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1 INTRODUCTION

In recent decades automatic face recognition has become oneof the most active research areas in
the field of biometrics, with possible applications in law enforcement, access control, e-banking,
entertainment, smart homes, and numerous other domains [1,2].

Based on the face representation used for the recognition, face-recognition techniques can
be divided into two groups [3]:appearance-basedandfeature-based. Appearance-based meth-
ods consider the global properties of the face and use the whole face image (or specific image
regions) to extract facial features, while feature-based methods, on the other hand, rely on lo-
cal facial characteristics (such as eyes, nose and mouth) and use angles and distances between
fiducial points on the face as descriptors for face recognition.

A typical example of appearance-based methods is the principal component analysis (PCA),
introduced by Turk and Pentland [4]. PCA identifies a subspace whose basis vectors correspond
to the maximum variance directions of the given training images. Face recognition is performed
by comparing the projection coefficients of different face images in this subspace, in which
information compression, dimensionality reduction and decorrelation of the pixel values of the
face images are achieved.

Another representative of appearance-based methods is linear discriminant analysis (LDA),
which tries to improve upon PCA by considering the class-membership information of the train-
ing images. Unlike PCA, LDA constructs a linear subspace by maximizing the ratio of the
between-class scatter matrix to the within-class scatter matrix, which serves as a criterion for
class separability. Several techniques have been presented in the literature that make use of this
discrimination criterion, including the Fisherface technique [5], Regularized LDA (RLDA) [6],
Enhanced LDA (ELDA) [7], Fractional-step LDA (F-LFA) [8] and Direct LDA (DLDA) [9].

To cope with nonlinear changes in the appearance of the face images due to varying illu-
mination, pose and facial expression, linear appearance methods (such as PCA or LDA) were
recently extended to their nonlinear (kernel) form. Popular kernel appearance-based meth-
ods are kernel principal component analysis (KPCA) [10], generalized discriminant analysis
(GDA) [11], kernel Fisher analysis (KFA) [12], complete kernel Fisher discriminant analysis
(CKFA) [13] and the kernel fractional-step discriminant analysis (KFDA) [14].

Srisuk et al. [15] proposed a face-recognition technique based on the trace transform [16];
this can also be considered to be appearance-based as features are extracted from the whole face
image. The proposed technique first extracts shape information from binarized trace transforms
of a face image and then uses a dissimilarity measure, calledthe Hausdorff context, for the
recognition.

Although appearance-based methods have been dominant face-recognition techniques for
years, it is widely believed [17] that local face-features are more robust to face-image changes
caused by varying illumination, pose and facial expressionand are therefore very suitable for
face recognition.

Examples of feature-extraction techniques that make use ofthe local characteristics of face
images can be found in Gabor wavelet-based methods. One of the first methods to incorpo-
rate Gabor-based features was the dynamic link architecture (DLA) presented in [18]. In DLA
a rectangular graph is placed over a face image and a number ofGabor features (called Gabor
jets) are extracted at each of the graph’s nodes. Once a face-graph is built, a graph-matching pro-
cedure is employed for the recognition. Based on DLA, Wiskott et al. [19] proposed a method
called elastic bunch graph matching (EBGM), which improvedupon DLA by introducing a face
graph with nodes located at specific facial landmarks (fiducial points).

Liu and Wechsler combined elements from appearance-based and feature-based methods
and proposed the Gabor-Fisher Classifier (GFC) [20]. The GFCfirst employs a set of forty
Gabor wavelets to derive an augmented Gabor-feature vectorand then uses the enhanced Fisher

1



linear discriminant model (EFM) to reduce the vector’s dimensionality. Several modifications
of the described approach were presented in the literature,including [1,12,21].

