Comparison of hallucination results generated by: i) applying the
recognition networks directly on the (2×, 4× and 8×) hallucination outputs of
the SR modules (left), and ii) using the recognition loss over the hallucinated
residuals (middle column). Both approaches generated similar results, but
the proposed C-SRIP variant with residuals produces slightly less noisy HR
reconstructions - see zoomed in regions for details. Best viewed electronically.

in face images. We aim at investigating how reconstruc-
tion performance is affected by its absence. To this end,
we split the dataset using the “bald/hair” attribute, and
evaluate each subset separately.

From the results in Fig. 9 we see that our model performs
better on images of young people than the old, which is
likely a consequence of smoother facial features with the
young. We observe no significant gender bias in our model
and interestingly also no significant difference between the
performance with crisp and blurry ground truth images. As
expected, our model performs slightly better on images of bald
people than it does on images that contain hair, although in
this case the number of samples in each class is again fairly
small - see caption of Fig. 9.

In terms of contribution of the individual model com-
ponents, the results are similar as in the previous section:
the cascaded architecture results in the biggest performance
increase in terms of the average VIF score across all image
subsets, while the multi-scale supervision and identity con-
straints contribute towards the biggest performance increase
when measured through the average PSNR and SSIM values.

3) Evaluation of the identity loss: We now evaluate the
proposed identity loss in detail and compare it to other
alternatives from the literature.

For the first experiment, we train multiple SR models using
our cascaded SR network architecture and replace the C-SRIP
recognition loss defined by Eq. (7) with competing losses
from the literature. Specifically, we compare our loss with the
following loss functions:
• Perceptual loss (PL): This loss penalizes the difference
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TABLE VIII
IMPACT OF THE IDENTITY PRIOR ON FACE HALLUCINATION PERFORMANCE WITH UPSAMPLING FACTORS OF 2× AND 4×. RESULTS SHOW THAT USING

IDENTITY INFORMATION DURING TRAINING IS LESS IMPORTANT FOR SIMPLER FH PROBLEMS WITH LOWER UPSCALING FACTORS.

SR Model Scale LFW HELEN CelebA
PSNR SSIM VIF PSNR SSIM VIF PSNR SSIM VIF

C-SSIM-M 2× 30.845 0.9437 0.6682 31.248 0.9572 0.6779 30.905 0.9538 0.6506
C-SRIP 2× 30.831 0.9459 0.6704 31.271 0.9551 0.6803 30.891 0.9525 0.6591
C-SSIM-M 4× 27.819 0.8673 0.6402 27.995 0.8764 0.6307 27.691 0.8753 0.6481
C-SRIP 4× 27.995 0.8709 0.6503 28.226 0.8880 0.6434 27.635 0.8777 0.6425

Fig. 12. Robustness to changes in facial scale: HR reconstructions generated
from 24×24 LR faces of different size (top), HR ground truth (bottom). The
figure on the left corresponds to the training setting (i.e., 192px crop).

Fig. 13. Robustness of C-SRIP to image rotations. The top row shows the
HR reconstructions generated from rotated 24 × 24 LR faces. The bottom
row shows the HR ground truth.

between low-level (fire2 and fire3 layer) feature repre-
sentations of the super-resolved and reference HR images
within the pretrained SqueezeNet face recognition model.

• Super-identity loss (SL): Here, we adopt the super-identity
training framework from [59]. Specifically, we train the
super-resolution and recognition networks from scratch
and learn them concurrently with the so-called super-
identity learning objective, which is a combination of a
pixel-wise MSE loss, a MSE loss between normalized
high-level embeddings, and a face recognition loss. We
use the authors’ method of training the hallucination and
recognition methods interchangeably in each iteration.

• Adversarial loss (AL): We also train our super-resolution
network using the GAN framework proposed for super-
resolution by [18]. Here, we use a shallow 8 layer CNN
model as the discriminator for the adversarial training to
improve the training stability in the adversarial setting.

From the results in Table VII and Fig. 10 we see that the
proposed recognition loss is best suited for our SR network
architecture, as the C-SRIP again produces the highest quality
HR reconstructions. Similarly to the original `p model, our SR
network trained with the perceptual loss learns to resolve some
facial details, but again results in a high-frequency pattern that
overlays the HR reconstructions. The super-identity loss gen-
erates visually convincing HR reconstructions, but performs
somewhat worse than C-SRIP. The model trained with the
adversarial loss performs slightly better than the model trained
with the perceptual loss and the SRGAN model used in the

TABLE IX
ROBUSTNESS OF C-SRIP TO FACIAL SCALE CHANGES - REPORTED IN

TERMS OF AVERAGE PSNR, SSIM AND VIF SCORES.

