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Abstract—Contemporary face recognition (FR) models achieve
near-ideal recognition performance in constrained settings, yet do
not fully translate the performance to unconstrained (real-world)
scenarios. To help improve the performance and stability of FR
systems in such unconstrained settings, face image quality assess-
ment (FIQA) techniques try to infer sample-quality information
from the input face images that can aid with the recognition
process. While existing FIQA techniques are able to efficiently
capture the differences between high and low quality images, they
typically cannot fully distinguish between images of similar qual-
ity, leading to lower performance in many scenarios. To address
this issue, we present in this paper a supervised quality-label
optimization approach, aimed at improving the performance of
existing FIQA techniques. The developed optimization procedure
infuses additional information (computed with a selected FR
model) into the initial quality scores generated with a given
FIQA technique to produce better estimates of the “actual” image
quality. We evaluate the proposed approach in comprehensive
experiments with six state-of-the-art FIQA approaches (CR-
FIQA, FaceQAN, SER-FIQ, PCNet, MagFace, SER-FIQ) on five
commonly used benchmarks (LFW, CFP-FP, CPLFW, CALFW,
XQLFW) using three targeted FR models (ArcFace, ElasticFace,
CurricularFace) with highly encouraging results.

Index Terms—Biometrics, Face recognition, Face image quality
assessment, Optimization, Transfer learning

I. INTRODUCTION

Modern face recognition (FR) systems achieve excellent
results even with large-scale recognition problems, as long as
the appearance variability of the facial images is reasonably
constrained. However, the performance in constrained scenar-
ios does not always translate to real-world scenarios where
out-of-distribution data, often of poor quality, still presents a
challenge for the majority of existing FR models [1], [2].

Face image quality assessment (FIQA) techniques aim to
assist FR models in such challenging scenarios by providing
additional information on the quality of facial images. This
quality information can then be used to either reject low-
quality samples that typically lead to false match errors or
design robust quality-aware face recognition techniques. Thus,
different from general purpose image quality assessment (IQA)
methods [3]–[5] that commonly measure the perceived visual
quality of images by examining explicit image characteristics,
such as sharpness, lighting conditions and resolution, FIQA
techniques typically try to capture the utility (or fitness) of the
given face image for the recognition task [6]. In other words,
they measure the usefulness of the sample for face recognition.

Several groups of FIQA techniques that differ slightly in
their approach have been proposed so far in the literature [7].
The majority of recent techniques learns quality-estimation
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networks using (reference) quality information inferred from a
large database of face images [8]–[11]. Another notable group
of FIQA techniques estimates quality based only on the infor-
mation present in the input image and the characteristics of
the targeted FR system [12], [13]. More recently, approaches
have also appeared that incorporate quality estimation directly
into the FR process [14], [15], paving the way towards quality-
aware face recognition.

While most of the existing FIQA techniques perform well
enough to distinguish between high-quality and low-quality
facial images, correctly ranking face images of similar quality
remains an open problem. The correct (optimal) ordering does
not depend solely on the input face images, but also on the
targeted FR model. Each model may, in a sense, perceive
the quality of individual samples differently due to different
model-specific biases introduced by the learning process and
the data used for training [16], [17]. This observation also
suggests that FIQA techniques, that are not FR model specific,
can not determine the correct order for all possible FR models.
For this reason, we propose in this paper a novel optimization
approach, that attempts to improve the predictive power of
any given FIQA approach by incorporating quality information
obtained by a particular FR model into the quality scores
generated by the selected FIQA approach. Thus, the main
contributions of this papers are:

• A novel optimization approach that incorporates model-
specific quality information into the quality scores pro-
duced by existing FIQA techniques with the goal of
improving FIQA performance.

• An in-depth evaluation of the proposed optimization
approach over six FIQA techniques, five dataset, three
recognition models and in two experimental settings that
demonstrates a new state-of-the-art for the FIQA task.

II. RELATED WORK

In this section, we briefly review previous FIQA research
that can be broadly categorized into three groups: (i) analyt-
ical, (ii) regression and (iii) model-based techniques. More
in-depth information on face quality assessment can be found
in the comprehensive survey paper by Schlett et al. [7].