This paper introduces a hybrid feature-extraction approach, called trace kernel partial-least-
squares discriminant analysis (TKPA), which applies the novel kernel partial-least-squares dis-
criminant analysis (KPA) to a feature vector derived by using the trace transform. Experimental
results on the XM2VTS database show that the trace face-feature vector can significantly im-
prove the authentication performance of the subspace-projection techniques and that the pro-
posed approach (TKPA) can outperform popular face-recognition techniques such as GDA,
KDA and CKFA as well as combinations of these techniques withfeatures extracted by the
trace transform. The novelty of this paper therefore comes from:

• the derivation of the trace face-feature vector,

• the kernel partial-least-squares discriminant analysis (KPA), which improves upon Yang’s
CKFA [13] by replacing the kernel principal component analysis (KPCA) subspace with
the kernel partial-least-squares (KPLS) subspace,

• the integration of the trace transform and the KPA techniqueinto the hybrid TKPA
feature-extraction approach,

• a comparative assessment of the proposed hybrid approach and several state-of-the-art
feature-extraction methods.

The rest of the paper is organized a follows. In Section 2 the theory behind the trace trans-
form is reviewed and the methodology to derive the trace face-feature vector is outlined. The
kernel partial-least-squares discriminant analysis is introduced in Section 3 and the novel TKPA
feature-extraction approach is detailed in Section 4. Section 5 describes the matching proce-
dure, while the experimental results are given in Section 6.The paper concludes with some
final comments and directions for future work in Section 7.

2 THE TRACE FACE-FEATURE VECTOR

The trace transform (TT), first introduced by Kadyrov and Petrou in [16], is a generalization
of the Radon transform, which can be used for the extraction of robust image features and
subsequently for object recognition. It has already been employed in the field of face recognition
(i.e., face authentication), yielding excellent results [15,22], but its wider use is still limited due
to the complexity of the algorithms used for TT-based feature extraction. This section introduces
a novel, simplified, approach for the derivation of the TT-based face-feature vector, which in
contrast to the methods presented in [15, 22] only relies on apair of eye coordinates and thus
eliminates the need for any masking of the facial region, threshold selection, weight calculation,
etc. As will be shown in Section 6, the proposed trace face-feature vector (in comparison with
intensity images) improves the performance of different subspace projection techniques by at
least30%, making the trace transform a useful image preprocessing step for future biometric
systems.

2.1 The trace transform
Let I(x, y) ∈ R

a×b represent an image of sizea × b (in pixels) and letL denote a set of all
the possible lines (called tracing lines) throughI(x, y), determined by the parametersp andθ.
The parameterp denotes the shortest distance from a tracing line to the center of the imageOc,
while θ defines the angle of the tracing lines normal to the referencedirection (i.e., thex-axis).
We further assume thatt represents a variable defining the position on a tracing line(see Fig.
1 for a visualization of these parameters). The trace transform (TT) [15, 16, 22] can then be
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defined as a functionw(p, θ), which is calculated by applying the trace functionalF on all the
lines ofL, i.e.:

w(p, θ) = F (g(θ, p, t)) (1)

whereg(θ, p, t) denotes the function values of the tracing line defined by thepair (p, θ), and the
parametersθ andp lie in the range [0, 2π] and [−pd, pd], respectively. Note thatpd equals half
the length of the diagonal ofI(x, y).

p

θ

Oct

Fig. 1. Example of a line with parametersp andθ through a sample image.

With a closer examination of the equation (1) we can see that the TT provides a mapping
from the original image space to a 2D parameter space spannedby p andθ. A trace-transformed
image can therefore again be interpreted as an image (i.e.,w(p, θ)) whose pixel locations are
given by p and θ and pixel values by the values of the functionalF on the corresponding
tracing lines. Using different trace functional results indifferent TTs, which depending on the
functional used exhibit different properties that can be useful for face recognition.