Crop scale 250px 240px 230px 220px 210px 200px 192px
PSNR 23.766 24.039 24.334 24.650 25.017 25.750 27.164
SSIM 0.7667 0.7725 0.7788 0.7857 0.7926 0.8063 0.8171
VIF 0.3194 0.3308 0.3587 0.3812 0.4018 0.4475 0.6323

TABLE X
ROBUSTNESS OF C-SRIP TO FACIAL ROTATIONS - REPORTED IN TERMS OF

AVERAGE PSNR, SSIM AND VIF SCORES.

Rotation 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

PSNR 27.164 25.557 24.850 24.627 24.539 24.794 24.786
SSIM 0.8171 0.8044 0.7937 0.7825 0.7793 0.7768 0.7728
VIF 0.6617 0.4631 0.3995 0.3917 0.3834 0.3800 0.3816

comparative experiments in Section IV-D.
In our second experiment, we examine the impact of feeding

the hallucinated residuals instead of complete super-resolution
output to the pretrained recognition models when learning
the C-SRIP SR network. To this end, we retrain all three
face recognition networks (for 2×, 4× and 8× magnification
factors) on complete face images (instead of using only the
hallucinated high-frequency residuals) and use them to train
the C-SRIP model from scratch. We again use the multi-scale
SSIM loss as our data fidelity term.

The comparison of both C-SRIP variants is presented in
Table VII and Fig. 11. We observe that both C-SRIP variants
performs similarly well both in terms of performance scores
on all three test datasets, as well as in terms of visual
comparison. We do notice, however, that the C-SRIP variant
trained with complete images (i.e., without penalizing the
residuals) produces slightly noisier results on average, which
can be seen from the zoomed in region at the top of Fig. 11.

So far, we have evaluated the impact of the identity prior
only for the 8× upsampling task. In the third experiment of
this series, we examine the impact of the recognition loss
for smaller upscaling factors, i.e., 2× and 4×. In Table VIII
we show a comparison of the performance scores achieved
when using the C-SSIM-M (cascaded architecture + multi
scale SSIM supervision) and C-SRIP (all components includ-
ing the identity prior) models. Interestingly, adding identity
information for the 2× upscaling tasks does not seem to help
much over a pure reconstruction loss. For the 4× upscaling
tasks results do improve, but not as much as observed in the
most challenging scenario - the 8× upscaling problems. These
results suggest that the identity prior becomes important as
the hallucination problem gets harder. For these challenging
problems the identity information provides additional cues that
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(a) High-frequency details and occlusion (b) Poor quality HR image with noise

(c) Pose variations (d) Partial occlusion of the face

Fig. 14. Examples of poor SR results produced by the C-SRIP model considering PSNR, SSIM and VIF scores. The four columns of each image group
correspond to (from left to right): the input LR image, bicubic interpolation, C-SRIP and the target HR image. The captions provide information on the
possible reason for the weak performance.

contribute to higher-quality FH results, for easier problems,
on the other hand, the identity prior is not as effective. The
reported performance scores also provide insight into the
results from Table IV, where we found the C-SRIP model
to be less dominant compared to other models for smaller
magnification factors.

F. Robustness of C-SRIP

Face detection is a necessary first pre-processing step when
considering face hallucination in a real-life deployment sce-
nario. In this step, the face images may be detected at different
scales and under different rotations. In our next experiments,
we are interested in how well our model can handle variations
in scale and orientation of the input faces. To this end, we
perform two experiments, where we systematically vary the
scale of the faces within the image and where we rotate
the cropped low-resolution faces around their center. We use
images from the LFW dataset for this experiment. For the
scale experiment, we use differently sized crops from the LFW
dataset. We start with the training setting of 192× 192 pixels
and and gradually increase the size of the crops to the final
size of 250 × 250 pixels. We then rescale the images to a
fixed input size for the C-SRIP model of 24 × 24 pixels.
For the rotation experiment, we rotate images counter-clock
wise from 0◦ to 90◦ with a step size of 15◦ and observe
differences in performance. The generated scale and rotation
variations clearly exceed the variability typically induced by a
face detector, but help to demonstrate the behaviour of C-SRIP
under extreme scale and rotation changes.

From the results in Tables IX and X we observe that C-
SRIP performs relatively well for settings that are close to the
training setup, but start to degrade in performance when larger
deviations from the training setting are present. Nonetheless,
after an initial drop in performance additional scale and
rotation changes have only a limited effect on performance.
If we look at the example hallucination results in Figs. 12
and 13, we see that relatively convincing reconstructions are
achieved for the first two or three scale and rotation variations,
but the results clearly (visually) deteriorate as the difference
to the training setup gets larger.

The reason for the performance drop, we believe, can be
found in the characteristics of the training data, which contains
mostly frontal upright faces with minor scale and rotation
variations. Our model naturally learns to best super-resolve
images matching the training setup and deteriorates in perfor-
mance with major deviations from the training characteristics.
However, note that the robustness to variations in scale and
rotations could be improved, e.g., by incorporating additional
alignment procedures into the model, similarly to [53], [75].

