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ABSTRACT

Recent advances in deep learning made it possible to build deep hi-
erarchical models capable of delivering state-of-the-art performance
in various vision tasks, such as object recognition, detection or track-
ing. For recognition tasks the most common approach when using
deep models is to learn object representations (or features) directly
from raw image-input and then feed the learned features to a suitable
classifier. Deep models used in this pipeline are typically heavily
parameterized and require enormous amounts of training data to de-
liver competitive recognition performance. Despite the use of data
augmentation techniques, many application domains, predefined ex-
perimental protocols or specifics of the recognition problem limit the
amount of available training data and make training an effective deep
hierarchical model a difficult task. In this paper, we present a novel,
deep pair-wise similarity learning (DPSL) strategy for deep mod-
els, developed specifically to overcome the problem of insufficient
training data, and demonstrate its usage on the task of face recog-
nition. Unlike existing (deep) learning strategies, DPSL operates on
image-pairs and tries to learn pair-wise image similarities that can be
used for recognition purposes directly instead of feature representa-
tions that need to be fed to appropriate classification techniques, as
with traditional deep learning pipelines. Since our DPSL strategy
assumes an image pair as the input to the learning procedure, the
amount of training data available to train deep models is quadratic in
the number of available training images, which is of paramount im-
portance for models with a large number of parameters. We demon-
strate the efficacy of the proposed learning strategy by developing a
deep model for pose-invariant face recognition, called Pose-Invariant
Similarity Index (PISI), and presenting comparative experimental re-
sults on the FERET an IJB-A datasets.

Index Terms— Deep learning, similarity learning, face recog-
nition

1. INTRODUCTION

Deep models represent powerful hierarchical models that have
shown immense potential for various computer vision tasks and have
pushed the state-of-the-art in many application domains [1], [2], [3].
A typical deep model represents a (complex) highly parameterized
neural network trained for solving a specific machine-learning prob-
lem, such as object detection, tracking or recognition. When used
for recognition tasks, the common approach of deploying deep mod-
els is to learn a suitable feature representation from the available
training data and then feed the learned feature representation to a
classifier of choice. Here, the classifier itself can be another deep
model or some other appropriate “shallow” classifier.

Contemporary deep models typically feature a large amount of
open parameters (in the order of billions) that need to be learned dur-
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Fig. 1. Illustration of the conceptual difference between the typical
deep learning strategies used for recognition tasks, where features
are first extracted from the input image by the deep model and then
fed to a classifier (upper row), and our DPSL strategy, where a pair
of images is fed to the model and a similarity index (or score) is then
returned by the model (lower row).

ing training and, therefore, require an enormous amount training data
to deliver competitive performance. For many problems it is possible
to generate the required amount of training data by scaling, translat-
ing, rotating, mirroring or augmentation the training images in other
ways, while for other problems data augmentation techniques are not
a viable option. The amount of training data available to train deep
models is also limited by particularities of different application do-
mains, (e.g., in medical imaging training data is inherently scarce) or
experimental protocols, which often forbid using data outside from
the predefined training set for training deep models.

In this paper, we introduce a novel, deep pair-wise similarity
learning (DPSL) strategy for deep models designed specifically to
mitigate the problem of insufficient training data. With the DPSL
strategy, the given deep model is not trained on individual input im-
ages, but on image-pairs, which are combined into synthetic images
that serve as inputs for the training procedure. Different from the ex-
isting (deep) learning strategies used for recognition tasks, our DPSL
strategy does not learn object features from the data, but tries to learn
image similarities that can be exploited for recognition directly. An
illustration of the conceptual difference between the feature-learning
pipeline commonly used for recognition tasks with deep models and
our DPSL strategy is shown in Fig. 1 for the problem of face recog-
nition.



To demonstrate the feasibility of the DPSL strategy, we develop
a novel deep model for face recognition under large pose variations,
named Pose-Invariant Similarity Index (or PISI for short) and as-
sess it’s performance on two publicly available datasets (FERET and
IJB-A) with encouraging results. During the training stage, the PISI
model learns to distinguish between image pairs corresponding to
the same subjects and image pairs corresponding to different sub-
jects by producing a large similarity index for the former and a small
similarity index for the latter pair of images. In a sense, our PISI
model learns a similarity function that can be used with pairs of fa-
cial images for recognition purposes.

