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Abstract—Person recognition using facial features, e.g.,
mug-shot images, has long been used in identity documents.
However, due to the widespread use of web-cams and mobile
devices embedded with a camera, it is now possible to realize facial
video recognition, rather than resorting to just still images. In fact,
facial video recognition offers many advantages over still image
recognition; these include the potential of boosting the system
accuracy and deterring spoof attacks. This paper presents an
evaluation of person identity verification using facial video data,
organized in conjunction with the International Conference on
Biometrics (ICB 2009). It involves 18 systems submitted by seven
academic institutes. These systems provide for a diverse set of
assumptions, including feature representation and preprocessing
variations, allowing us to assess the effect of adverse conditions,
usage of quality information, query selection, and template con-
struction for video-to-video face authentication.

Index Terms—Biometric authentication, face video recognition.

I. INTRODUCTION

W ITH an increasing number of mobile devices with
built-in web-cams, e.g., PDA, mobile phones, and

laptops, the face is arguably the most widely accepted means of
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person verification (or authentication). However, the biometric
authentication task based on face images acquired by a mobile
device in an uncontrolled environment is very challenging. One
way to boost the face verification/authentication performance
is to use multiple samples.

Face verification is but one of the possible tasks of high level
cognition; others include face classification, identification, and
face memorization [1]. Face recognition generally refers to both
face verification and face identification.

Gorodnichy [2] proposed that comparing two photographic
facial data (still images) is not the same as comparing two video
sequences containing face images. Two justifications are given.
First, arguably, photographic facial data is considered a hard
biometric trait whereas face recognition in video is a soft one,
i.e., having behavioral traits (e.g., one’s facial expression and
talking dynamics). Second, due to its bandwidth, real-time na-
ture, and environmental constraints, faces in a video are often of
significantly lower resolution compared to photographic facial
images. Furthermore, the quality of faces in video is likely to
be uncontrolled, e.g., located too far from the camera, or at an
angle which makes recognition difficult.

Despite the above nature of faces in video, humans have ex-
cellent ability in recognizing these faces with high efficiency
and accuracy. We outline below some conclusions from studies
in neurobiology [3], also summarized in [4] and [5]: Humans
recognize faces in grayscale images with the same ease at which
he/she recognizes faces in color images. Although the color cue
does not seem to be used for high-resolution face images, this
is possibly not the case for low-resolution images. Motion and
color are used to focus the attention of interest. Human vision is
guided by salient features, and seeing is performed in a saccadic
motion (from one salient feature to another). Eyes are the most
salient features in a face. Rather than 3-D models, it is believed
that humans use several representative face images in order to
memorize a face. Humans seek and accumulate evidence (over
time).

Insights drawn from human vision can be used to efficiently
solve problems in computer vision, including face recognition.
Some example applications of recognizing faces in video are
face detection in a crowd [6], principle casts/characters detec-
tion recognition in a movie [7], video surveillance with associa-
tive memory [8], to cite a few.

In our case study, we focus on remote face verification. A
typical scenario of this consists of a user requesting access to
an online service which requires identity verification by using
his face images. Examples of services are credit card authentica-
tion, access to public services (e-banking), and financial transac-
tions. This application scenario presents a significant challenge
because the users employ their own cameras and the acquisition

1556-6013/$26.00 © 2010 IEEE
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TABLE I
CATEGORIZATION OF SUBMITTED ALGORITHMS.

process is not supervised. The consequence is that the quality of
acquired images can vary significantly from one user to another.

While humans have excellent vision ability, recent progress
shows that computers can surpass the human ability in face
recognition of still images [9]. However, as far as unconstrained
face recognition is concerned, the human performance easily
surpasses any computer algorithm, as evidenced by the recent
Multibiometric Grand Challenge (MBGC).1

A. Previous Face Evaluation Efforts

Previous attempts at assessing the performance of face verifi-
cation algorithms have been restricted to matching still images,
e.g., the three FERET evaluations2 (1994, 1995, and 1996), the
face recognition vendor tests (FRVTs 2000, 2002, and 2006)3,
and assessment on XM2VTS and BANCA databases [10], [11].
The well-known Face Recognition Grand Challenge [12] in-
cludes queries with multiple still images but this is far from the
vast amount of data available in video matching.

The evaluation exercise presented here aims at assessing
video-to-video matching, i.e., in both enrollment and authen-
tication phases, the data captured is in the form of video
sequence. This is different from still-image-to-video matching,
one of the evaluation scenarios currently examined by the
Multiple Biometric Grand Challenge (MBGC) organized by
the National Institute of Standards and Technology (NIST),
USA. Note that MBGC aims at “portal application” where the
task is to verify the identity of a person as he/she walks through
an access control check point. The video-to-video matching
adopted here has a slightly different application, with a focus on
consumer type devices, e.g., web-cams and camera-embedded
mobile phones, where a sequence of unconstrained (talking)
face images can be easily acquired.

Last but not least, it is also worth mentioning that the CLEAR
evaluation [13] also contains a subtask of face video recognition
from multiple cameras but in a meeting scenario. Since the eval-
uation was not aimed specifically at face video recognition, the
submitted face systems were not thoroughly evaluated, which is
the main focus of this paper.

B. About the Submitted Systems

The submitted systems can be conveniently grouped into four
categories, depending on the dichotomies: parts-based versus
holistic approach and frame-based versus image-set (video-to-
video)-based comparison, as depicted in Table I.

The holistic approach generally refers to methods that use the
entire face image for face recognition, e.g., the principal com-
ponent analysis (PCA) method, or Eigenface, and the linear dis-
criminant analysis (LDA) method, or Fisherface [14]. Recent

1Available: http://face.nist.gov/mbgc
2Available: http://www.itl.nist.gov/iad/humanid/feret/feret_master.html
3Available: http://www.frvt.org

Fig. 1. Parts-based approach to face recognition.

advances in face recognition are dominated by the parts-based
approach, where a facial image is divided into several regions
and for each region, features are extracted and compared, inde-
pendently of the other regions. The resultant comparison scores
are often combined via a fusion rule (e.g., sum, min, max) or
by another trained fusion classifier. This process is illustrated in
Fig. 1.

The frame-based approach processes a video of facial images
frame by frame, whereas the video-based approach treats the en-
tire video as a single observation, or as a facial manifold defined
by the set of facial images. Because of this fundamental differ-
ence, the frame-based approach often requires a separate fusion
stage in order to combine the matching scores due to compar-
isons with several query frames (with the reference/enrollment
data). This categorization is not meant to be exhaustive; a more
detailed categorization of different approaches for face video
recognition is surveyed in Section II.

C. Objectives, Contributions, and Paper Organization

The objectives of this paper are two-fold: 1) to assess the
performance of different facial recognition techniques (parts-
based versus holistic; frame-based versus image-set-based) in
processing video sequences under controlled and adverse con-
ditions, and 2) to validate the effectiveness of facial/image-re-
lated quality measures for face video matching. Our findings,
carried out on the BANCA face video database, suggest that
image quality can effectively be used to select video frames,
as supported by the existing literature, e.g., [15]. Indeed, not
only that algorithms that selectively process the video sequences
using the quality information perform better in adverse condi-
tions, but they also make a significant savings in terms of com-
putational resources. This highlights the potential use of facial
quality measures in video-based face recognition.

This paper is organized as follows: Section II gives a brief
survey of video-based face recognition. Section III describes
the submitted systems. This is followed by a description about
the database in Section IV. Section V presents our evaluation
methodology. Section VI presents the experimental findings. Fi-
nally, Section VII concludes the paper.

II. VIDEO-BASED FACE RECOGNITION

Face recognition should be greatly assisted by video informa-
tion for two reasons:

1) the enhanced observational information about the subject
conveyed by multiple frames;
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2) the widened range of approaches to face matching that can
be adopted.