G. Limitations of C-SRIP

To evaluate the weaknesses of the C-SRIP model, we
examine in Fig. 14 a few example images that result in the
worst SR results on the datasets used in our experiments. We
identify a few potential reasons for the poor SR performance:
• High-frequency details not related to the face. Image

14(a), contains a great amount of high-frequency details
(background, hair). Our SR network is guided by face-
recognition models that ignore non-face regions.

• Significant occlusion. In images 14(a) and 14(d), the
face is partially occluded by a foreground object. The
occlusion changes the global facial appearance, which
adversely affects C-SRIP’s reconstruction capabilities.

• Significant pose variations. In 14(c), the subject’s face
is partially obscured due to the profile pose. Few sam-
ples in our training dataset feature profile poses, which
deteriorates performance on this type of facial images.

• Low-quality HR image. Image 14(b) has a significant
amount of noise, which is reduced during down-sampling
and cannot be reconstructed.

H. Qualitative results on real-world images

The results presented so far have focused on images that
were artificially down-sampled using Gaussian blurring and
image sub-sampling. This is a standard approach used in the
super-resolution literature needed to quantify the performance
of the trained upsampling models. In this last section, we use a
few example images from the web and upscale selected faces
using C-SRIP and a couple of baseline techniques. Note that
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Fig. 15. Application of C-SRIP on real-world images taken from the web. The images show crowds with several real-life LR faces. On the right side of each
image are super-resolution results generated with C-SRIP (bottom) and two interpolation baselines for an upscaling factor of 8×. C-SRIP is able to recover
significantly more detail from the input LR images than the nearest neighbour (top) and bicubic interpolation-based upsampling methods (middle).

this task is significantly more challenging that the experiments
presented in the previous sections, as the degradation function
that generated the LR images has not been used to train the
SR models. Since no ground truth HR images are available,
it is not possible to report performance scores for this ex-
periments and we only show qualitative results in Fig. 15.
We super-resolve images using an upscaling factor of 8× for
the presented examples. As can be seen, C-SRIP is able to
recover more facial detail from the tiny input images than the
nearest neighbour and bicubic interpolation-based baselines
and produces considerably crisper results.

V. CONCLUSION

We have presented a novel CNN-based model for face
hallucination from very low-resolution images (i.e., 24 × 24
pixels) at high magnification factors. We have shown that
the proposed model improves SR results on face images
compared to both existing general super-resolution and face
hallucination models. In terms of future work, we see the
possibility of adapting our model to other modalities, e.g., to
video sequences via recurrent attention models.
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APPENDIX

In this section, we present some additional results to further
highlight the characteristics of the C-SRIP model. Similarly
to the main part of the paper, we use LR images from
the LFW [68], HELEN and CelebA datasets generated by
smoothing and sub-sampling the original HR images. The
inputs for all experiments are all of size 24× 24 pixels.

A. Comparison to the state-of-the-art - additional results

In the main part of the paper, we present numerical re-
sult and visual examples of 8× super-resolved images when
comparing C-SRIP with competing models. Here, we show
additional hallucination results (in Fig. 16) for all 9 FH models
tested in the main part of paper. We again observe that the
proposed C-SRIP model ensures the most convincing results
among the tested models.

To get additional insight into the performance of the eval-
uated FH models we present in Fig. 17 Cumulative Score
Distribution (CSD) curves of the PSNR, SSIM and VIF scores
generated during the comparative experiments. Since SR mod-
els are increasingly focusing on learning-based techniques,
which are expected to perform inconsistently across images of
different characteristics, CSD curves provide a reasonable way
of visualizing this performance variability. From the curves
in Fig. 17 we see that all tested methods vary significantly
in PSNR, SSIM and VIF scores across the LFW, Helen and
CelebA datasets, with a large fraction of images producing
sub-average performance scores. The `p and the proposed C-
SRIP models are superior to other models and appear to have
very similar performance in terms of the CSD curve for the
PSNR score. However, the difference becomes significantly
more apparent on the CSD curve for the SSIM and especially
the VIF scores, where C-SRIP is clearly the top performer.

To further highlight the performance of C-SRIP compared
to competing SR models, we show in Fig. 18 a couple of
visual examples of the SR results for the top three performing
SR models from our comparative assessment. As can be
seen, the perceptual-loss-based SR model, `p, amplifies high-
frequency noise, while the CARN model generates overly
smooth results. C-SRIP, on the other hand, results in sharp
images, but as expected is not able the recover all of the
high frequency information (e.g., hair strains, wrinkles, beard
details, etc.). Consequently, the subjects appear younger in the
super-resolved images compared to the HR ground truths.