Analytical FIQA techniques are mostly unsupervised and
rely solely on the information that can be extracted directly
from the given input sample. Techniques from this group
typically focus on the visual quality of the facial images and,
as a result, often exhibit limited performance. The method
proposed by Gao et al. [18], for example, attempts to extract
quality information based on facial symmetry estimation only.
Zhang et al. [19] try to quantify quality based on image



Fig. 1. Overview of the proposed method that consists of: Label Optimization and Transfer Learning. The label-optimization step incorporates
information extracted from mated image pairs into quality scores precomputed with an existing FIQA technique. The transfer-learning step is then used to
train a FR model, extended with a regression head, on the optimized quality-scores. The learned regressor is finally utilized for quality estimation.

illumination information, while Lijun et al. [20] combine
multiple cues, such as occlusions, blur and pose for the quality-
estimation task. Different from these methods, two analytical
FIQA techniques have been proposed recently that in addition
to the characteristics of the input image also consider the
targeted FR system during the quality estimation task. The
first, SER-FIQ by Terhörst et al. [12], uses the properties
of dropout layers to quantify quality, while FaceQAN, by
Babnik et al. [13], exploits adversarial examples for quality
assessment. Both methods were shown to yield state-of-the-art
performance for various FR models and different benchmarks.

Regression-based FIQA techniques are the most numerous
and usually learn a quality estimation (regression) model to
predict quality scores based on some pseudo (ground-truth)
quality labels. FaceQNet [8], for example, trains a ResNet50
model using labels obtained by embedding comparisons with
the highest quality image of each subject. Here, the high-
est quality images are determined using an external quality
compliance tool. A similar approach, called PCNet [11],
trains a quality-regression network on mated-image pairs,
with the goal of predicting the similarity of the image pair.
LightQNet [10] builds on the ideas introduced with PCNet, but
additionally relies on a so-called Identification Quality (IQ)
loss, while SDD-FIQA [9] considers both mated and non-
mated similarity scores between a large number of samples to
determine the final reference quality for the regression task.

Model-based FIQA techniques are less common and usu-
ally try to combine face recognition and quality assessment
in a single quality-aware face recognition task. The main goal
of these techniques is to simultaneously produce, for a given
sample, its embedding and an estimate of the sample’s quality.
For example, the approach presented by Shi and Jain [14],
estimates a mean and variance vector for each given input
sample, where the mean vector represents the embedding,
while the variance provides the corresponding uncertainty and
can be interpreted as a sample quality estimate. MagFace [15],
a similar approach by Meng et al., uses a modified version of
the commonly used ArcFace loss, called MagFace loss, which
is able to generate quality-aware embeddings, by incorporating
quality information into the magnitude of the embedding itself.

The method we propose cannot be clearly assigned to one of
the above groups, because it relies on an already existing FIQA
approach (from any of the three groups) to generate reference
quality scores. In a sense, it distills FIQA knowledge from
any existing technique. However, if treated as a black-box, the

proposed FIQA approach can be thought of as a regression-
based technique, as it trains a regression model using quality
labels extracted from a large database.

III. METHODOLOGY

State-of-the-art FIQA techniques are able to efficiently
discriminate between images of distinctly different qualities,
yet may not be able to properly distinguish between images
of similar quality. To exacerbate this problem, the relative
ordering of images of similar quality may additionally depend
on the targeted FR model, which not all FIQA techniques
take into account. Because face quality assessment aims to
quantify the utility of face images for a given FR model, the
slight variations in the biases present in modern FR systems
may result in different (optimal) quality scores for different FR
models. For this reason, we propose in this paper an approach
that aims to incorporate FR model-specific quality information
into (some initial) quality scores, with the goal of improving
the fine-grained performance of existing FIQA techniques.
The overall pipeline of the proposed approach, shown in
Fig. 1, consists of two main steps: (i) label optimization
and (ii) transfer learning. The label-optimization step aims
to incorporate additional quality-related information into the
baseline quality labels, precomputed using a selected (existing)
FIQA approach. The optimized quality labels are then used in
a transfer-learning scheme, that uses a pre-trained FR model,
extended with a quality-regression head.