The latter benefit, in particular, makes it possible to extract addi-
tional cues about the subject, i.e., to use spatio-temporal repre-
sentations of faces, rather than single frame models. The avail-
ability of video also simplifies the process of face detection and
geometric normalization by exploiting the continuity of face in-
formation in videos through tracking, as well as the identity
maintenance through auxiliary information such as clothing.
The continuous sampling of a dynamic face also offers the use
of behavioral biometric information to inform recognition.

The literature dealing with face recognition from video can
be conveniently divided into two categories:

1) single-face-to-video matching;
2) video (image set)-to-video matching.

The techniques in the former category are a straightforward ex-
tension of single face-to-single face matching methods to the
multiple image frames available in a video footage. The tech-
niques in the second category formulate the problem of face
recognition from video from a more pertinent stand point which
is based on the assumption that video footage of an individual
is available not only for recognition but also for learning the
person’s model. This opens the range of possibilities for model
type selection and model construction. We shall structure the re-
view according to this basic categorization.

A. Still-Face-to-Video Matching

1) Still-Frontal-Face Matching Extension: Any still-to-still
face image matching method can naturally be extended to a
still-to-video matching by matching each frame of the query
video against the class templates [4]. The classical techniques of
eigenfaces [16], probabilistic eigenfaces [14], the elastic bunch
graph matching [17], [18], and the PDBNN [19] are typical ex-
amples of these approaches.

The more advanced techniques have also been extended in
this way. For instance, the advanced correlation filter method of
[20] has been applied to still-to-video matching in [21]. The pro-
posed technique uses intramodal weighted averaging of the out-
puts of several correlation filters (MACE [20], optimal trade-off
filter [22], optimal trade-off circular harmonic function [23],
and polynomial filters [24]) for each frame and accumulates the
combined score over time by equally weighting all the samples.

In [25], the still-to-still multiscale local binary pattern face
recognition system is applied to all the frames in the query video
and the sequence of scores is combined to reach the final de-
cision. Both in [25] as well as in [26] and [27], the aim is to
extract features that are invariant to various performance de-
grading phenomena, such as deviations from the frontal pose
and image blur. While the methods [28] and [29] use statistical
class models built from multiple face images or an image se-
quence, the actual matching against query video is conducted
frame by frame. The approach of Xu et al. [30] also offers pose
and illumination invariance.

2) Still-Frontal-Face to Pose-Corrected-Video-Frames
Matching: Under the assumption that face images in a video
sequence have varying poses, the full exploitation of the mul-
tiple observations in the context of matching against a single
frontal face image will be possible only when all the face

images in all the video frames are pose corrected. This can
be achieved using face models. The basic idea is to fit such a
model to each frame of the video. The by-product of the fitting
process is an estimate of the 3-D pose of the subject. Based
on the estimated pose, a virtual view of the subject’s face can
then be generated and used for recognition. The most powerful
is a 3-D morphable face model which captures the 3-D shape
of a face and its surface texture [31]–[33]. The most recent
work using such a model for face recognition in video is that of
Park and Jain [34]. As an alternative to the morphable model,
one can adopt the deformable model of DeCarlo and Metaxa
[35], [36] which is computationally much simpler to fit. Once
such model is fitted to a 2-D image, as its tracking for the
same subject involves estimating only the pose parameters and
adaptation for a changing expression, it could be applied to an
image sequence in real time.

Another possibility is to exploit the structure from motion al-
gorithms in computer vision so as to estimate the instantaneous
3-D positions of facial features. The pose can then be deduced
from this 3-D information [37]. A 3-D model can also be built
from multiple-view 2-D images annotated by pose and the po-
sition of facial landmarks [38]. The 3-D model consists of an
affine geometrical model and shape and pose free texture model.

The alternative to 3-D models is to opt for 2-D active ap-
pearance models, proposed by Cootes and Taylor [39]. An
appearance-model-based method for video tracking and en-
hancing identification was proposed in [40]. Advanced versions
of Active Appearance models are computationally efficient
and can be fitted to face video in real time [41], [42]. There is
also a merit in using user-specific, rather than generic, Active
Appearance Models, as demonstrated in [43]. An improved
deformable model fitting technique has been proposed in [44],
which avoids the problem of locking to local minima by re-
placing discrete locations in a point distribution model by their
smooth versions.

In the view synthesis methods, the desired view can also
be synthesized by learning the mapping function between
two views [45]. In [36], the matching of frames in a video is
carried out using a face manifold model. The face manifold is
constructed for each subject by analyzing a sequence of frames
exhibiting variation in pose.

Although 3-D models are deemed effective, fitting a 3-D mor-
phable model to 2-D video frames is challenging computation-
ally and practically (as landmarks are required to initiate the
fitting process). Motivated by this, Heo and Savides in [46] pro-
posed to construct a 3-D model of a face from a sequence of 2-D
active appearance fitted image frames. As the reconstructed 3-D
model is sparse (determined by the number of points used by
the active appearance model), the vertex density is enhanced by
loop subdivision (new points inserted into each triplet of points).
The resulting face models look subjectively pleasing, but their
effectiveness for recognition has not been demonstrated.

Rather than using a face model for pose correcting the query
image, it is possible to match video frames against synthesized
views exhibiting the same pose and illumination using a 3-D
face model [47]. However, this approach supports only simi-
larity based matching as detailed statistical models of face im-
ages parametrized by pose are not available.
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3) Frame-by-Frame Multiview Matching: If multiview
training data is available, it is possible to construct multiview
models and perform pose invariant face matching by maxi-
mizing the match score over multiple pose hypotheses, or using
a model selection based on pose estimation. The PCA-based
pose estimation methods of Pentland et al. [48] can be used
for this purpose. Once the pose of a face image is determined,
the corresponding face model is selected and a match score for
each hypothesis computed. A more sophisticated solution was
proposed in [38] and [49], where the concept of an identity
surface that captures joint spatial and temporal information
was introduced. An identity surface is defined by projecting all
the images of an individual onto a discriminating feature space
parametrized by head pose. The subject identity can then be
disambiguated by comparing the motion of the samples of a
query video with that of the model trajectories.

A more recent approach proposed by Chai et al. [50] advo-
cates the use of local linear regression for pose invariant face
recognition in video.

B. Multicue Matching

The techniques discussed in the previous two subsections
extend the still-to-still image matching to the still-to-video
matching scenario in an uninspiring way which is not cognizant
of the rich information content video provides. This can be used
to extract, for instance, behavioral biometrics from a talking
face, or characteristic motion patterns for each individual. The
former constitutes an additional biometric modality which
can significantly enhance recognition performance. The latter
contributes an additional cue that can be integrated with other
observational information. However, the simplest way to exploit
video is to make use of motion cues to reduce the computation
complexity of face detection, especially in videos containing
more than one person in each frame. In this subsection, we
focus on this latter category of approaches. An early example is
the system proposed in [51] which combines facial appearance
with motion cues.

The application of structure from motion algorithms can gen-
erate 3-D cues about the analyzed face. This information can be
used as an additional modality and fused at a decision level. Al-
ternatively, 3-D shape features can augment the 2-D appearance
feature set to enhance recognition.

A better founded approach to face recognition from video,
which exploits motion cues, has been advocated in [52]. The
main idea is to exploit both spatial information and temporal in-
formation (the trajectories of facial features). The motion of fa-
cial feature points is approximated by a global 2-D affine trans-
formation (accounting for head motion) plus a local deforma-
tion. The tracking is accomplished using a particle filter in a
Bayesian inference setting [53], [54]. The assumption behind
the method is that the motion trajectories of the same individual
are more coherent than those of a different person. Using motion
trajectory characteristics as features, the overlap of the a poste-
riori probability distributions of competing hypotheses can be
reduced to promote a better separation of identities.