B. Generalization to smaller faces

Our model has a fully convolutional structure and, while
it was trained to super-resolve 24 × 24 pixel images, it can
in general process images of arbitrary input size. In the next
series of experiments we, therefore, evaluate the ability of C-
SRIP to upsample low-resolution facial images smaller than
the 24 × 24 pixel images used for training. Specifically, we
explore input image sizes of 20 × 20, 16 × 16, 12 × 12 and
10×10 pixels. We conduct experiments on the LFW data and
down-sample the ground-truth images to 8× the size of the
query images to be able to quantify performance. We compare

our model against those capable of accepting input images of
arbitrary size - i.e., SRCNN, VDSR and CARN.

From the results in Fig. 19 and Table XI we see that the C-
SRIP model is only able to generalize well at the 20×20 pixel
input size. Below this size, it works similarly to other models
- only super-resolving general geometric features in the image
(as shown in Fig. 19), although it is still the top performer in
terms of the average PSNR, SSIM and VIF scores.

C. Results for intermediate magnification factors
Because of space constraints in the main part of the paper,

we show here additional results generated by the C-SRIP
model for lower magnification factors, i.e., 2× and 4×, that
produce images of size 48 × 48 pixels and 96 × 96 pixels,
respectively, given 24 × 24 pixel LR inputs. Note again that
these images correspond to the intermediate results of the C-
SRIP model and are generated by the first and second SR
module of C-SRIP. A few illustrative SR examples generated
for the 2× and 4× the input scale are presented in Fig. 20.

We observe that our model achieves realistic SR results even
for small magnification factors. That is, even when the images
are upscaled to a (still modest) size of 48 × 48 or 96 × 96
pixels, the hallucinated images preserve the identity of the
subjects reasonably well, despite the limited performance of
the SqueezNet models at these scales and, consequently, the
relatively weak identity constraint applied during training. It
needs to be noted that none of the presented subjects has been
included in our training data.

D. Improving the visual quality of the hallucinated images
It is possible to further improve on the (perceived) visual

quality of the SR images produced by the C-SRIP model (for
large magnification factors of 8×) by utilizing simple image
enhancement techniques. In Fig. 21 and Fig. 22 we show
some examples, where a standard 3× 3 sharpening filter (i.e.,
[0,−1, 0;−1, 5,−1; 0,−1, 0]) is applied on the SR outputs
to amplify the high frequency components of the generated
images. The result of applying such post-processing steps are
significantly sharper and crisper SR images. However, in terms
of summary statistics (i.e., average PSNR, SSIM and VIF
scores) these are not competitive to the results reported in the
main part of the paper - the sharpening operation deteriorates
(quantitatively measured) performance. These results are in
line with recent findings that suggest that there is a trade-
off between the capability of SR models to either minimize
distortion measures (i.e., maximize SSIM, PSNR or VIF
scores) or to produce perceptually convincing results [76].
In Fig. 21 and Fig. 22 we show some sample images post-
processed with a sharpening filter and include results for a
couple of example images that were already presented in the
main part of the paper to facilitate implicit comparisons with
competing methods.

Interestingly, after the post-processing some of the SR
images appear sharper than the original HR targets. This
can be partially explained by the presence of noise in the
target images that is not present in the SR reconstructions and
the higher image contrast after enhancement that contributes
towards the perception of higher-quality images.
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LR input SICNN SRCNN VDSR p CARN

LapSRN SRGAN URDGN EDSR C-SRIP (ours) Groundtruth

LR input SICNN SRCNN VDSR p CARN

LapSRN SRGAN URDGN EDSR C-SRIP (ours) Groundtruth

Fig. 16. Qualitative comparison of the evaluated SR models on two sample images with highlighted image details. Note the image details C-SRIP is able to
recover compared to the competing models. The figure is best viewed zoomed in.
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Fig. 17. Cumulative Score Distribution (CSD) curves for the PSNR (left), SSIM (middle) and VIF (right) scores over the LFW (top), Helen (middle) and
CelebA (bottom) datasets generated using a magnification factor of 8×. Curves further to the right represent better performance on the given dataset. Note that
C-SRIP is the top performer considering any of the performance measures and achieves by far the best VIF scores on all three datasets. The distribution of
the performance measures (PSNR, SSIM and VIF) is relatively consistent across the datasets and across the tested super-resolution models. While all methods
exhibit considerable score variability, the graphs still show that C-SRIP is able to achieve the highest performance for the majority of test images.
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p CARN C-SRIP (ours) Target

p CARN C-SRIP (ours) Target

Fig. 18. Comparison of super-resolution results produced by the three best performing models of our assessment at a magnification factor of 8×. Bigger
images are shown to better highlight the reconstructed image details. Best viewed zoomed in.