As the PISI model is based on the DPSL strategy it is consider-
ably different from other deep models developed for unconstrained
face recognition (where large pose-variations may commonly be en-
countered). Deep models, such as the one presented in [4] or [3] typ-
ically build a deep hierarchical model comprised of convolutional,
max-pooling and fully-connected neural-network layers and exploit
the learned feature representations for recognition. Our PISI model,
on the other hand, operates on pairs of images and instead of features
learns similarities between pairs of facial images that correspond to
the same subjects and were captured under different head poses. The
first, convolutional layers of our model can still be interpreted as fea-
ture extractors, which are trained to produce joint feature representa-
tions of the (input) image pairs, while the next, the fully-connected
layers can be considered as classifiers/matchers over the extracted
(image-pair) features that produce the final similarity index. An-
other important aspect of our PISI model is the fact that the amount
of training samples available to train our model is quadratic in the
number of available training images. This is a highly convenient
characteristic as the complexity of the model and its large parameter
space (the model has approximately 15.6 × 106 open parameters)
would otherwise require large amounts of additional training data or
the usage of various data augmentation techniques.

Note that face-recognition under large pose variations is a very
active research field. A detailed survey of all existing techniques is
beyond the scope of this paper. The reader is referred to [5] for a
well written (and condensed) overview of the field.

To summarize, we present the following key contributions in this
paper:

• we introduce a deep pair-wise similarity learning (DPSL)
strategy that learns image similarities over image-pairs in-
stead of features from single input images and can be used
to increase the amount of available training data without data
augmentation techniques (Section 3),

• we present a deep network architecture (the PISI model) for
face recognition under large pose variations developed based
on the DPSL strategy (Section 3), and

• we evaluate the PISI model on the FERET and IJB-A datasets
and present encouraging experimental results using our learn-
ing strategy and modeling approach (Section 5).

2. THEORETICAL BACKGROUND

Traditionally, face recognition systems relied on hand-crafted fea-
tures and suitable classifiers to achieve competitive recognition per-
formance. As suggested in [2], most of the research effort was spend
on the development and/or choice of appropriate image features,
which were often more important than the classifier itself w.r.t. the
final performance of the recognition system. In contrast, contem-
porary state-of-the-art face recognition systems exploit advances in
deep learning and heavily rely on convolutional neural networks [2]
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Fig. 2. A fully-connected layer with a bias term (left) and a convo-
lutional layer with a filter of size 3 and stride 1 (right).

that can operate directly on image data and, hence, alleviate the need
for hand-crafted features. In this section we briefly survey the most
important building blocks of deep models and introduce some termi-
nology used in the remainder of the paper. For a more comprehen-
sive coverage of the topic, the reader is referred to [6].

Deep models and model layers. Deep models used for image-
based recognition/analysis tasks represent hierarchical models, com-
posed of different types of interconnected layers that jointly process
the given input in a feed-forward manner. Among the different lay-
ers, fully-connected, convolutional and max-pooling layers are most
commonly used in the field of computer vision.

Fully-connected layers. Fig. 2 shows the difference between
fully-connected and convolutional layers in a deep model. In a fully-
connected model, each neuron in the i-th layer has a weighted con-
nection to every neuron in the previous layer as well as an additional
bias term. The activation of the i-th layer of a fully connected neural
network is defined as:

yi = σ(Wixi + bi), (1)

where σ(·) represents the activation function of the i-th layer, Wi

represents the connection matrix between the (i − 1)-th and i-th
layers, xi is the vector of inputs into the i-th layer, and bi represents
the bias-vector terms of the units in the i-th layer. Fully connected
neural networks require n2+n parameters for a connection between
two layers of size n (assuming both layers have the same number of
neurons).