The idea was developed further in [55] which models the joint
distribution of identity and motion using a video sequence as

input. A marginalization of the distribution with respect to the
motion variable yields the a posteriori probability distribution
over the identity variable. In [56], a similar idea is used to endow
a video-based face recognition system with the ability to cope
with illumination changes. However, the authors use a much
simpler model based on a first-order expansion of the image lu-
minance function [57]. The basic method deals with illumina-
tion changes. Face dynamics is modeled by a first-order Markov
model.

Lee et al. in [36] model spatio-temporal evolution by con-
structing a manifold model. The inherent nonlinearity of face
manifolds is handled by approximation in terms of linear man-
ifolds which are linked by transition probabilities in order to
model face dynamics. The problem of this generative model is
that it has a limited discriminatory capacity. The work in [58]
extends [36] to allow on-line learning of probabilistic appear-
ance manifolds.

The work of Matta and Dugelay [59] exploits behavioral in-
formation as well as physiological information extracted from
video to realize a video-based face recognition system.

C. Video-to-Video Matching

Face recognition from video can be cast as a learning problem
over image sets. A set of images may represent a variation in a
face’s appearance. The objective of the image set approach is to
classify an unknown set of vectors to one of the training classes,
each also represented by several image sets. Whereas most of
the work on matching image sets exploits temporal coherence
between consecutive images [36], [55], [60], it is not strictly
necessary to make such a restrictive assumption. In [60], the
temporal coherence of face images in a video footage is modeled
by a linear dynamical system whose appearance changes with
pose. Recognition is performed using the concept of subspace
angles to compute distances between probe and gallery video
sequences.

Relevant previous approaches for set matching can broadly
be partitioned into parametric model-based [61], [62] and non-
parametric sample-based methods [63]. In the model-based ap-
proaches, each set is represented by a parametric distribution
function, typically Gaussian. The closeness of the two distribu-
tions is then measured by some measure of similarity.

Relatively recently, the concept of canonical correlations has
attracted increasing attention for image set matching in [64]and
[65]. Each set is represented by a linear subspace and the angles
between two high-dimensional planes are exploited as a simi-
larity measure of two sets. A nonlinear extension of canonical
correlation has been proposed in [66], [67] and a feature selec-
tion scheme for the method in [67]. The constrained mutual sub-
space method (CMSM) [65], [68] is the most well known. A
related method of object recognition using image sets, which
is based on canonical correlations, has been proposed in [69].
The method, known as discriminative analysis canonical corre-
lation (DACC), uses a linear discriminant function that maxi-
mizes the canonical correlations of within-class sets and min-
imizes the canonical correlations of between-class sets, is de-
vised, by analogy to the optimization concept of LDA.

The problem of face-video to face-video matching can also be
formulated as one of semisupervised learning, as suggested in
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TABLE II
OVERVIEW OF THE SUBMITTED FACE VERIFICATION SYSTEMS

The following keys are used: AM = Appearance model; ZMUV = zero mean and unit-variance; Ani = Anisotropic+local mean
subtraction; LF = Local feature; Gb1 = Gabor(magnitude); Gb2 = Gabor(phase+magnitude; NC = Normalized correlation;
WNC = Sum of whitened NC; LBP = local binary pattern.
Note: OmniPerception’s face detector was used by all systems. The three systems which specifically considered the provided
quality measures (i.e., UPV, UniLJ, and CWI systems) are described in Sections III-D–III-F, respectively.

[70]. The method exploits the properties of a face data manifold
using a computationally inexpensive graph-based algorithm.

All the above approaches draw on holistic face representation.
An alternative approach has been suggested by Mian in [71]
which is inspired by video retrieval methods. The advantage of
this method is that one does not have to worry about face regis-
tration. The approach is based on the use of image descriptors,
such as scale-invariant feature transform (SIFT) features [72],
which are computed at interest points detected in the image. The
training to recognize a particular identity is based on a sequence
of frames for which a pairwise similarity matrix is computed.
The similarity of two face images is defined by the minimum and
average similarity of SIFT feature vectors describing each face.
The faces in the sequence are then clustered by a hierarchical
clustering method and cluster representatives selected. The
matching of unknown videos is then based on measuring the
similarity of the SIFT features computed for the video frames to
the cluster representatives for each hypothesized identity.

The continuity in time of the information in face video can
be exploited more directly than what is offered by a statistical
analysis of a set of frames [55]. In particular, it can be invoked
to resolve the uncertainty in face localization and identification.
Zhou et al. [55] tackle the inherent uncertainty in tracking a
moving face and its identification by performing simultaneous
tracking and recognition of faces in video. A detailed modeling
of face dynamics using HMM models in Liu et al. [73] is po-
tentially more powerful. However, learning temporal dynamics
during recognition of unknown video query footage is currently
computationally too demanding that renders this approach prac-
tically infeasible.

III. SYSTEM DESCRIPTIONS

Sections III-A–III-F describe the submitted systems.
Section III-G then compares these systems by their attributes
(see Table II).

A. University of Vigo (UVigo)

The video-based face verification system submitted by the
University of Vigo for the preregistered test uses the annotated
eyes coordinates in order to set the eyes position in the same
coordinates for all the faces, using simple rotation and scaling
operations. Then a two-step illumination normalization is per-
formed on the geometrically normalized faces. The first step
is the anisotropic illumination normalization described in [74].
The second step is a local mean subtraction. We denote the video
frame sequence as , where repre-
sents the th frame of video , and is the number of frames
in the video. Gabor jets [75] are ex-
tracted from the th frame (magnitude of the responses of Gabor
filters with five scales and eight orientations, encoded in the
second subindex) at fixed points, , along a rectangular grid of
dimensions superimposed on each normalized face
image. Frame is characterized by all the extracted Gabor
jets .

GMM-UBM verification paradigm is adapted to video-based
verification. Gabor jets extracted from each grid location are di-
vided in separate vectors constituted by sets of

subjets: , where is the frame index,

is the grid point index, is the filter index
and is the subset index. Sixty-four mixture UBMs
are trained for both vectors and at each grid location.
The number of subjets was fixed as a trade-off between
discrimination capability and dimensionality. The first subset
includes the coefficients from filters with an even filter index
( ), and the second subset includes the coef-
ficients with an odd filter index ( ). Indepen-
dence between the subjets from each node is assumed in order
to avoid the curse of dimensionality in the UBM training. This
assumption leads us to independent training for each subjet at
each grid location. The th UBM probability density function
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Fig. 2. Invariance of LBP to different illumination.

, where is estimated using LBG
[76] initialization and the EM algorithm. Gaussian mixtures are
constrained to have diagonal covariance matrices. Input vec-
tors for this training process are , where

, i.e., the world model set videos. Grid node is indexed by
, which is the integer part of . Subjet set is indexed by

.
is then adapted to the corresponding vectors ob-

tained from the user enrollment video by means of the MAP
technique [77], obtaining user model pdf . The verifica-
tion score for the video and claimed identity is computed
as the following log-likelihood ratio [78]:

(1)

B. IDIAP

Two types of systems were submitted by IDIAP, these being
holistic (PCA and PCAxLDA) and parts-based (GMM and
HMM). In all cases, the world model (for PCA, LDA, GMM,
and HMM world) are computed on the world model data
defined by the provided protocol. This results in one specific
world model for each group of clients g1 and g2.

All of the face verification systems use the automatic anno-
tations (eye centers and frontalness) provided by the OmniPer-
ception SDK (to be described in Section IV). More precisely,
the eye-center coordinates are used to extract the ten-best faces
from each video according to the frontalness measure.