Target

C-SRIP

CARN

SRCNN

VDSR

Fig. 19. Sample SR results generated with smaller input images. The left part
of the figure shows the HR ground truth and the images on the right represent
results for 8× uscaling from (left to right): 10×10, 12×12, 16×16, 20×20
and 24× 24 pixel images. Note that none of the models generalizes well to
image sizes different from 24× 24 pixels that was used for training.

E. Quantitative results on the impact of the SSIM loss

Next, we present some (additional) quantitative results re-
lated to the proposed SSIM loss. Our SSIM formulation uses
convolutions with a discrete Gaussian kernel, g - see Eq.
(3), to approximate the local averages used with the original
SSIM and is, therefore, easily implementable using standard
deep learning frameworks. As emphasized in the main part of
the paper, the result of using the proposed SSIM-based loss
instead of the MSE-based loss are significantly better training
characteristics in terms of faster convergence and lower PSNR
and SSIM scores on the training data as shown in Table XII.
Here, the results are presented for the simplest architecture
from the ablation study (Section 4.3), where i) the images are
processed through a series of 21 residual blocks, ii) all three
upscaling layers are placed at the end of the SR network, and
iii) supervision is applied only at the output of the model.

The proposed SSIM-based loss ensures significantly better

TABLE XI
RESULTS FOR DIFFERENT INPUT IMAGE SIZES. THE BEST AND

SECOND-BEST RESULTS ARE SHOWN IN RED AND BLUE, RESPECTIVELY.

Method Input size [px] PSNR SSIM VIF
SRCNN [15] 20× 20 23.658 0.6438 0.2791
VDSR [12] 20× 20 24.072 0.6642 0.2845
CARN [38] 20× 20 24.174 0.7291 0.3127
C-SRIP (ours) 20× 20 25.498 0.7751 0.3325

SRCNN [15] 16× 16 22.088 0.6074 0.2659
VDSR [12] 16× 16 22.315 0.6266 0.2705
CARN [38] 16× 16 23.326 0.6854 0.2843
C-SRIP (ours) 16× 16 23.674 0.7170 0.3206

SRCNN [15] 12× 12 20.765 0.5351 0.2236
VDSR [12] 12× 12 20.835 0.5297 0.2258
CARN [38] 12× 12 21.931 0.6178 0.2631
C-SRIP (ours) 12× 12 22.002 0.6540 0.2587

SRCNN [15] 10× 10 19.947 0.4889 0.2414
VDSR [12] 10× 10 20.041 0.5017 0.2128
CARN [38] 10× 10 20.127 0.5624 0.2545
C-SRIP (ours) 10× 10 20.935 0.6115 0.2387

TABLE XII
PSNR AND SSIM SCORES OBTAINED ON THE TRAINING DATA WITH THE

MSE- AND SSIM-BASED LOSSES.

MSE-based loss SSIM-based loss
PNSR [dB] 28.3275 29.0227
SSIM 0.9189 0.9325

TABLE XIII
COMPARISON OF THE PSNR AND SSIM SCORES ON THE TEST DATA

OBTAINED WITH THE MSE- AND SSIM-BASED LOSSES.

MSE-based loss SSIM-based loss
PSNR [dB] 26.1748 26.0251
SSIM 0.7547 0.7579

performance scores during training. Even though the MSE-
based loss is directly proportional to the PSNR score, our
SSIM-based loss results in a lower average PSNR score on the
training data, which suggests that a better optimum is found
by the backpropagation-based learning procedure. On the test
data the proposed loss still improves on the average SSIM and
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Fig. 20. Qualitative results for the intermediate scales generated by the C-SRIP model. The columns correspond to (from left to right): the 24 × 24 pixel
input image, bicubic interpolation, results generated by C-SRIP (at a 2× or 4× upscaling factor) and the ground truth (GT) at either 48 × 48 or 96 × 96
pixels. Note how more detail is added as the upscaling factor gets larger.

VIF scores on all three experimental dataset, LFW, HELEN
and CelebA, but offers no improvements in terms of PSNR

value on LFW and HELEN, as shown in Table XIII - this fact
is already highlighted in the ablation study of the main part
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LR Input C-SRIP Enhanced Target LR Input C-SRIP Enhanced Target

LR Input C-SRIP Enhanced Target LR Input C-SRIP Enhanced Target

LR Input C-SRIP Enhanced Target LR Input C-SRIP Enhanced Target

Fig. 21. Qualitative results for SR outputs post-processed with a standard image enhancement technique (i.e., with a sharpening filter). For each 24× 24 LR
input image (on the far left of each quadruplet) the following columns correspond to (from left to right): C-SRIP, C-SRIP with image enhancement, and the
target HR image. Best viewed in high resolution.