In our experiments we made use of the15 trace functionals that are presented in Table 1.
Note that there is no specific rule about which or how many functionals should be used for the

Number Trace functional Number Trace functional

1 F1(f(t)) =
∫ ∞

0
f(t)dt 9 F9(f(t)) = median{f(t)′}

2 F2(f(t)) = (
∫ ∞

0
|f(t)|0.5dt)2 10 F10(f(t)) = max{f(t)′}

3 F3(f(t)) = median{f(t)} 11 F11(f(t)) = range{f(t)′}

4 F4(f(t)) = max{f(t)} 12 F12(f(t)) = var{f(t)′}

5 F5(f(t)) = range{f(t)} 13 F13(f(t)) = mad{f(t)′}

6 F6(f(t)) =
∫ ∞

0
f(t)′dt 14 F14(f(t)) = (

∫ ∞

0
|f(t)′|0.5dt)2

7 F7(f(t)) = var{f(t)} 15 F15(f(t)) = (
∫ ∞

0
|f(t)′|2dt)0.5

8 F8(f(t)) = mad{f(t)}

Table 1. The trace functionals used for the derivation of thetrace face-feature vector (max =
maximum value,min = minimum value,range = maximum value - minimum value,var =
variance,mad = mean absolute deviation andf(t) = g(θ, p, t))

calculation of the trace transform. For example, Srisuk et al. [22] made use of 22 functionals to
derive their features with the trace transform. In this paper we selected a set of15 functionals,
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consisting mainly of statistical descriptors of the tracing lines (and their derivatives) to analyze
the statistical properties of different face images and to derive the trace face-feature vectors.

2.2 Calculating the trace face-feature vector
Consider the set of15 trace functionalsT = {Fi : i = 1, 2, ...15} presented in Table 1. To
derive the trace face-feature vector of a given face imageI(x, y), the image is first mapped
into the trace space using all the functionals ofT . The mapping results in a set of15 trace-
transformed imageswi(p, θ) (i = 1, 2, ..., 15), each carrying information about the statistical
properties of the tracing lines of the original input image.To incorporate all of this information
in a single feature vector we concatenate all the trace-transformed images and derive the trace
face-feature vectorx. Before the concatenation, we first downsample the TTswi(p, θ) (i =
1, 2, ..., 15) to a size ofu×v (whereu < a andv < b) to reduce the trace-space dimension, and
then normalize them to zero mean and unit variance. In the last step we create vectorswi out of
the downsampled imageswi(p, θ) by concatenating their rows (or columns) and combine all of
the vectorswi (i = 1, 2, ..., 15) into the trace-face feature vectorx, i.e.:

x = (wT
1

wT
2
· · · wT

15
)T ∈ R

N (2)

whereT denotes the transpose operator andN = 15uv (u andv denote the dimensions of the
resized imageswi(p, θ) for i = 1, 2, ..., 15).

Three examples of the trace face-feature vector (the TTs arepresented in image form) are
shown in Fig. 2. The first two belong to the same person (Fig. 2 a) and 2 b)), while the third
trace face-feature vector corresponds to the face image of adifferent person (Fig. 2 c)). It
will be shown in Section 6.5 that the trace transform emphasizes the discriminative information
contained in the original (face) images, leading to a reduction in the face-authentication error
rates.

a) b) c)

Fig. 2. Examples of trace-transformed images for a), b) the same person, c) a different person.

Although the procedure for deriving the trace face-featurevector is relatively simple in
theory, there are several practical issues one has to consider:

• To calculate the trace transform of a face image, the parametersθ andp have to be quan-
tized (e.g., in our experiments (Section 6) we used180 values for the parameterθ taken
from the range [0, 2π] with a step size of∆θ = pi/90 (i.e.,θ = i∆θ, for i = 1, 2, ...180)
and similarly, we used140 discrete values (where140 equals the length of the diagonal of
a88×110 image rounded up to an integer value) for the parameterp taken from the range
[−70, 70] with a step size of∆p = 1; thus, the size of one TT image equaled140× 180).
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• To reduce the size of the final trace face-feature vector, each of the fifteen TT images
wi(p, θ) (i = 1, 2, ..., 15) has to be downsampled prior to concatenation (e.g., we used
a rectangular sampling grid with35 horizontal and45 vertical grid lines uniformly dis-
tributed over the trace-transformed image to reduce the size of thewi(p, θ) (i = 1, 2, ..., 15)
from 140× 180 to 35× 45).