1) Geometric and Photometric Normalization: For all sys-
tems, the face is first geometrically normalized as described
in [79] rotated to align the eye coordinates, then cropped and
scaled to a size of 64 80 (width height pixels). The face
image is then photometrically normalized using two methods:
1) standard histogram equalization (HEQ) as in [79] or 2) a pre-
processing based on local binary patterns (LBPs) as proposed in
[80] (see Fig. 2).

2) Feature Extraction: The two holistic systems are based
on well-known dimensionality reduction methods, namely
PCA and PCAxLDA. For PCA dimensionality reduction was
achieved by retaining 96% of the variance of the vector space.
This resulted in 181 and 180 dimensions being retained for
groups g1 and g2, respectively, instead of the 5120 dimensions
(64 80 pixels). Face images projected in the PCA subspace
are then further projected into an LDA subspace (PCAxLDA),
where only 55 dimensions are retained for both groups.

The parts-based approaches decompose the face image into
blocks and then use statistical models such as GMMs or HMMs.

For each block, the DCT (2-D DCT) or its DCTmod2 variant is
computed, as described in [79], resulting in one feature vector
per block. An extension to these methods is provided where
the 2-D coordinate ( ) of each block is appended to its cor-
responding feature vector, this was done to incorporate spatial
information.

3) Classification: Classification for the holistic methods,
PCA and PCAxLDA, is examined using three different simi-
larity measures: Pearson, Normalized Correlation, and Standard
Correlation. Classification for the DCT and DCTmod2 features
is performed using GMMs and HMMs as described in [81].

It should be mentioned that a development database of im-
ages is often needed in order to obtain the PCA and PCAxLDA
transformation matrices as well as the background model, or the
“world model” for the GMM and HMM classifiers. This devel-
opment database is also made available to the participants (see
Section IV).

C. Manchester Metropolitan University (MMU)

The General Group-wise Registration (GGR) algorithm is
used to find correspondences across the set of images. This
shares similar ideas with others [82], [83] which seek to model
sets efficiently, representing the image set and iteratively fitting
this model to each image. The implementation of GGR [84] pro-
ceeds through a number of stages. First, one image is selected as
a reference template and all other images are registered using a
traditional template match. Next, a statistical shape and texture
model is build to represent the image set. Each image is rep-
resented in the model and the correspondences are refined by
minimizing a cost function. Finally, the statistical models are
updated and the fitting repeated until convergence.

The model used here is a simple mean shape and texture built
by warping all the faces to the mean shape using a triangular De-
launey mesh. A coarse-to-fine deformation scheme is applied to
increase the number of control points and optimize their posi-
tion. In the final iterations, the points are moved individually to
minimize the cost. The cost function includes both shape and
texture parts

(2)

where is the residue between the model and the current image
after deformation, and are the standard deviations of the
residue and shape, is a constant, is the position of the th
control point, is the average of the positions of the neigh-
borhood around point , and represents the offset of the
point from the average mean shape.

A set of 68 sparse correspondent feature points are initial-
ized manually on the mean image of the image set. When GGR
has found the dense correspondences across the images, all the
sparse feature points are warped to each image using the tri-
angulation mesh. Once the correspondences have been found
for the ensemble images, a combined Appearance Model [85] is
built for each individual and the points are encoded on it. Pixels
defined by the GGR points as part of the face are warped to a
standard shape, ensuring that the image-wise and face-wise co-
ordinates of images are equivalent. Because of the size of the
database, representative frames are selected for each ensemble
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Fig. 3. Architecture of the MMU system, representing an appearance-model
based approach.

subject using -means clustering of their encoding on their in-
dividual model to give approximately ten groups (one for each
50 frames). The frame most representative of each group is then
selected and used to build both an Appearance Model of the full
ensemble. This provides a single 48-dimensional vector which
encodes both the shape and gray-level aspects of the face for a
given frame. It models the whole of the inner tile face, using
5000 grayscale samples (and the 68 feature points), describing
98% of the ensemble variation, but without any photometric nor-
malization.

In the same sequence, regardless of parameter change due to
different poses, lighting, and expressions, the identity can be
expected to be constant. However, in this case, the model will
encode (even after averaging) both identity and nonidentity vari-
ation. To remove the latter, a Linear Discriminate Analysis sub-
space [86] is used. This provides a subspace which maximizes
variation between individuals and minimizes the same within
them. Each frame in a gallery or probe sequence is projected
onto this subspace (see Fig. 3 for a schematic diagram). A set
of images derived from a video sequence is then represented by
the mean of the LDA coefficients.

When two video sequences are processed as described above,
one obtains two mean vectors of LDA coefficients. Let these two
vectors are and , respectively. The final matching score of
these two vectors are assessed by the normalized cross-correla-
tion metric, defined as

(3)

More details can be found in [87].

D. Universidad Politécnica De Valencia (UPV)

The approach we adopted for the verification of a sequence
of face images was as follows. The first NA frames from the
input video are analyzed using the quality measures and the best
NQ frames are selected. After this process, a verification score
is obtained for each of the selected frames using the local fea-
ture algorithm. The final verification score is the average of the
scores for each of the selected frames.

The parameters NA and NQ were kept fixed for all of the
videos of the same scenario. For each scenario, NA and NQ were
varied and their value was chosen making a compromise be-
tween the performance of the algorithm on the development set
and the computational cost. For the matched controlled scenario
(Mc), the chosen parameters were NA and NQ , and
for the unmatched adverse scenario (Ua) the parameters were

NA and NQ . The number of frames used to build the
user models was NT for both scenarios.

For each video frame, several quality measures were sup-
plied. Therefore, in order to choose the best frames, the quality
measures were fused into a single quality value, and the frames
with highest quality were selected. To fuse the quality measures,
we trained a classifier of good and bad frames and used the pos-
terior probability of being a good frame as a quality measure.
The classifier used was the nearest neighbor in a discriminative
subspace trained using the LDPP algorithm [88]. To train this
classifier, the quality values of the frames of the background
model videos were used, and each frame was labeled as being
good or bad based on the result of face identification using the
local feature algorithm [89].

In the local feature face verification algorithm, from a face
image several feature vectors are extracted. Each feature is ob-
tained using only a small region of the image, and the features
are extracted all over the image at equal overlapping intervals.
Given a test image, the nearest neighbors of its local features
are found among the feature vectors from the background model
and the user model. The verification score is simply the number
of nearest neighbors from the user model divided by the number
of extracted local features. For further details refer to [90] and
[91]. The parameters of the algorithm were chosen based on pre-
vious research and were not adjusted to minimize the error rates
of the scenarios. In the algorithm grayscale images were used,
the faces were cropped to a size of 64 64 pixels, and the local
features were of size 9 9 extracted every 2 pixels.

E. University of Ljubljana (UniLj)

The UniLj face recognition technique is based on a feature
extraction approach which exploits Gabor features and a combi-
nation of linear and nonlinear (kernel) subspace projection tech-
niques. The training, enrollment, and test stages of the employed
approach can be summarized as follows.

1) The Training Stage: Facial images from various sources
(such as BANCAs world model, the XM2VTS, the AR, the
FERET, the YaleB, and the FRGC databases) were gathered
to form a large image set that was employed for training. This
training set was subjected to a preprocessing procedure which
first extracted the facial regions from the images based on man-
ually marked eye-center locations, then geometrically aligned
and ultimately photometrically normalized the facial regions by
means of zero-mean-and-unit-variance normalization and a sub-
sequent histogram equalization step. The normalized facial im-
ages cropped to a standard size of 100 100 pixels were then
filtered with a family of Gabor kernels with five scales and
eight orientations. From the complex filter responses features
encoding Gabor-magnitude as well as Gabor-phase information
[92] were derived and concatenated to form the final Gabor fea-
ture vectors. Next, the constructed feature vectors were parti-
tioned into a number of groups and for each a nonlinear sub-
space was computed based on the multiclass kernel Fisher anal-
ysis (KFA) [93]. The Gabor feature vectors from all groups
were projected into all created KFA subspaces and the resulting
vectors were then subjected to a principal component analysis
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Fig. 4. (a) Feature extraction and (b) classification of UniLJ.