LR Input C-SRIP C-SRIP Enhanced HR Target

Fig. 22. Qualitative results for SR outputs post-processed with a standard image enhancement technique (i.e., with a sharpening filter) with highlighted image
details. For each 24× 24 LR input image (on the far left of each quadruplet) the following columns correspond to (from left to right): C-SRIP, C-SRIP with
image enhancement and the target HR image. Best viewed in high resolution.

of the paper.

F. Reconstruction vs. recognition loss

To evaluate the importance of using both learning objectives
(reconstruction and recognition) when training the SR network
of C-SRIP, we train the SR network of C-SRIP in this section
without the data-fidelity term and use only the recognition

loss. The goal of this experiment is to assess whether good
quality reconstruction could be generated by the supervision
with the recognition networks alone. From the example results
in Fig. 23 we see that the optimization procedure finds an
optimum for the SR network parameters that does not result
in meaningful HR reconstruction. We therefore conclude that
the both learning objectives are important and are needed to
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Fig. 23. Importance of using the reconstruction and recognition losses when
training the SR network of C-SRIP. The figure shows (from left to right): the
input LR image, the HR reconstruction generated by the SR network trained
with both losses, the HR reconstruction generated by the SR network trained
only with the recongition loss, the target HR image.

generate good quality HR images with C-SRIP.

G. Face hallucination performance on training identities

As described in Section IV-C, the parameters of the SR
network of C-SRIP are learned with the help of a number of
recognition networks, which are trained using the identities
from the CASIA WebFace dataset. All experiments in the
main part of the paper use images from datasets that have no
overlap in terms of identities with the training data and, hence,
demonstrate how the model generalizes to unseen identities.
Nonetheless, these experiments leave an interesting research
question unanswered, i.e.: Has the model learned to better
upsample identities included in the training data compared to
identities not seen during training?

To explore this question we collect a small dataset of 100
images (corresponding to 10 subjects) from the internet and
make sure the images come from subjects also present in
the CASIA WebFace dataset. We avoid duplicates with the
training data by collecting only images that were captured and
posted on the web after the WebFace data has been published.
With this collection procedure we ensure that the collected
dataset features the same identities as our training data, but
not the same exact images. We denote this set of images as
TRI when presenting results. Next, we randomly select a set
of 100 images (of 10 subjects) from the LFW dataset and a
set of 100 images (of 10 subjects) from the training data itself
and denote these test sets as TRS and LFW, respectively. The
created test sets exhibit different characteristics that allow us
to evaluate the difference in face-hallucination performance
when using images of subjects included in the training data
and images of subjects that were not used during training, i.e.:
i) TRS has been part of the training material, ii) TRI has the
same subjects, but not the same images as used for training,
and iii) LFW has no overlap in terms of images or subjects
with the training data. We again perform experiments with
24× 24 pixels inputs and the 8× upscaling task.

From Table XIV we observe that images that were part
of the training data (TRS) result in the best performance
scores. This result is expected, as these images were directly
involved in the optimization of the parameters of the SR
network of C-SRIP. Images from the TRI set are reconstructed
slightly worse, but still better than images of subjects that
were not included in the training data. While the results for
all three test sets are relatively close there is a consistent trend
across the PSNR, SSIM and VIF scores that suggests that
the performance of C-SRIP is somewhat better for images of
identities that were part of the training data as opposed to
images of subjects not seen during training.

TABLE XIV
MEAN PSNR, SSIM AND VIF SCORES GENERATED FOR THREE TEST

SETS: i) A SET OF IMAGES THAT WAS PART OF THE TRAINING DATA (TRS),
ii) A SET OF IMAGES THAT FEATURE THE SAME IDENTITIES AS THE

TRAINING DATA, BUT NOT THE SAME SAMPLES/IMAGES (TRI), AND iii) A
SET OF IMAGES FROM LFW (LFW) THAT HAS NO OVERLAP WITH THE
TRAINING DATA IN TERMS OF IDENTITIES. C-SRIP SUPER-RESOLVES

IMAGES OF TRAINING IDENTITIES SLIGHTLY BETTER THAN IMAGES OF
IDENTITIES NOT SEEN DRUING TRAINING.

Method PSNR SSIM VIF
Training samples (TRS) 27.565 0.8525 0.6503
Training identities (TRI) 27.382 0.8250 0.6419
LFW images (LFW) 27.091 0.8136 0.6245

A few visual examples of the face hallucination results for
the three test sets are shown in Fig. 24. Here, the first row
presents images from TRS, the second row shows images from
TRI and the third row shows images from LFW. Note again
how the quality of the reconstructions decreases slightly from
the top to the bottom row examples.

H. Usefulness for recognition

The C-SRIP model is trained using a learning objective that
combines (multi-scale) data-reconstruction and recognition-
oriented losses. While we show in the main part of the
paper that this contributes to better HR reconstructions, it
should intuitively also contribute to improved recognition
performance when the C-SRIP super-resolved images are used
for recognition purposes.