Convolutional layers. In contrast to fully connected layers,
each neuron in a convolutional layer (illustrated in Fig. 2 - right) is
only connected to it’s neighboring neurons in the previous layer with
the neighborhood size determined by the shape (or size) of the con-
volutional kernels used. As stated in [2], convolutional deep models
with interspersed convolutional and max-pooling layers do not only
enable machine learning for computer-vision tasks without requir-
ing pre-processing of data, but also have the advantage (compared to
fully-connected models) of tolerating variances in object scale and
translation.

A convolutional layer operating on two-dimensional (image) in-
put data has m × n × k × l parameters, where m is the number of
convolutional filters in the i-th layer, n is the number of filters in the
(i−1)-th layer, and (k, l) are numbers that define the shape (or size)
of the local filters in the i-th layer. Using valid-border convolution
without zero-padding, the filters of size (k, l) reduce an input image
of size a×b pixels to m maps of size (a−k+1, b− l+1). The two-
dimensional convolution operation of an input image f(x, y) with a
filter w(x, y) that is performed in a convolutional layer is then de-
fined as:

o(x, y) =

∞∑
u=−∞

∞∑
v=−∞

f(u, v)w(x− u, y − v), (2)

where w(x, y) represents one of the filter kernels in the convolu-
tional layer, whose parameters (i.e., weights) are learned during
training of the CNN, and o(x, y) denotes part of the output of the
convolutional layer that corresponds to the given kernel w(x, y).
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Fig. 3. The network architecture of the PISI (pose-invariant similarity index) model. The model exploits our DPSL strategy (deep pair-wise
similarity learning) and takes two grayscale facial images with different poses as input and outputs a similarity index. The numbers in the
brackets above the layers stand for the dimensionality of the layer outputs. Note that the outputs of the convolutional layers shown in the
figure are only of an illustrative nature.

Max-pooling layers. Max-pooling layers are commonly used
between convolutional layers to reduce the dimensionality of the
data that is propagated through the deep model. Max-pooling layers
operate on the outputs of the previous convolutional layer, sample
the filtered outputs with over small non-overlapping image patches
( e.g., of size 2 × 2 or 3 × 3 pixels) and output the element with
the highest value from each of the sampled patches. In the context
of deep convolutional models, max-pooling layers can be consid-
ered automated feature extractors - for each patch of the output of
a convolutional filter bank, they propagate forward only the most
highly activated feature of that patch. This reduces the dimension-
ality of the propagated data (e.g., by a factor of 4 for max-pooling
over 2 × 2-pixel patches, or by a factor of 9 for max-pooling over
3× 3 pixel patches) and also preserves the most important features,
which significantly reduces the number of parameters required in the
following model layers.

3. DEEP PAIR-WISE SIMILARITY LEARNING AND THE
PISI MODEL

In this section we introduce our deep pair-wise similarity learning
(DPSL) strategy and pose-invariant similarity index (PISI) model
for face recognition.

DPSL and PISI. The main idea of the deep pair-wise similarity
learning strategy is to combine image pairs from the given training
set into synthetic images and train a deep model the synthetic im-
ages. Instead of learning feature representations from the individual
input images, we try to learn image similarities directly and output
a single similarity index that can be used for recognition. Given a
training set of M images, we are able to produce N = M(M − 1)
distinct image pairs (i.e., synthetic images) that belong to one of two
classes (i.e., match and non-match) and can be used to train a deep
model capable of outputing similarity scores for the given input im-
age pair. If we denote two arbitrary images of size a × b pixels
from the training set as f(x, y) ∈ Ra×b and h(x, y) ∈ Ra×b then
an image pair P ∈ Ra×2b that forms the input to the training pro-
cedure is formed by a simple concatenation of the two images, i.e.,
P = [f(x, y), h(x, y)].

Based on the outlined learning strategy we designed a deep
model for pose invariant face recognition, called the pose-invariant

similarity index (PISI) model. The PISI model represents a deep
neural architecture as depicted in Fig. 3. The model takes two
grey-scale facial images under different poses as input, and out-
puts their similarity, where a value close to one indicates that the
input image pair represents the same subjects, and a value close to
zero indicates that the image pair represents different subjects. The
model uses two convolutional layers separated by a max-pooling
layer for image-pair representation and feeds the outputs of these
layers to two fully-connected layers, which combine them into the
final similarity index. Non-saturating linear rectifiers (ReLU) are
used as activation functions, which speeds up learning and improves
gradient-descent learning on deep neural network architectures, as
reported by Krizhevsky et al. [1].