(PCA)[16] to further reduce their dimensionality. Fig. 4(a) il-
lustrates the feature extraction stage.

2) The Enrollment Stage: Using the provided quality mea-
sures associated with the video sequences of the BANCA data-
base, a small number of images was chosen from each enroll-
ment video of a given subject.4 These images were processed
in the same manner as the training images, i.e., feature vectors
were extracted from each image by means of Gabor filtering and
subsequent subspace projections. The processed images served
as the foundation for computing the client templates—the mean
feature vectors.

3) The Test Stage: From each test video sequence, a small
subset of randomly selected frames which passed our quality
check (using the same quality measures as in the enrollment
stage) was processed to extract the facial features. The resulting
feature vectors were then matched with the template corre-
sponding to the claimed identity using the nearest neighbor
classifier and the whitened cosine similarity detailed in a re-
cently proposed correction scheme [94] (to be briefly explained
in the next paragraph). Depending on the cumulative value of
the matching score, a decision regarding the validity of the
identity claim was made in the end. A schematic diagram of the
test stage is shown in Fig. 4(b).

The frame selection procedure is based solely on the quality
measure describing the overall reliability of the face detector. In
the training stage, a threshold is determined for this quality mea-
sure in such a way that at least 5% of all frames from each video
sequence of the world set exhibit an overall reliability higher
then the threshold value. During testing a random frame selec-
tion procedure is used. Here, for each selected frame, the overall
reliability of the face detector is compared with the threshold
learned during the training stage. Once three (or five, depending
on the protocol) frames are successfully selected from the test
video sequence, the procedure is terminated. If less than three
(or five) frames from the test sequence pass the quality check,
the remaining ones are selected randomly.

F. Centrum Voor Wiskunde en Informatica (CWI)

In the CWI approach, the automatically annotated eye loca-
tions are used to crop and rectify the face area at each frame.
Each cropped frame is then normalized to 64 64, and split into

4It has to be noted that only the quality measures corresponding to the overall
reliability of the face detector and the spatial resolution were considered for the
frame selection process.

8 8 windows, from which 2-D-DCT coefficients are extracted
[95]. Each window supplies nine coefficients in zig-zag fashion,
bar the DC value, which are then concatenated into the final fea-
ture representation for the face. During testing, DCT coefficients
are extracted from a face localized in a given frame and the sim-
ilarity of vectors and is computed as

(4)

During training, 15-means clustering is applied to DCT
features extracted from the training images of each person,
and cluster means are selected as templates. Our experimental
results suggest that using a mixture model for the genuine
class and one model for the generic impostor class, combined
with a likelihood-ratio-based decision is suboptimal to the
DCT-based method [96]. From each video frame, a number of
relevant quality measures (i.e., bits per pixel, spatial resolution,
illumination, background brightness, rotation in plane, and
frontalness) are summed and a ranked list is prepared.

The authentication of a new query video is dynamic in that the
number of query images used from the video is not fixed. The
top NQ ranked images (NQ being from 1 to 8) are matched to the
templates in succession, and a preselected distance threshold is
checked for authentication. If the similarity score is above this
threshold (0.75), it is reported. Else, the next best ranked frame
is evaluated, up to eight frames per video sequence. The max-
imum similarity score is returned as the final score. Since there is
no early stopping for rejecting claims, the ROC curves produced
for this method do not fully reflect the possible operation range
of the algorithm. The preset similarity threshold is a second pa-
rameter (the first being the final score threshold for acceptance)
that controls the system output.

The CWI submission has four variations to inspect the di-
chotomies of system complexity [Cheap (C) versus Expensive
(E)] and the strategy for choosing the query samples [random
(r) versus quality-based (q)]. For the so-called cheap (respec-
tively expensive) version, five (respectively 15) templates are
used for each client and only up to four (respectively up to eight)
images are used for query. Increasing the number of templates
for each gallery subject leads to diminishing returns. Since the
DCT feature dimensionality is higher than the number of avail-
able frames, an automatic model selection approach usually jus-
tifies only a few clusters. During our simulations, we contrasted
a random selection of frames versus a quality-based selection
of frames. We observed that higher quality faces produced both



POH et al.: EVALUATION OF VIDEO-TO-VIDEO FACE VERIFICATION 789

higher genuine similarity scores, and higher impostor scores,
leading to greater false accept rates.

G. A Summary of the Submitted Systems

Table II summarizes the systems by their attributes. namely,
the choice of illumination preprocessing, facial feature rep-
resentation and extraction methods, the back-end classifier,
whether or not quality measures are used, and whether or not
all images are processed.

In our summary, feature extraction is distinguished from fea-
ture representation by their purpose. While feature represen-
tation aims to describe the facial information (e.g., using the
grayscale of the cropped face image, or other intermediate rep-
resentation such as appearance model and features designed to
extract local information), feature extraction generally aims at
making the features more compact and sometimes more dis-
criminative with respect to the identity space.

The systems are grouped into holistic or local (i.e., parts-
based) in Table II. Many of the holistic systems were submitted
by IDIAP as baseline systems. These systems are only tested on
the Mc protocol but not the Ua protocol due to higher illumi-
nation and pose variation of the latter data set. As can be ob-
served, the majority of the submitted systems are parts-based.
This is generally consistent with the current research trend in
face recognition.

IV. DATABASE, PROTOCOLS, FACIAL VIDEO ANNOTATIONS

We opted to use the publicly available BANCA database
[97].5 It is a collection of face and voice biometric traits for
260 persons in five different languages, but only the English
subset is used here. The latter contains a total of 52 persons;
26 females and 26 males. The 52 persons are further divided
into two sets of users, which are called g1 and g2, respectively.
Each set (g1 or g2) is designed to be balanced in gender, i.e.,
having 13 males and 13 females. According to the experimental
protocols reported in [97], when g1 is used as a development
set (to build the user’s reference model), g2 is used as an
evaluation set. Their roles are then switched. This corresponds
to a two-fold cross-validation procedure.

The BANCA database was designed to examine biometric
comparisons under the same recording conditions (as the
enrollment session) and two different challenging conditions:
recording under a noisy (adverse) environment and with a de-
graded device. In each of the three conditions, four recordings
were performed. The clean conditions apply to sessions 1–4,
adverse conditions to sessions 5–8, and degraded conditions to
sessions 9–12.

Apart from the g1 and g2 data sets, there is also an addi-
tional data set, called the “world model data set,” that is used
as a development data set. It contains a single session of video
recordings of 30 subjects in controlled, adverse, and degraded
conditions. This additional data set can be used to calculate the
transformation matrix needed for the holistic approach (e.g., the
Eigenface and Fisherface methods), as well as the background
or world model [81] for the parts-based approach. When one of

5Available: http://www.ee.surrey.ac.uk/CVSSP/banca

g1 and g2 sets is used as the test data set, the other set can be
used in conjunction with the world model as the training data
set.

There are altogether seven experimental protocols specifying
the sessions to be used for enrollment and for testing in an ex-
haustive manner. In this face video recognition evaluation, we
focused on two protocols, namely the match controlled (Mc) and
unmatched adverse (Ua) protocols. The first protocol was in-
tended as a vehicle to design and tune a face verification system.
The second protocol aims at testing the system under more re-
alistic and challenging conditions.