A. Method Overview

Let Q and M denote a given FIQA method and a pre-
trained FR model that produce quality scores qI = Q(I)
and embeddings eI = M(I), respectively, for an arbitrary
input face image I , and {Ii}Ni=1 denote a large facial image
database consisting of N distinct images. The goal of our ap-
proach is to train a regression-based quality-estimation model
Q∗ = H(M(I)), where H represents a quality-regression
head, that outperforms the initial FIQA method Q. The model
Q∗ is trained on optimized quality labels {q∗i }Ni=1 generated
by the proposed optimization scheme O. The method relies
on information obtained from mated image pairs of the face
database {Ii}Ni=1. Details on the procedure are given below.

B. Initialization

We first extract initial quality scores qi = Q(Ii) and
embeddings ei = M(Ii) from all images of the given face



Fig. 2. Overview of Label Optimization.We present a visualization of the proposed optimization scheme. Based on the embeddings {eIi}
Nk
i=1 we first

generate mated image pairs. From the image pairs, we compute the pair similarity distribution Xs using the cosine similarity of the image embedings. At the
same time, we also construct the quality distribution Xq from the given quality scores {qIi}Ni=1. The mean similarity index idsIi

, calculated as the average
index of all image pairs from I, is then used to update the quality index idXq (qIi ), using the equation presented above.

image database {Ii}Ni=1 using the selected FIQA method Q
and chosen FR model M . This initialization step is conducted
once and provides the input data for the label optimization and
consequently the transfer learning procedures.

C. Label Optimization
Looking at past research [8]–[11], we observe that quality

information is often inferred from mated image comparisons,
where the term mated images refers to two unique images
of the same individual. We, therefore, follow this insight and
use such information in our optimization approach as well.
By computing the similarity of mated image pairs in the
embedding space of the given FR model M , we are also able
to include FR-specific quality estimates in the optimization.

Selecting mated image pairs. Large-scale databases con-
tain a significant amount of images for each individual, where
many of the images may be nearly identical. Selecting all pos-
sible mated pairs, can, therefore, introduce database specific
biases into our approach and adversely affect performance.

To avoid such issues, we propose a technique for sampling
mated image pairs based on clustering. We use a clustering
procedure to find groups of similar images and to identify the
most informative (and least redundant) mated image pairs. We
cluster the embedding space Ek = {eki }

Nk
i=1 corresponding to

images of each individual k = 1, ...,K present in the database
using K-Means, where N =

∑
k Nk. The algorithm initializes

C cluster centers by randomly sampling the given data points
and iteratively corrects them using nearby examples. For
each image Ikc of the k-th individual belonging to cluster
c ∈ [1, C], we randomly select images from all other clusters
c′ ̸= c, c′ ∈ [1, C] to form mated pairs (Ikc , I

k
c′). By repeating

this process for each image of every individual, we obtain the
final mated image pairs for the label-optimization procedure
G = {(Ii, Ij)l}Ll=1, where i ̸= j and L = N · (c− 1).

Optimizing prior quality scores. We aim at optimizing
the initial quality labels {qIi}Ni=1 using information provided
by the average pair similarity simIi of each image. In other
words, if an image has a low quality score, yet its average pair
similarity is high, we want to increase its quality. Conversely,
if the opposite is true, we want to decrease it. The design of
the optimization procedure is based on the assumption that
the initial quality scores already provide a reasonable estimate
of the true quality. We, therefore, try to retain the overall
quality distribution over the face database. As a result, we

simply rearrange the order of the images in the original quality
score distribution generated by the selected FIQA technique
Q instead of computing new optimal quality scores that could
differ significantly from the initial estimates.