PISI architecture. The deep network architecture used in the
PISI model comprises two structural parts. The first part serves as
the feature extractor for the pair of input images and is composed
of two convolutional layers, each followed by a max-pooling layer.
The convolutional layers try to capture the joint characteristics of the
input-image pair, while the max-pooling layers introduce a degree of
translation invariance and reduce the size of the model’s parameter
space.

The second structural part of the PISI model comprises two fully
connected layers. The outputs of the first part of the model (which
can be seen as joint features of the given image-pair) serve as the
input for the fully connected layers. The main goal of these layers
is to produce a similarity index based on the feature representation
produced by the first structural part of the model.

Tables 1 and 2 summarize the model layers and parameters, re-
spectively. Note that all layers use pre-activation bias terms. Rec-
tified linear units (ReLU) are used as activation functions in most
layers, except for the max-pooling and third fully-connected layer,
where simple linear activation functions are used.

Training the PISI model. Training the PISI model involves
finding a suitable set of values for all parameters tabulated in Table 2,
such that the model produces values as close as possible to the value
of one for image pairs corresponding to the same subjects and values
as close as possible to zero for image pairs corresponding to different
subjects.

Consider a training set of image pairs P1, P2, ...PN , where a
given pair of images Pk = [f(x, y), h(x, y)] corresponds either
to images of the same subject or images of two different subjects,



Table 1. A summary of the model layers
Layer Activation Dimensions
Input linear 192× 96

Conv2d, stride 1 ReLU 182× 86× 1× 48
(2, 2) MaxPooling linear 91× 43× 1× 48

Conv2d, stride 1 ReLU 81× 33× 1× 48
(2, 2) MaxPooling linear 40× 16× 1× 48

Fully-connected ReLU 500
Fully-connected linear 1

Table 2. A summary of the model parameters
Parameter p Dimensions

w1 48× 1× 11× 11
b1 48
w2 48× 48× 11× 11
b2 48
w3 (40× 16× 48)× 500
b3 500
w4 500× 1
b4 1

N stands for the number of all image pairs in the training set and
k = 1, 2, ..., N . A target similarity index yk ∈ {0, 1} of 1 is then
assigned to all image pairs corresponding to the same subject and
a target similarity index of (yk = 0) is assigned to all image pairs
corresponding to different subjects, where k = 1, 2, ..., N . The loss
function used for the training procedure is the mean absolute devi-
ation L(ỹk) = 1/N

∑N
k=1 |ỹk − yk| between the target similarity

indices and the similarity indices produced by the model with the
current values of the parameters, where ỹk ∈ R and 0 ≤ ỹk ≤ 1
The complete training rule is defined by Eqs. (3), (4), and (5), i.e.:

ϵi+1 ← ϵ0 × (1 + 0.0005(i+ 1))−1 (3)

vi+1 ← 0.9× vi − ϵi ×

⟨
∂L

∂p

∣∣∣∣
pi

⟩
Di

(4)

pi+1 ← pi + vi+1 (5)

As can be seen from the equations, mini-batch stochastic gra-
dient descent with the momentum of 0.9, the decay of 0.0005 and
the initial learning rate of 0.01 is used. In the above equations ϵi+1

denotes the learning rate, vi represents the velocity variable, p rep-
resents a parameter of the PISI model (see Table 2), i represents the
mini-batch index and

⟨
∂L/∂p|pi

⟩
Di

stands for the average over

the i-th mini-batch Di of the derivative of the objective with respect
to p, evaluated at pi [1]. Mini-batches of 128 samples were used for
training.

For the convolutional layers, the parameters were initialized as
proposed by He et al. [7] - through the random normal distribution
with the mean value of 0 and the variance of σ2 = 2

nl
, where nl

represents the number of model parameters for the l-th layer. Bias
terms of the convolutional layers were initialized with the constant
value of 0. Fully-connected layers were initialized from the random
normal distribution with the mean value of 0 and the standard devi-
ation of 0.01, and their bias terms were initialized with the constant
value of 1, as proposed by Krizhevsky et al. [1]. Furthermore, the
dropout rate of 0.5 was used on the fully-connected layers.