In the Mc protocol, session 1 data are used for enrollment
whereas the data from sessions 2–4 are reserved for testing. In
the Ua protocol, the session 1 data again are used for enrollment
but the test data are taken from session 5–8 (recorded under
adverse conditions). The ICB2009 face video competition was
thus naturally carried out in two rounds, with the first round
defined by the Mc protocol and the second round by the Ua
protocol [98].

In order to be consistent with the previous BANCA evalua-
tions [10], [11], we also divided a query video sequence into
five chunks, each containing 50 frames for convenience; the re-
maining frames were simply not used.

In order to standardize the evaluation, we provided a pair of
eye coordinates, based on the face detector provided by the Om-
niPerception SDK.6 However, the participants could use their
own face detectors. For each image in a video sequence, the
SDK also annotated the following quality measurements:

1) overall reliability;
2) brightness;
3) contrast;
4) focus;
5) bit per pixel;
6) spatial resolution (between eyes);
7) illumination;
8) background uniformity;
9) background brightness;

10) reflection;
11) presence of glasses;
12) in-plane rotation;
13) in-depth rotation;
14) frontalness.

Note that the entire process from detection to annotation
was automatic. No effort was made to fine tune the system
parameters, and in consequence, some imperfectly cropped
images were observed (see Fig. 8, for instance). In the above
list, “frontalness” quantifies the degree of similarity of a query
image to a typical frontal (mug-shot) face image. The overall
reliability is a compounded quality measure obtained by com-
bining the remaining quality measures.

Two categories of quality measures can be distinguished:
face-specific or generic. The face-specific ones strongly depend
on the result of face detection, i.e., frontalness, rotation, reflec-
tion, between-eyes spatial resolution in pixels, and the degree
of background uniformity (calculated from the remaining area
of a cropped face image). The generic ones are defined by

6Available: http://www.omniperception.com
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Fig. 5. Assessment methodology. (a) Threshold determination. (b) Two-fold cross-validation.

the MPEG standards.7 All the annotation data (including eye
coordinates and quality measures) have been published on the
website “http://face.ee.surrey.ac”.

A preliminary analysis shows that when the frontalness mea-
sure is 100%, the detected face is always frontal. On the other
hand, any value less than 100% does indeed suggest an imper-
fect face detection, or else a nonideal (nonfrontal) pose.

V. EVALUATION MEASURES

We use two types of curves in order to compare the perfor-
mance: the detection error tradeoff (DET) curve [99] and the
expected performance curve (EPC) [100]. A DET curve is actu-
ally a receiver operating characteristic (ROC) curve plotted on
a scale defined by the inverse of a cumulative Gaussian density
function, but otherwise similar in all respects. We have opted to
use EPC because it has been pointed out in [100] that two DET
curves resulting from two systems are not comparable. This is
because such comparison does not take into account how the de-
cision thresholds are selected. EPC turns out to be able to make
such comparison possible. Furthermore, the performance across
different data sets, resulting in several EPCs, can be merged into
a single EPC [101]. Although reporting performance in EPC is
more meaningful than DET as far as performance comparison is
concerned, it is relatively new and has not gained a widespread
acceptance in the biometric community. As such, we shall also
report performance in DET curves, but using only a subset of
operating points.

The EPC curve, however, is less convenient to use because
it requires two sets of match scores, one used for tuning the
threshold (for a given operating cost), and the other used for
assessing the performance. In our context, with the two-fold
cross-validation defined on the database (as determined by g1
and g2), these two score sets can be conveniently used.

Fig. 5(a) shows how g1 and g2 can be used in tandem in two
steps:

1) Minimize a criterion on g1 in order to obtain a decision
threshold.

2) Apply the decision threshold in order to measure the per-
formance on g2.

3) Repeat steps 1 and 2 using a different criterion parameter
exhaustively at fine incremental steps.

7Available: http://www.chiariglione.org/mpeg/standards.htm

TABLE III
PERFORMANCE MEASURES

At this point, it is useful to distinguish the role of system opti-
mization criterion (or simply referred to as criterion) and that
of performance measure, although in practice, they may be the
same measure. A criterion is used to determine the decision
threshold, whereas performance refers to how successful the
system is, which can be a verification rate (FRR for a given de-
sired level of FAR), FAR for a given desired level of FRR, EER,
HTER, and WER. These performance measures are defined in
Table III. Note that among these performance measures, only
EER is not dependent on any given decision threshold, because
there is only a single point.

There are some natural pairings between a criterion and a per-
formance measure. For instance, if the performance is FAR (re-
spectively FRR), the criterion will necessarily be FRR (respec-
tively FAR). If the performance measure is HTER, it is common
to use EER as a criterion. In our case, the chosen performance
measure is HTER and the criterion we used is WER. For the case
of WER, it has a tunable parameter , which penalizes between
FAR and FRR. Therefore, by employing WER with different
values, we obtain an HTER curve.

Fig. 5(b) illustrates the two-fold cross validation process. By
varying the parameter in each fold, we actually obtain a set
of pairs of FA and FR (as an intermediate step). The resultant
two sets are collated into a single set via averaging. The collated
statistics can be visualized either using a DET curve or an EPC.
The generalization to -fold cross validation, or even data sets
could be accomplished in the same manner (see, for instance,
[101]). A DET curve plots FAR versus FRR and the criterion is
not shown explicitly as an independent variable. In contrast, an
EPC shows explicitly this relationship; it plots a chosen criterion
parameter as an independent variable (in the -axis) and the
performance as the dependent variable (in the -axis). Such a
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Fig. 6. Evolution of 14 quality measures over time. (a) Controlled scenario. (b) Adverse scenario.

relationship is desirable in the sense that in order to compare
two systems, one only needs to pick a criterion parameter (hence
choosing a relative trade off between false acceptance and false
rejection that is relevant to a particular application scenario),
and reads off the performance values of the two systems.

The motivation for using WER as a decision threshold crite-
rion is that it generalizes the criterion used in the annual NIST
speaker evaluation [102] as well as the three operating points
used in the past face verification competitions on the BANCA
database [10], [11]. The NIST speaker evaluation uses approxi-
mately whereas the BANCA evaluation protocols uses
the following three coefficients of :

for (5)

which yield approximately , respectively.
We, therefore, sampled WER with the following values:

.
In order to satisfy both camps of biometric practitioners,

while retaining the advantage of EPC which makes perfor-
mance comparison between systems less biased (with respect
to the choice of decision threshold), we shall report the results
in terms of DET curve (as a function of values) as well
as EPC. In this way, we actually establish a correspondence
between EPC and DET, i.e., each point in the DET space has a
corresponding point in the EPC.

Examples of DET and EPC can be found in Figs. 10 and 11. It
can be observed that 1) the best system is the closest DET curve
to the origin in the DET space and that 2) its corresponding EPC
has the smallest HTER values.

VI. RESULTS

The experimental results here are presented in four parts. The
first part analyzes the evolution of some of the quality measures
on both controlled and adverse scenarios. The second part ana-
lyzes the effect of increasing the number of enrollment samples
as well as the query samples on the verification performance.

The third part compares the performance of different face veri-
fication systems in both the controlled and adverse conditions.
Finally, the last part investigates the performance versus time
complexity.

A. Preliminary Analysis on Quality

This section aims to analyze subjectively the effectiveness
of automatically derived facial quality measures. An objec-
tive analysis in terms of performance will be presented in
Sections VI-C and VI-F.

In the context of video-based face recognition, two questions
relevant to our scenarios are of interest here:

1) Can quality measures be used to distinguish between video
images taken under controlled and adverse scenarios?