From the list of genuine image pairs G, we first calculate
the cosine similarity of all image embedding pairs, i.e.:

simcos(eIi , eIj ) =
eIi · eIj

∥eIi∥ · ∥eIj∥
, (1)

where eIi and eIj denote embeddings of images Ii and Ij .
We then construct the distribution of the computed similarity
scores Xs ∼ simcos(ei, ej), ∀(Ii, Ij) ∈ G, by sorting all the
pairs according to their calculated similarity score. From the
distribution Xs we compute for each image Ii its average pair
index,

idsIi =
1

|I|
∑
I

idXs(Ii, Ij), (2)

where idXs(·) is a function, that for a given pair (Ii, Ij) returns
the index of simcos(ei, ej) within the similarity distribution
Xs and I represents the set of all image pairs (Ii, Ij), where
the quality qIi is lower then qIj . The latter follows from the
fact that the quality of an image pair is computed as q(Ii, Ij) =
min(Ii, Ij), i.e., it depends only on the image with the lower
quality. In addition, we construct a quality score distribution
Xq ∼ {qIi}Ni=1, by sorting the quality scores of all images
within the given database. The average pair indices and the
distribution Xq are then used to compute the optimized quality
indices

idXq (q∗Ii) = idXq (qIi) + θ · (idsIi − idXq (qIi)), (3)

where θ is an open hyperparameter that controls the degree of
change for the indices, and idXq (·) is a function that returns,
for some quality q, its index within the distribution Xq .

Final steps. To avoid bias from randomly selecting
mated pairs, we also repeat the entire process R times,
and average the final optimized quality indices, id(q∗Ii) =
1
R

∑R
r=1 id

Xq
r (q∗Ii) for all images. The images are then sorted

by the calculated optimized quality indices id(q∗Ii) and as-
signed the quality score according to the output of the sorted
list and the original quality score distribution Xq .

D. Transfer Learning
One of the main goals of FIQA techniques is to improve the

stability and performance of FR systems. We propose to use



Fig. 3. Example VGGFace2 images. Images of three distinct individuals are
shown, illustrating the amount of variability present in the database.

a pre-trained state-of-the-art FR model for quality prediction,
as it efficiently extracts identity information from given facial
images. Moreover, the embeddings generated by state-of-the-
art FR models already contain some information about the
quality of the input image. Formally, from an FR model M ,
we construct a quality regression model H ◦ M , where H
represents a regression head. The regression head H attempts
to extract the quality of the input image qi = H(eIi) from the
embedding eIi = M(Ii) and is learned through an L1 loss
applied over the optimized labels. To improve the transfer-
learning process, we normalize the optimized quality scores
to the interval of [0, 1].

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

Training Database. To train the proposed approach, a large-
scale database of diverse facial images with rich appearance
variability is needed. To this end, we select the VGGFace2
database [21], which contains over 3 million images of more
than 9000 individuals. Images in the database vary in terms of
facial pose, lighting conditions, image resolution, occlusions,
and other similar factors that greatly affect the overall quality
and appearance of the facial images, as also illustrated in Fig.
3 for three individuals (in columns) from the database.

Evaluation Setting. We use six state-of-the-art FIQA meth-
ods as baselines to evaluate the proposed optimization scheme,
i.e., CR-FIQA [22], FaceQAN [13], MagFace [15], SER-
FIQ [12], SDD-FIQA [9] and PCNet [11]. The baselines
and the learned quality-regression networks are evaluated on
five commonly used benchmark databases: XQLFW [23],
CPLFW [24], CFP-FP [25], CALFW [26] and LFW [27].
As the pre-trained FR model, we use ArcFace [28] with a
ResNet100 architecture, trained on the MS1MV3 database
using an angular margin loss. For the performance evalua-
tion we consider two different scenarios: (i) the same-model
scenario, where we use the ArcFace model for both quality-
score prediction and generation of the performance indicators,
and (ii) the cross-model scenario where ArcFace is used for
quality assessment, and the CurricularFace [29] and Elastic-
Face [30] models are utilized to evaluate performance. Both of
the test models are based on the ResNet100 architecture, but
CurricularFace was trained on MS1MV2, while ElasticFace
was trained with CASIA-WebFaces and MS1MV2.