Fig. 4. Sample images from the FERET image subsets used for ex-
perimentation. Each row represents images of one subject, while
each column represents one of the image subsets.

Relation to previous work. Our DPSL strategy and PISI model
are related to deep metric learning techniques, such as [8, 9, 10, 11,
12, 13].

Similar to these techniques we also try to learn a measure of sim-
ilarity between input image pairs, but we do not require the learned
measure to be metric. Furthermore, deep metric learning techniques
typically rely on Siamese networks at the lower model layers for
feature extraction and uses additional layers on top of the Siamese
architecture to learn a metric useful for recognition over the image-
pair features. The feature representation used with these techniques
is still learned from individual images and requires a large amount
of training data. The trained deep model (i.e., the feature extractor)
is then simply duplicated for the second image, which produces two
independent processing pipelines (with shared parameters) that are
applied to each image in the input image pair. Our learning strat-
egy and corresponding model, on the other hand, produce a single
processing pipeline and can, therefore, benefit from the increase of
training data due to the joint processing of all image-pairs.

Similar as with deep metric learning technique presented in [13],
extensions of our learning strategy and model to image-triplets are
also possible, but will be presented elsewhere.

4. DATASETS AND EXPERIMENTAL PROTOCOLS

To evaluate the performance of the PISI model for pose-invariant
face recognition, we selected two datasets for our experiments, i.e.,
the FERET [14] and IJB-A [15] datasets.

FERET. We used image subsets ba through bi for the exper-
iments, which contain images of 200 subjects taken under various
poses. Subsets be, bf, bd, bg, bc, bh, bb and bi feature head poses
with a yaw angles of 15◦, −15◦, 25◦, −25◦, 40◦, −40◦, 60◦ and
−60◦, respectively. Some sample images from these subsets are
shown in Figure 4.

All images were preprocessed prior to the experiments by local-
izing the faces in the images with the approach proposed by Zhu et
al. in [16], cropping the facial area from the image and then scaling
each cropped (grey-scale) image to a fixed size of 96× 96 pixels.

Fig. 5. Sample images from the IJB-A dataset. Unlike in this ex-
ample image, each subject in the dataset is actually represented by a
different number of facial images in the dataset.



(a) Subsets bb and bi (b) Subsets bc and bh (c) Subsets bd and bg (d) Subsets be and bf

Fig. 6. ROC curve comparison for the face recognition experiments with different head poses: ±60◦ yaw angles (a), ±40◦ yaw angles (b),
±25◦ yaw angles (c) and ±15◦ poses (d). The images below the graphs illustrate the visual appearance of the probe and target images.
Images with a green bounding box represent examples of the target images, while the images with the red bounding box represent examples
of the probe images. The figure is best viewed in color.

The 200 subjects from the FERET subsets (ba through bi) were
divided into disjoint training and testing sets, with 185 subjects
(1665 images) in the training set and the remaining 15 subjects (135
images) in the test set. From the images assigned to the training set,
2960 frontal-against-side image pairs were generated, half of which
represented positive matches, and the other half represented negative
matches. A similar procedure was also adopted to generate image
pairs for the experimental assessment of the PISI model. Here, each
frontal image from the test set was paired with every other (non-
frontal) image from the test set. Thus, a total of 1800 image pairs
was generated for the assessment, of which 120 (6.7%) represented
positive matches and 1680 (93.3%) represented negative matches.

IJB-A. The subset of the IJB-A dataset [15] used for training
and evaluation of the PISI model consisted of 5712 images of 500
different subjects, for an average of 11.4 images per subject. Fig-
ure 5 shows a few sample images from the IJB-A dataset. The
dataset consists of images of famous people gathered from the web.
The subjects in the dataset were balanced over different geographic
population groups, gender as well as other factors. Compared to
FERET, the images in the IJB-A dataset exhibit much larger vari-
ability w.r.t. pose, illumination, facial expressions, obstructions and
image quality, and is only labelled by subject identity - no pose labels
are provided for the dataset. Instead of generating frontal-against-
non-frontal image pairs, the image pairs needed to train our PISI
model were generated by randomly selecting images from the en-
tire dataset and labelling them according to whether they represent a
positive match or not.