2) Can quality measures distinguish different quality of im-
ages within the same video sequence (and consequently the
same application scenario)?

The ability to distinguish between controlled and adverse sce-
narios is important because, very often, algorithms that work
well in controlled scenarios may not necessarily perform opti-
mally under adverse scenarios (as will be attested by our eval-
uation results in Figs. 10 and 11). This opens the possibility of
combining complementary algorithms, each of which is optimal
under a particular type of conditions [103]. The second question
is also of great interest because if quality measures can indeed
distinguish well aligned (frontal) images from badly aligned
ones, this information can be used directly for computing the
final scores (e.g., selecting only the qualified ones according to
some criteria).

To answer the first question, we plotted the evolution of the
14 quality measures over time on two video sequences recorded
under both controlled and adverse conditions. The results are
shown in Fig. 6. It should be noted that the quality measures
are not designed to operate on video sequences but we applied
frame by frame, ignoring the dependency between two consec-
utive frames over time. Over the entire video sequence, it can
be observed that some quality measures can indeed be used to
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Fig. 7. Overall reliability as a quality measure, assessed on the video sequence gb_video_degraded_1003_f_g1_06_1003_en.avi. (a) High overall reliability.
(b) Low overall reliability.

distinguish the two types of recording conditions. For instance,
under the controlled conditions, the overall reliability is in gen-
eral very high (mostly 100%, with some exceptions), whereas
under the adverse conditions, it varies (this quality measure will
be analyzed in a later section). Brightness and focus also turn
out to be very good discriminating criteria.

In general, both bit per pixel, focus, spatial resolution (be-
tween eyes), and illumination has a higher variation for the ad-
verse conditions (than the controlled ones). These are examples
where not only the absolute quality measures are important, but
their variance over the entire video sequence is also a mean-
ingful indicator of the signal quality.

We selected some cropped face images and show them in
Fig. 7. As can be observed, when the overall quality measure
is 100%, the face images are usually better registered (aligned),
whereas the images with low values are usually not well regis-
tered. Hence, the overall quality measure can be used as a tool
for selecting good query images in a video sequence. Plotted in
Fig. 8(a) is the evolution of the overall quality measure over the
entire video sequence and its histogram over the entire video
sequence is shown in (b). As can be observed, well-aligned
face images (with 100% value) constitute a small fraction of
the entire video sequence. For some matching algorithms (e.g.,
holistic-based ones), it may be useful to select the detected face
images based on the overall quality measure.

B. Number of Templates and Query Images Versus
Performance

In this section, we shall examine the effect of varying the
number of templates and query images. This study was per-

formed with the system supplied by CWI on the Mc protocol
(set g2). We varied the number of templates (either one or five)
and the number of query images (from 1 to 4). Each time, the
maximum similarity score is used as the final score.

The query images are selected according to their ranked
quality as explained in Section III-D. We observe that
using more queries improves performance, which means
quality-based ranking is not detrimental to the diversity of the
query images.

The template images are obtained by offline clustering of the
training video frames to ensure diversity. By using templates
and query images, the number of comparisons is ,
which is directly related with the method complexity. As can
be observed in Fig. 9, a more complex system (using more com-
parisons) actually generalizes better. Since each hypothesis pro-
vides additional evidence for being a genuine access versus the
impostor one, combining a set of scores in supporting a partic-
ular hypothesis can improve the confidence in the selected hy-
pothesis via variance reduction [104].

C. Competition Results

The DET and EPC curves of all submitted systems for the
g1 and g2 data sets, as well as for the Mc and Ua protocols,
are shown in Figs. 10 and 11, respectively. These results are
obtained by merging the results from g1 and g2. The EPCs here
plot HTER versus , a parameter of WER. To be consistent with
the previous published BANCA evaluations [10], [11], we also
listed the individual g1 and g2 performance figures, in terms of
WER, in Table IV for the Mc protocol and in Table V for the Ua
protocol. We also report results as a function of , as defined
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Fig. 8. (a) Evolution of overall reliability as a quality measure of the video sequence gb_video_degraded_1003_f_g1_06_1003_en.avi over time and (b) its cor-
responding histogram over the entire video.

Fig. 9. Effects of the number of templates and query images on the system per-
formance. In the legend, ���� means a particular experimental configuration
using � templates and � query images. The numbers quoted in the legend are
EER in percentage.

in (5). Recall that for each value of , there
is a corresponding approximate value of ,
respectively.

The following observations can be made:
1) Degradation of performance under adverse conditions:

It is obvious from Figs. 10 and 11 that all systems systemat-
ically degrade in performance under adverse conditions. In
order to have a better picture of the degradation, the HTER
of all systems from Mc to Ua are shown in Fig. 12.

2) Holistic versus local appearance methods: Comparing
Fig. 10 with Fig. 11, we observe that the performance of the
holistic appearance methods (PCA and LDA) is worse than

that of the local appearance methods, except for the CWI
classifier (where photometric normalization was not per-
formed). Thus, we can expect that the performance of CWI
to be similar to the performance of other local appearance
methods in the raw image space, such as idiap-dctgmm,
idiap-dcthmmt-v2 and upv if the images are photometri-
cally normalized.

3) Preprocessing: In dctgmm methods, the performance
of applying HEQ is better than that of applying LBP as
a preprocessing method for the Mc protocol. However,
the case is reversed for Ua protocol because HEQ en-
hances shadows while LBP features are invariant to such
monotonic transformation. Selection of the preprocessing
method should be dependent on the environmental condi-
tions. Advancement in image processing now shows that
a semiautomatic procedure to achieve this is realizable
[105].

4) Sample size: CWI’s submission has four variations:
depending on the dichotomies: system complexity, i.e.,
Cheap (C) versus Expensive (E); and strategy for choosing
the query samples, i.e., random (r) versus quality-based
(q) (see Section III-F). Two observations can be noted:
First, the performance of cwi-Eq and cwi-Er is better than
that of cwi-Cq and cwi-Cr. Second, using more templates
and query images improves the system performance. A
rigorous and systematic design of experiments is still
needed to assess the usefulness of the provided quality
measures, and more importantly, the most effective ways
of using such auxiliary information. This is a challenging
problem for two reasons. First, not all 14 quality measures
provided are relevant to a face matching algorithm, e.g., an
algorithm that is robust to illumination changes would, in
principle, be invariant to some photometric measures used
here (brightness, contrast, etc.). This implies that a strategy
for quality measure selection is needed. Second, quality
measures themselves are not discriminatory in relation
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Fig. 10. DET and EPC of the submitted systems evaluated using the Mc BANCA defined cross-validation protocol (on both g1 and g2 data sets). (a) DET. (b) EPC.

Fig. 11. DET and EPC of the submitted systems evaluated using the Ua BANCA defined cross-validation protocol (on both g1 and g2 data sets). (a) DET. (b) EPC.

TABLE IV
PERFORMANCE OF g1 AND g2 BASED ON THE Mc PROTOCOL USING VIDEO

SEQUENCES

to subjects, but can help in distinguishing environmental
conditions. The above research issues are further tackled
in our recent work [106].

TABLE V
PERFORMANCE OF g1 AND g2 BASED ON THE Ua PROTOCOL

5) Multiresolution contrast information: The best algo-
rithm of this competition for Mc protocol is UVigo, where
the WER at is 0.77% for g1 and 2.31% for g2.
For Ua protocol, the best algorithm is uni-lj, where WER
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Fig. 12. Degradation from the Mc to Ua protocol when the operating threshold
is tuned at the EER point (� � ���).

at is 8.78% for g1 and 6.99% for g2. In fact, the
performance of these two systems is very close but uni-lj
is slightly better overall as the average of WER at different

is 3.96% for g1 and 3.98% for g2, while the result of
UVigo is 3.97% for g1 and 4.34% for g2. The success
of these two algorithms derives from the use of multi
resolution contrast information.