Performance Evaluation. We follow standard FIQA evalu-
ation methodology and use Error-versus-Reject-Characteristic
(ERC) curves as the basis for performance reporting [7], [13],
[15], [22]. ERC curves measure the False Non-Match Rate

TABLE I
SAME-MODEL PERFORMANCE COMPARISON. COMPARISON OF AUC

SCORES BETWEEN BASELINE FIQA METHODS (Baseline) AND OUR
PROPOSED OPTIMIZATION APPROACH (Optimized) USING ARCFACE FOR

QUALITY ESTIMATION AND PERFORMANCE EVALUATION. BEST RESULTS
ARE HIGHLIGHTED IN GREEN.

Methods AUC@FMR1e-3[×10−3](↓)
LFW CFP-FP CPLFW CALFW XQLFW

CR-FIQA Baseline 1.7 1.3 86.5 73.3 115.7
Optimized 1.8 1.3 109.3 73.7 105.7

FaceQAN Baseline 1.5 1.9 112.6 72.1 134.6
Optimized 1.2 1.8 82.8 73.9 98.5

SER-FIQ Baseline 2.9 2.7 100.0 73.0
Optimized 2.4 2.0 102.2 66.6

/

PCNet Baseline 1.7 2.3 88.5 59.3 139.7
Optimized 0.9 1.7 87.6 60.2 116.4

MagFace Baseline 2.0 3.7 118.6 74.4 294.9
Optimized 1.7 1.7 125.3 72.3 127.6

SDD-FIQA Baseline 1.8 2.6 91.4 87.5 190.1
Optimized 1.8 1.7 80.6 66.6 135.3

(FNMR) at a predefined False Match Rate (FMR), typically
fixed at 0.001, at various low-quality image drop (also un-
considered) rates. Specifically, we report the Area Under the
ERC Curves (AUC) as our main performance indicator, where
smaller values indicate better performance.

Implementation Details. When clustering the embedding
space of each individual within the VGGFace2 database, we
decide to set the number of clusters C to 20. Consequently,
we generate C − 1 = 19, mated image pairs for each image,
which means that each individual list of mated pairs consists
of approximately 60 million pairs. For the hyperparameter θ
we use a relatively small value of 0.001, since the goal is
to optimize the already computed baseline quality scores. We
repeat the whole process 10 times and average the final results.

B. Results

Before presenting results, we note that SER-FIQ was used
in the construction of the XQLFW database, so any results that
combine the two are excluded from the presented analysis.

Same-Model Results. Table I shows the AUC values pro-
duced directly with the original FIQA methods (labeled Base-
line) as well as the AUC scores of the quality-regression net-
work trained using our optimized labels (marked Optimized).
For readability purposes, the AUC scores are multiplied by 103

and rounded to one decimal place. We observe that in most
cases the results of our approach are better than those of the
underlying FIQA approaches. The only exception to this obser-
vation is CR-FIQA, where a concrete improvement is observed
only for the hardest of the considered datasets, i.e., XQLFW,
while the results for the remaining datasets are mostly close,
but deteriorate drastically for CPLFW. For all other methods
the results consistently improve, with occasional outliers on
the CALFW or CPLFW benchmarks.

Cross-Model Results. Table II again shows the AUC
values of both the baseline and our (optimized) regression-
based FIQA techniques, but this time computed for the cross-
model scenario, where the FR model used for estimating
the quality of the input images differs from the FR model
used for performance reporting. Looking at the individual



TABLE II
CROSS-MODEL PERFORMANCE COMPARISON. COMPARISON OF AUC SCORES (AUC@FMR1E-3[×10−3](↓)) BETWEEN THE BASELINE FIQA
METHODS (Baseline) AND THE PROPOSED OPTIMIZATION APPROACH (Optimized), USING THE ARCFACE MODEL FOR QUALITY ESTIMATION AND

ELASTICFACE AND CURRICULARFACE FOR PERFORMANCE SCORING. BEST RESULTS ARE HIGHLIGHTED IN GREEN .