To preproces the training and test sets, ground truth information
provided with the dataset was used to crop the faces from the images.
The cropped facial images were then scaled to a fixed size of 96×96
pixels and converted to grey-scale. The subjects of the images were
again divided into disjoint training and test sets, such that 333 sub-
jects were used for training and 166 subjects were used for testing.
4676 image pairs were generated from the training set to learn the
open parameters of the PISI model, and 3320 image pairs were gen-
erated from the test set to assess PISI’s performance. In both train-
ing and test sets, exactly half of the image pairs represented positive
matches and the other half represented negative matches.

5. RESULTS AND DISCUSSION

The training procedure described in the previous section was used to
learn the parameters of the model on each of the described datasets.
The training was conducted on the GPU (Nvidia GeForce 670GTX)

Fig. 7. ROC curve comparison for the full feret test set

of a desktop PC with an Intel i7 3770K processor running at 3GHz
and 8 GB of DDR3 RAM. The training time was approximately one
day for the FERET dataset and one week for the IJB-A dataset.

The performance of the resulting model was evaluated in face
verification experiments using ROC curves. Bootstrapping was used
to generate variance estimates for the generated curves. The PISI
model and DPSL strategy are generally suited best for verification
(i.e., two class) problems, but can also be applied for identification
(recognition) tasks if the problem is formulated through a series of
pair-wise comparisons [17]. We compare the performance of the
PISI model to PCA- and LDA-based baselines [18], [19], a com-
bination of Gabor features and PCA as well as the Gabor-Fisher
Classifier [20]. All competitor techniques are trained and tested on
the same data and with the same experimental protocol as the PISI
model. The implementations for the competitor techniques were
taken from the Matlab “PhD face recognition toolbox” [21], [22].

Experiments on the FERET dataset. In our first series of ex-
periments we assess the PISI model on the FERET dataset. The
focus of this series of experiments is solely on pose variability, since
all other factors influencing the appearance of the facial images are
controlled for this dataset. Fig. 6 shows the experimental results for
different yaw angles featured in the different FERET subsets. The
PISI model provides significant performance improvements over the
chosen baseline techniques for most head posses (i.e., different yaw



Fig. 8. ROC curve comparison for the IJB-A test set

angles) and most operating points on the ROC curves. The biggest
difference in performance can be seen at the larger yaw angles (i.e.,
at yaw angles of ±60◦ and ±40◦), while the performance differ-
ences are less significant for the smaller deviations from frontal pose.

Fig. 7 shows the comparison of the PISI model and the baseline
techniques for the full FERET test set (all subsets combined). We
again observe that the proposed model ensures the best performance
of all tested techniques.

Experiments on the IJB-A dataset. In our second series of
experiments we use the IJB-A dataset, which contains images with
other sources of appearance variability next to pose and is consid-
ered one of the most challenging datasets for unconstrained face
recognition. The results of our experiments on the IJB-A dataset are
presented in Fig. 8. Due to the unconstrained recognition problem,
all assessed techniques perform visibly worse than on the FERET
dataset. However, the performance of all four baseline techniques is
only slightly better than chance, while our PISI model ensures sig-
nificantly better verification results.

6. CONCLUSIONS

We have presented a novel deep pair-wise similarity learning strat-
egy for deep models and demonstrated its feasibility by designing
and training a deep model for unconstrained face recognition. We
have shown that the developed PISI model ensures competitive per-
formance on two challenging datasets. The main shortcoming of the
developed model is its complexity, which was limited by the hard-
ware available to us at the time of writing. As part of our future
work we plan to extend the PISI model to a more complex architec-
ture that is expected to deliver even better performance. The research
presented in this paper has also implications for other fields, where
the lack of training data hinders the deployment of deep models. In
these fields our DPSL strategy could provide a viable solution for
learning deep models.
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