Despite the downsampling of the TTs to a size of35 × 45, the concatenation of all fifteen
trace-transformed images still results in a feature vectorwhose dimension isN = 23, 625. To
further reduce the vector’s dimension we will subject it to anovel subspace-projection tech-
nique, which will be presented in the next section.

3 KERNEL PARTIAL-LEAST-SQUARES DISCRIMINANT ANALYSIS
(KPA)

Subspace projection techniques based on Fisher’s criterion for class separability are among
the most popular methods for facial feature extraction. Numerous discriminant approaches
have been presented in the literature in the past, includingthe famous Fisherface approach [5],
regularized linear discriminant analysis (RLDA) [6] and direct linear discriminant analysis
(DLDA) [9]. In recent years, however, kernel variants of these methods have emerged as a pow-
erful tool for nonlinear feature extraction. Popular examples of kernel discriminant methods are
the generalized discriminant analysis (GDA) [11], kernel Fisher analysis (KFA) [12] and the
complete kernel Fisher discriminant analysis (CKFA) [13].Following the idea of CKFA (where
features are extracted by first applying kernel principal component analysis (KPCA) to reduce
the space dimension and subsequently using LDA in the reduced space) we propose a novel
kernel discriminant approach, called Kernel partial-least-squares discriminant Analysis (KPA),
where the KPCA part of the CKFA is replaced with the kernel partial-least-squares (KPLS)
algorithm.

In the remainder of this section we first review the basic concept of the partial-least-squares
algorithm, then a description of KPLS is given, and finally the KPA method is introduced.

3.1 Extracting latent vectors with kernel partial least squares (KPLS)
The kernel partial-least-squares (KPLS) algorithm [23] isa nonlinear extension of the partial-
least-squares technique presented in [24]. It can be used for relating several dependent variables
(responses) to a large number of independent variables (predictors). The basic idea of KPLS
is to create latent vectors (components, factors) that account for as much of the variance of the
independent variables as possible, while simultaneously modeling the dependent variables well.

3.1.1 The concept of partial least squares (PLS)

Denote byX =
[

xT
1
, xT

2
, ..., xT

n

]T
an×N matrix ofn N -dimensional input variablesx and by

Y an× C matrix of correspondingn C-dimensional response variablesy. The PLS algorithm
finds the matricesT, P, E, U, Q andF in a way that the matricesX andY can be expressed as
follows [25]:

X = TPT + E
Y = UQT + F

(3)

whereT andU aren × r matrices containingr latent vectors forn inputs,P andQ denote
N × r matrices of weights (used to determine linear combinationsof inputs and responses,
respectively) and then×N andn× C matricesE andF stand for the matrices of residuals.
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The matrices of the decomposition in (3) are computed with the help of the nonlinear it-
erative partial-least-squares (NIPALS) algorithm [24] (the NIPALS algorithm for the KPLS
method will be described in more detail in the next section),which finds the weight matricesP
andQ in such a way that the covariance between theX andY matrices is maximized.

3.1.2 The kernel partial least squares (KPLS) algorithm

To extend the PLS algorithm to its nonlinear form (kernel partial least squares - KPLS), Rosi-
pal and Trejo [23] proposed a modification of the NIPALS algorithm based on the ”kernel
trick” [10], which avoids calculating the potentially computationally expensive nonlinear trans-
formationΦ (whereΦ denotes a nonlinear mapping of the vectorx from the input spaceRN to
a high dimensional feature spaceF , i.e.: Φ : x ∈ R

N → Φ(x) ∈ F), and finds the parameters
of the decomposition (3) using then×n kernel matrix of the input variablesxi (i = 1, 2, ..., n):

K =
[

Φ(xi)Φ(xj)
T
]

= [K(xi, xj)] ; ∀i, j (4)

As our goal is to compute latent vectors (i.e., the matricesT and U) that are useful for
classification, we construct then× C response matrixY in the following way [25–27]:

Y =











1n1
0n1

· · · 0n1

0n2
1n2

· · · 0n2

...
...

. ..
...