D. Single-Image Versus Multi-Image Matching

One aspect that is lacking about the competition is that it
was not possible to compare the result between still face versus
video face matching. A particular characteristic of video-based
matching is the availability of multiple images. We therefore
compare single-image versus multi-image matching here.

For this purpose, the upv system was rerun to compare the re-
sults of these two approaches. The performance of the still face
matching is based on a single image chosen at random. In com-
parison, the multi-image approach processes five images (based
on the supplied quality measures) for the Mc protocol and six
images for the Ua protocol (the DET curves of both configura-
tions are taken directly from the competition submission).

The results are shown in Fig. 13. As can be observed, using
multiple face images in a video sequence consistently outper-
forms the strategy of choosing a single face image.

E. Image-to-Image Versus Manifold-to-Manifold Matching

Another characteristic about video-based matching is the pos-
sibility of deriving a manifold from a set of images. Therefore,
this section compares image-to-image versus manifold-to-man-
ifold matching, while keeping the underlying matching classi-
fier the same for both cases.

For the above purpose, we rerun the mmu system, which is
a manifold-to-manifold matching technique. This system can
easily be converted to image-to-image matching. Starting from
the initial distance metric, which is calculated using (3), The
new scores are calculated as

(6)

Fig. 13. Comparison of performance when using a single image (dashed line)
versus multiple images (solid line) in face verification for (a) the Mc protocol,
and (b) the Ua protocol. For the system with multiple images, five images were
used for the Mc protocol and six for the Ua protocol. The numbers quoted in the
legend are EER in percentage.

Fig. 14. Comparison of performance when using manifold-to-manifold
matching (dashed line) versus image-to-image matching (solid line) in face
verification for (a) the Mc protocol, and (b) the Ua protocol. The mani-
fold-to-manifold matching is based on the mean aligned image (labeled as
“mean”) whereas in the image-to-image matching, maximal correlation is
taken as output [hence labeled as “max,” see (6)]. The numbers quoted in the
legend are EER in percentage.

where and are, respectively, the
index of images in the template and the query video. Note that
the above computation involves by comparisons whereas
the original manifold-to-manifold formation, as shown in (3),
has only a single comparison.

The performance of these two systems is shown in Fig. 14. In
both the Mc and Ua protocols, we observe that both strategies
are not significantly different, despite the claims in the litera-
ture on manifold-to-manifold. Below is a possible explanation:
The success of manifold-to-manifold matching depends on sev-
eral crucial factors: an appropriate manifold representation, a
distance metric between two manifolds, and the length of video
frames. In our exercise here, the length of video frames is lim-
ited to 50. This hinders us from using higher order moments
such as covariance matrix that has been reported to be effective
in [87].

It should be borne in mind that the exhaustive image-to-image
comparison involves computation of normalized correlation
whereas the manifold-to-manifold comparison involves only a
single computation of this metric. A fair comparison should
clearly take into consideration of the complexity or computa-
tional cost. This subject is discussed in the next section.
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TABLE VI
TIME

F. Complexity Versus Performance

Because the target application scenario of this assessment is
on mobile devices, computational resources are crucial. For this
reason, when benchmarking a face verification algorithm, the
cost of computation has to be considered. For instance, a fast
and light algorithm, capable of processing all images in a se-
quence, may be preferred over an extremely accurate algorithm
only capable of processing a few selected images in a sequence.
However, the former algorithm may be able to achieve better
performance since it can process a much larger number of im-
ages within the same time limit and memory requirement. The
above scenario highlights that the performance of two algo-
rithms cannot be compared on equal ground, unless both use
comparable computation costs, taking the time, memory, and
computational resources into consideration.

In order to take this cost factor into consideration, we re-
quested each participant to run a benchmarking program that is
executable in any operating system. Let the time registered by
the program be . We then asked each participant to record
the time needed to process a video of 50 frames (with prepro-
cessing, feature extraction, and classification), but excluding the
time needed to load a video file. Let this time be . The
standardized time is then defined as

Table VI lists the time taken for each system for processing
a video sequence of 50 frames, (in column five), as
well as the time needed to complete the benchmark software,

(column six). The ratio of these two time measurements
are shown in column seven. can be broken down to fea-
ture extraction (including photometric normalization, and facial
feature alignment) and classification. The time of these two pro-
cesses are reported in the third and fourth columns in Table VI.

It should be mentioned that in timing the systems, we
assumed that all software modules are loaded in memory,
including the video sequence. As a result, we excluded the time
needed to load a video sequence, which is highly dependent
on the implementation platform. For instance, Matlab can take
as long as 4 s to load a complete video into the CPU memory
before processing the video whereas a highly optimized C++

code may process a video sequence in a single pass, eliminating
the need to load the entire video images into the memory.
Recall that our goal here is to report the system complexity in
terms of standardized time, which should be as independent as
possible from a particular choice of implementation platform.
This is, in practice, an aspiration that is difficult to achieve.
Therefore, for the sake of completeness, we also reported the
efficiency in four subjective scales, as listed below:

1) Streamlined for speed—C or C++ implementation, multi-
threading, using Intel library.

2) Highly efficient—C or C++ implementation, single-
threading (does not exploit multiple processors or specific
processor architecture).

3) Highly portable—Java implementation, single- or multi-
threading.

4) Prototype—Interpreted scripts, e.g., Matlab or Python im-
plementation.

The performance of each participant as a function of stan-
dardized time, as calculated based on Table VI, is shown in
Fig. 15(a) for the controlled conditions and Fig. 15(b) for the
adverse conditions. Although the HTER for the criterion WER
with is used here, similar results are obtained with other

values. As can be observed, more complex systems generally
perform better. However, the usefulness of quality measures are
not very obvious under the controlled conditions, whereas under
the adverse conditions, this benefit of quality measures is imme-
diately apparent. Not only that the two top performing systems,
i.e., upv and uni-lj, achieve high generalization performance, but
they achieved so with a minimal complexity (in terms of stan-
dardized time). Both systems actually exploit the quality mea-
sures in selecting images of better quality.

VII. CONCLUSIONS

This paper has presented a comparison of video face verifica-
tion algorithms on BANCA database. Eighteen different video-
based verification algorithms from a variety of academic insti-
tutions participated in this competition. The submitted systems
can be conveniently grouped into four categories, depending
on the dichotomies: parts-based versus holistic approach and
frame-based versus image-set (video-to-video)-based compar-
ison. While there are a number of findings, we highlight the fol-
lowing significant ones: First, the parts-based approach gener-
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Fig. 15. Complexity versus performance of different algorithms for the (a) Mc
and (b) Ua protocols.

ally outperforms the holistic one. Second, for the frame-based
approach, using more query images and templates, improves the
system performance. Third, the best algorithms in this evalua-
tion clearly show the importance of selecting images based on
their quality.

Two future potential research directions can be identified.
First, there is a need for developing parts-based algorithms ca-
pable of comparing image-sets, hence exploiting both the ro-
bustness of parts-based algorithms and the immense potential
of the temporal information. Second, in order to understand the
relationship between a system output and a given set of quality
measures, a systematic analysis or modeling technique is criti-
cally needed. Only with a better understanding of this relation-
ship, one can devise algorithms capable of exploiting quality
measures as a vector, rather than a scalar value.
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Vitomir Štruc (M’10) received the B.Sc. degree
in electrical engineering from the University of
Ljubljana, in 2005. He is currently working toward
the Ph.D. degree from the University of Ljubljana,
Slovenia.

He works as a software developer at Alpineon Ltd.
His research interests include pattern recognition,
machine learning, and biometrics.
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