Methods ElasticFace CurricularFace
LFW CFP-FP CPLFW CALFW XQLFW LFW CFP-FP CPLFW CALFW XQLFW

CR-FIQA Baseline 2.1 2.1 62.0 74.9 315.8 1.8 1.9 57.3 76.6 281.0
Optimized 2.3 2.0 62.7 76.1 305.5 2.0 1.9 56.1 78.2 272.2

FaceQAN Baseline 1.9 2.6 66.4 77.7 329.6 1.6 2.2 70.7 82.6 323.3
Optimized 2.0 2.7 65.0 79.7 287.1 1.5 2.3 63.7 83.7 263.5

SER-FIQ Baseline 3.8 3.9 79.4 74.9 3.2 3.4 69.6 78.1
Optimized 3.2 3.0 77.5 69.7

/
2.5 2.5 69.2 71.8

/

PCNet Baseline 3.2 3.5 74.4 62.0 312.2 2.1 3.0 66.5 64.3 300.3
Optimized 2.0 2.5 69.5 62.7 295.2 1.3 2.3 62.0 64.7 272.6

MagFace Baseline 2.6 4.9 79.5 74.9 601.8 2.1 4.4 81.5 79.9 593.2
Optimized 2.1 2.5 68.6 73.9 306.6 2.0 2.2 65.1 77.6 260.4

SDD-FIQA Baseline 3.1 3.8 73.1 79.9 480.8 2.1 3.3 64.8 77.4 438.6
Optimized 2.5 2.5 63.4 68.7 292.8 2.0 2.1 55.7 70.4 268.3

Fig. 4. Qualitative analysis of the proposed approach. For each FIQA method, we show the prior distribution of the quality scores of the VGGFace2
database, and an associated scatter plot showing the changes in the quality scores due to our optimization approach.

methods, CR-FIQA and FaceQAN do not show a clear edge
for either the baseline or optimized results. While for the
hardest benchmark, XQLFW, the optimized variant always
performs better than the baseline variant, the opposite is true
for CALFW, which contains cross-age image data. For all
other FIQA approaches, the proposed optimization method
yields better results, and outperforms the baselines in all cases
except for PCNet on CALFW. The results are consistent for
both the ElasticFace and CurricularFace model.

Cross-Model vs. Same-Model Results. Comparing the
cross-model with the same-model results, many similarities
can be observed. The performance benefit due to the opti-
mization approach is relatively unconvincing for CR-FIQA,
while the results for all other methods are mirrored between
the two evaluation schemes. The biggest difference is seen for
FaceQAN, where the proposed method performs comparably
worse in the cross-model evaluation setting.

Qualitative Analysis. If we look more closely at how the
proposed approach works, we see that the distribution of the
initial quality scores remains the same under the optimization
scheme. This is because the method only rearranges the order
of the images and assigns them quality scores from the prior
distribution. However, a potential problem with this approach,
is that the quality scores of images in higher density areas of
the distribution, are harder to change than the quality scores
of the images in the lower density areas. This phenomenon is
well illustrated in Fig. 4, where for each of the FIQA methods
used, a histogram of the prior quality scores over VGGFace2
is presented together with a scatter plot, where each point
represents the prior quality of a given image on the x-axis and
the optimized quality score on the y-axis. Note how the quality

scores in areas of lower density seem to change drastically,
while almost no movement is observed in higher density areas.

Ablation Study. To demonstrate how the optimization of the
quality labels affects the final results, we present in Table III
AUC scores obtained with a quality-regression network trained
with the initial (unoptimized) quality labels as well as the
performance gain(-)/loss(+) due to the optimization procedure
(in brackets). We use the two most difficult benchmarks:
CPLFW and XQLFW, as well as the LFW benchmark for
this ablation study. From the presented results, we see that the
effectiveness of the optimization in the same-model scenario,
i.e. with ArcFace, to a certain extent depends on the chosen
FIQA technique. For CR-FIQA and SER-FIQ the results do
not really seem to favour the optimization approach, as most
of the performance gains observed in Table I appear to be a
consequence of the transfer learning step. On the cross-model
side, the results for both ElasticFace and CurricularFace seem
to be more in favour of the optimized labels, with only a few
counterexamples on the LFW database.