To evaluate this hypothesis, we perform recognition exper-
iments using the Labeled Faces in the Wild (LFW) dataset.
We use the hallucinated images generated for the comparative
assessment in Table III (see Fig. 6) in the main part of
the paper for this experiment. Note that these images were
generated from small 24× 24 pixel inputs by upscaling them
using a magnification factor of 8×. This setup allows us
to directly evaluate the impact of the SR models on the
recognition performance and to compare the performance
achieved with the HR reconstruction with that ensured by the
original HR images. The setup is also in line with standard
evaluation methodology used with SR models [33].

We perform the recognition tests according to the standard
LFW experimental protocol [68], which defines a 10-fold
cross-validation experimental setup with 600 identity com-
parisons in each fold - equally balanced between genuine
and impostor comparisons. We report the results in terms
of verification accuracy in the form: µ ± σ, where µ is the
average accuracy computed over the 10 experimental folds
and σ is the corresponding standard deviation. We use the
state-of-the-art ResNet-101 face recognition model trained
with the large-margin cosine loss to extract 512-dimensional
descriptors from each image and compare descriptors using
the cosine similarity.

From the results in Table XV we see that the recognition
model achieves competitive recognition performance with an
average accuracy of 0.9806. The baseline bicubic interpolation
is the worst performer among all tested methods with an av-
erage recognition accuracy of 0.8355, which shows that basic
interpolation methods cannot recover much of the identity
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Fig. 24. Visual examples of hallucination results for the three test images sets. The figure shows face hallucination results for i) images from the training
data (TRS, top row), ii) images that were not part of the training, but belong to subjects seen during training (TRI, middle row), and iii) images that have no
overlap in terms of subjects with the training material (LFW, bottom row). Observe the slight decrease in hallucination quality from top to bottom.

TABLE XV
RESULTS OF THE LFW RECOGNITION EXPERIMENT. IMAGES

SUPER-RESOLVED WITH C-SRIP ACHIEVE THE BEST OVERALL RESULT,
SIGNIFICANTLY OUTPERFORMING THE NINE COMPETING MODELS. THE

SR MODELS ARE ORDERED IN TERM OF INCREASING RECOGNITION
PERFORMANCE.

Method Verification accuracy (µ± σ)
Bicubic 0.8355± 0.0077
LapSRN 0.8513± 0.0138
VDSR 0.8625± 0.0110
SRCNN 0.8627± 0.0134
SICNN 0.8802± 0.0107
URDGN 0.8875± 0.0116
EDSR 0.8904± 0.0129
`p 0.8917± 0.0105
CARN 0.8952± 0.0107
SRGAN 0.8990± 0.0107
C-SRIP 0.9217± 0.0099
HR images 0.9806± 0.0066

information from the LR input images. The super-resolution
models, on the other hand, improve on this by a significant
margin. Especially the SICNN, URDGN, EDSR, `p, CARN,
SRGAN and C-SRIP model seem to be particularly effective.
Interestingly, SICNN does not seem to have an advantage
over competing face hallucination models, such as URDGN,
EDSR, `p, CARN or SRGAN, despite the fact that it relies
on identity information when learning to super-resolve faces.
Overall, C-SRIP is the top performer in this experiment and
ensures the highest recognition performance with an average
verification accuracy of 0.9217. Nevertheless, a considerable
gap still remains to the performance achieved with the original
HR images, which suggests that not all of the useful identity
information is recovered by the best performing model, C-
SRIP.

I. Usefulness for facial landmarking

Another useful application of face hallucination models
often advocated in the literature is facial landmarking (or
alignment) of low-resolution facial data [4], [21], [77]–[79].
The idea here is to enhance the semantic content of the LR

face images using face hallucination models with the goal of
enabling more effective localization of salient facial features.

To demonstrate the usefulness of C-SRIP for this task,
we perform a series of landmarking experiments using the
landmarker from [79]. The landmarker aims to locate the
standard set of 68 fiducial points in the face images and is
trained on the training part of the Helen dataset that contains
2000 images with labelled locations of facial features. We use
the 300 images from the Helen test set for the evaluation
and first apply the landmarker on the original HR images
to have a baseline for later comparisons. Next, we down-
sample the HR images to a size of 24× 24 pixels and finally
upsample them using C-SRIP. To put the generated results
into perspective, we repeat this procedure for all competing
FH models already included in our previous experiments. We
report all results in terms of the standard point-to-point error
between the predicted and ground truth facial feature locations
normalized by the inter-ocular distance [78].

As the results in Table XVI show, all hallucination models
improve upon the baseline bicubic interpolation. Overall, C-
SRIP again results in the best overall performance, followed
closely by `p, SRGAN, EDSR and CARN. The ramaining
models are less competitive. Interestingly, the order of the
models is slightly different from the order in the recognition
experiments in the previous section, which suggests that dif-
ferent aspects of the super-resolved images are important for
the recognition and landmarking tasks.