0nC
0nC

· · · 1nC











, (5)

whereC denotes the number of classes in the set ofn N -dimensional inputs (matrixX), ni

denotes the number of inputs in classCi, 1ni
(i = 1, 2, ..., C) stands for ani × 1 vector of all

ones, and0ni
(i = 1, 2, ..., C) is ani × 1 vector of all zeros. It is easy to see that the rows ofY

represent encoded labels of theC classes ofX.
The NIPALS algorithm for the KPLS approach can now be described as follows [28]:

Input: MatricesK c andY

Output: r n-dimensional latent vectorst andu

1. randomly initialize they-latent vectoru

2. calculate thex-latent vector:

t = K cKT
c u, t ← t/‖t‖

3. update they-latent vector:

u = K cKT
c t, u← u/‖u‖

4. repeat the steps 2-3 until convergence (i.e., the vectoru in two consecutive iterations does
not change)

5. deflate the matricesK c andY:
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K c = K c − ttT K c, Y = Y − ttT Y

6. orthonormalize the matrixY:

Y = Y(YT Y)−1/2

7. continue with step 2 using new matricesK c andY.

Note that in the above algorithm the vectorst andu denote columns of the matricesT andU,
respectively, whileK c denotes the centered kernel matrix of the input variables inX, i.e. [10]:

K c = (I −
1

n
1n1T

n )K(I −
1

n
1n1T

n ), (6)

whereI represents ann-dimensional identity matrix and1n stands for a vector of all ones, with
lengthn.

After the matricesT andU are calculated, the latent vectors of new inputsX∗ are computed
from:

T∗ = K∗
cA (7)

whereA is then× r KPLS projection matrix, defined by

A = KT
c U(TT K cKT

c U)−1 (8)

and

K∗
c = (K∗ −

1

n
1n∗1T

n K)(I −
1

n
1n1T

n ) (9)

is the centered kernel matrix of the new inputs inX∗ (n∗ denotes the number of new inputs).
In this paper four polynomial kernels are considered for theimplementation of the KPLS

algorithm, i.e., the linear or first-order polynomial kernel, the second-order , the third-order and
the forth-order polynomial kernel, i.e.:

K(xi, xj) = (xT
i xj)

z (10)

wherez = 1, 2, 3 and4.

3.2 Extracting features with KPA
To extract the final face features with the novel kernel partial-least-squares discriminant analysis
(KPA) we construct the within-class and between-class scatter matrices (denoted bySwlat

and
Sblat

) using the firstr = n− C (recall thatr denotes the number of extracted latent vectors,n
denotes the number of input variables inX, andC stands for the number of classes inX) latent
vectors of the input variables inX.

Let T represent an × r matrix, containing in its columnsr = n − C latent vectorst;
further denote then row vectors ofT by s. The matricesSwlat

andSblat
can then be defined as

follows [5]:

Swlat
=

C
∑

i=1

∑

sj∈Ci

(sj − s̄i)(sj − s̄i)
T (11)

Sblat
=

C
∑

i=1

|Ci|(s̄i − s̄)(s̄i − s̄)T (12)
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wheresj represents thej-th row vector ofT corresponding to thej-th input variable ofX, s̄i

represents the mean vector of the rows ofT belonging to classi, s̄ is the mean vector of all the
rows ofT, and|Ci| stands for the number of variables in classi (i = 1, 2, ..., C).

Based on these matrices, the KPA method calculates a projection matrixZ that maximizes
Fisher’s criterionJ(Z), i.e:

J(Z) =
ZT Sblat

Z

ZT Swlat
Z

, (Z 6= 0) (13)

Since the within-class scatter matrix was computed using only the firstn − C latent vec-
tors, Swlat

is always nonsingular and the optimal projection matrixZ can be constructed by
concatenating the eigenvectors of the generalized eigenproblem defined by:

Sblat
zi = λiSwlat

zi (14)

wherezi denotes thei-th eigenvector of (14) andλi represents the correspondingi-th eigen-
value.