Run-time performance. Because we use a regression-based
model trained with the optimized quality scores, the run-time
performance of our approach is (approximately) the same
regardless of the initial FIQA method used as the basis for the
reference quality scores. Thus, the proposed transfer learning
step can also be seen as a knowledge distillation procedure that
allows us to retain the performance of a given FIQA technique
while ensuring a (approximately) fixed run-time complexity,
as evidenced by the run-times in Table IV - computed on a
desktop PC with an Intel i9-10900KF (3.70GHz) CPU and a
Nvidia 3090 GPU with 24GB of video RAM.



TABLE III
RESULTS OF THE ABLATION STUDY. SHOWN ARE AUC SCORES (AUC@FMR1E-3[×10−3](↓)) GENERATED BY THE REGRESSION-BASED FIQA

METHODS TRAINED WITH THE INITIAL/PRIOR QUALITY LABELS AND THE PERFORMANCE GAIN(-)/LOSS(+) IN TERMS OF AUC CHANGE DUE TO THE
LABEL OPTIMIZATION PROCEDURE (IN BRACKETS). RESULTS ARE PRESENTED FOR THE SAME-MODEL (ARCFACE) AND CROSS-MODEL (ELASTICFACE

AND CURRICULARFACE) SETTINGS. GAINS ARE MARKED GREEN, LOSSES RED.

Methods ArcFace ElasticFace CurricularFace
LFW CPLFW XQLFW LFW CPLFW XQLFW LFW CPLFW XQLFW

CR-FIQA 1.3 (+0.5) 84.0 (+1.7) 102.8 (+2.9) 2.1 (+0.2) 65.0 (−2.3) 280.4 (+24.9) 1.6 (+0.4) 64.2 (−4.1) 273.3 (−1.1)
FaceQAN 1.4 (−0.2) 85.7 (−2.9) 109.8 (−11.3) 2.1 (−0.1) 65.5 (−0.5) 298.2 (−11.1) 1.7 (−0.2) 65.2 (−1.5) 273.0 (−9.5)
SER-FIQ 2.2 (+0.2) 101.9 (+0.3) / 3.2 (−0.0) 79.5 (−2.0) / 2.4 (+0.1) 72.8 (−3.6) /
PCNet 0.9 (−0.0) 93.8 (−6.2) 211.3 (−94.9) 2.5 (−0.5) 78.6 (−9.1) 406.6 (−111.4) 1.2 (+0.1) 69.2 (−7.2) 360.1 (−87.5)
MagFace 1.8 (−0.1) 117.2 (+8.1) 195.5 (−67.9) 2.0 (+0.1) 69.8 (−1.2) 492.3 (−185.7) 2.1 (−0.1) 66.1 (−1.0) 501.8 (−241.4)
SDD-FIQA 2.2 (−0.4) 80.9 (−0.3) 164.8 (−29.5) 2.9 (−0.4) 64.3 (−0.9) 393.8 (−101.0) 2.4 (−0.4) 57.5 (−1.8) 337.1 (−68.8)

TABLE IV
RUN-TIME PERFORMANCE. SHOWN IN [µS].

Method CR-FIQA FaceQAN SER-FIQ PCNet MagFace SDD-FIQA

Original 11.5± 5.0 346.5± 9.0 125.2± 19.5 14.5± 1.7 11.5± 4.9 5.7± 5.0
Ours 11.4± 3.0 11.3± 5.0 11.3± 5.0 10.6± 4.9 11.3± 5.0 11.3± 5.0

Speed-up† +0.8% +3000% +1100% +36% +1.7% −50%
† Approximate values.

V. CONCLUSION

We presented a novel optimization approach, that aims to
improve the performance of modern FIQA approaches. A
thorough evaluation was performed using multiple state-of-
the-art FIQA methods, datasets and FR models. The results of
the evaluation showed significant performance improvements
in most cases when using the optimization scheme both in the
same-model and cross-model setting. As part of our future
work, we plan to incorporate multiple sources of quality
scores into the optimization procedure to benefit from the
complementary quality description provided by different FIQA
techniques.
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