In Fig. 25 some landmarking results are presented for
images upsampled with different face hallucination models as
well as for the baseline HR face images. Here, the ground
truth facial feature locations are shown in green and the
predicted landmarks are shown in red. The examples show that
bicubic upsampling often leads to misdetected facial features,
especially around the mouth area and facial outline, which are
not clearly visible in the LR images. The face hallucination
models, on the other hand, provide more semantic content
and produce sharper edges around specific facial components,
which is beneficial for the landmarking procedure.
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Fig. 25. Example landmarking results generated with super-resolved images produced by different face hallucination models. The ground truth landmarks are
marked green and the predicted landmarks are shown in red. Observe how upsampling with bicubic interpolation often leads to misdetected fiducial points,
especially along the facial outline and around the mouth area. The face hallucination models improve on this by recovering more facial details which helps
with the landmarking performance. The figure is best viewed electronically.

TABLE XVI
RESULTS OF THE LANDMARKING EXPERIMENT ON THE HELEN DATASET.

C-SRIP ENSURES THE OVERALL BEST LANDMARKING PERFORMANCE
AMONG THE TESTED FACE HALLUCINATION MODELS. THE SR MODELS

ARE ORDERED IN TERM OF DECREASING LANDMARKING ERROR.

Method Error
Bicubic 0.0531
SRCNN 0.0502
VDSR 0.0502
URDGN 0.0487
LapSRN 0.0449
SICNN 0.0431
CARN 0.0417
EDSR 0.0409
SRGAN 0.0405
`p 0.0396
C-SRIP 0.0380
HR images 0.0344

J. More real-life examples

In Fig. 26 we show an additional example of faces super-
resolved from a real-word image from the internet. The image
presents a comparison with nearest neighbor and bicubic
interpolation techniques and shows the added level of detail
that can be recovered from the LR input images when using
the proposed C-SRIP model.

As can be seen, C-SRIP is able to recover more facial
detail from the tiny input images than the nearest neighbour
and bicubic interpolation-based baselines and produces con-
siderably crisper results. Note also that the size of the face
(the sample face on the bottom left is cropped much tighter
than the face on the top) does no effect the reconstruction
quality to a significant extent. The presented results also
point to the generalization abilities of C-SRIP to unseen
down-sampling models.As can be seen, C-SRIP is able to
recover more facial detail from the tiny input images than the
nearest neighbour and bicubic interpolation-based baselines
and produces considerably crisper results. Note also that the
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Fig. 26. Application of C-SRIP on a real-world image taken from the web. The image shows a crowd with several real-life LR faces. On the right side are
super-resolution results generated with C-SRIP and two interpolation baselines for an upsacling factor of 8×. To illustrate the difficulty of the task, the LR
input faces are also shown in the original size (marked “Original”). Note that C-SRIP is able to recover significantly more detail from the input LR images
than the nearest neighbour and bicubic interpolation-based upsampling methods.

size of the face (the sample face on the bottom left is cropped
much tighter than the face on the top) does no effect the
reconstruction quality to a significant extent. The presented
results also point to the generalization abilities of C-SRIP
to unseen down-sampling models.As can be seen, C-SRIP is
able to recover more facial detail from the tiny input images
than the nearest neighbour and bicubic interpolation-based
baselines and produces considerably crisper results. Note also
that the size of the face (the sample face on the bottom left is
cropped much tighter than the face on the top) does no effect
the reconstruction quality to a significant extent. The presented
results also point to the generalization abilities of C-SRIP
to unseen down-sampling models.As can be seen, C-SRIP is
able to recover more facial detail from the tiny input images
than the nearest neighbour and bicubic interpolation-based
baselines and produces considerably crisper results. Note also
that the size of the face (the sample face on the bottom left is
cropped much tighter than the face on the top) does no effect
the reconstruction quality to a significant extent. The presented
results also point to the generalization abilities of C-SRIP
to unseen down-sampling models.As can be seen, C-SRIP is
able to recover more facial detail from the tiny input images
than the nearest neighbour and bicubic interpolation-based
baselines and produces considerably crisper results. Note also
that the size of the face (the sample face on the bottom left is
cropped much tighter than the face on the top) does no effect
the reconstruction quality to a significant extent. The presented
results also point to the generalization abilities of C-SRIP
to unseen down-sampling models.As can be seen, C-SRIP is
able to recover more facial detail from the tiny input images
than the nearest neighbour and bicubic interpolation-based
baselines and produces considerably crisper results. Note also
that the size of the face (the sample face on the bottom left is
cropped much tighter than the face on the top) does no effect

the reconstruction quality to a significant extent. The presented
results also point to the generalization abilities of C-SRIP to
unseen down-sampling models.