The(n− C)× d projection matrixZ is thus defined as follows:

Z = [z1 z2 · · · zd] (15)

whered is the number of eigenvectors that defines the dimensionality of the KPA subspace (d ≤
C − 1) and the eigenvectorszi (i = 1, 2, ..., d) correspond to a set of decreasing eigenvalues,
i.e.,λ1 ≥ λ2 ≥ · · · ≥ λd.

Using the projection matrixZ (15), the final feature vectory can be computed from the
vectors of a given input variablex, i.e.:

y = sZ (16)

where the feature vectory is of size1× d.

4 TRACE KERNEL PARTIAL-LEAST-SQUARES DISCRIMINANT
ANALYSIS (TKPA)

In thissectionwe present a novel, hybrid feature-extraction approach which combines the trace
face-feature vector, introduced in Section 2, with the novel KPA subspace projection technique
presented in the previous section. The proposed approach isbased on the following facts:

• the trace transform can extract features that are robust against smaller changes in pose,
illumination and facial expression [22] (as the trace-transformed images are calculated by
applying different functionals to thetracing linesof a face image, they are to some extent
insensitive to changes of the individual pixel values of theinput face image);

• the trace face-feature vector contains more discriminative information than the original
grey-scale input image and is therefore better suited for use with subspace methods (note
that the trace transform with the first functional ofT represents the Radon transform,
which is known to contain the same information as the input image [22,29]; the remaining
14 functionals ofT emphasize different characteristics of the input image andtherefore
provide supplementary information, useful for face recognition);

• it was shown in [26] that LDA-based features, computed in thePLS subspace (which is
constructed using the class membership information of the training images), ensure better
authentication performance than the Fisherface method [5], where discriminative features
are computed in the PCA subspace (this also applies to KPCA and KPLS).
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Based on these facts the hybrid approach, called the trace kernel partial-least-squares dis-
criminant analysis or TKPA, first computes the trace face-feature vectorx from an input face
imageI(x, y) following the procedure described in Section 2 and then mapsthe vectorx into
the low-dimensional KPA subspace, where the final face authentication is performed.

The whole TKPA algorithm can be described as follows:

Training

Input: A set ofn training images of the given databaseX

Output: A set of low-dimensional face-feature vectorsY = {yi ∈ R
d : i = 1, 2, ...n}

1. compute the trace transforms of all the training images inX using the set of15 trace func-
tionalsT (1),

2. resize the trace-transformed imagesw(p, θ) to reduce the trace feature-space dimension,

3. normalize the resized imagesw(p, θ) to zero mean and unit variance,

4. combine the normalized and resized trace-transformed images ofX into n trace face-feature
vectorsx (2),

5. construct matricesK (4), K c (6) andY, (5) using all the trace face-feature vectors ofX

6. computer = n− C latent vectorst using the KPLS NIPALS algorithm,

7. construct the KPA projection matrixZ (15),

8. compute the low-dimensional KPA feature vectoryi (i = 1, 2, ..., n) for all the training
images inX ,

9. calculate the client models (the mean feature vectors of all the training images belonging to
a specific client) for allC clients of the given database.

Feature extraction for new (test) images

Input: A set ofn∗ test images of the given databaseS

Output: A set of low-dimensional face-feature vectorsY∗ = {yi ∈ R
d : i = 1, 2, ...n∗}

1. follow the steps 1-4 of the TKPA training algorithm using aset of test imagesS,

2. compute the matricesK∗ (4) andK∗
c (9) using the trace face-feature vectors fromS andX ,

3. compute ther = n− C latent vectorst for each trace face-feature vector ofS (7),

4. compute the low-dimensional KPA feature vectoryi (i = 1, 2, ..., n∗) for all n∗test images
in S.
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5 MATCHING

In the matching stage the feature vectory (16) of a given input face image (sometimes referred
to as the live feature vector) is compared with the claimed client’s feature vector (i.e., the mean
feature vector of the clients training images). If the live feature vector and the claimed client’s
feature vector display a degree of similarity that is higherthan the decision threshold, then the
input image is recognized as genuine (i.e., belonging to theclaimed client), otherwise the input
image is recognized as belonging to an impostor (or vice versa, if a dissimilarity measure is
used).

In this paper the gradient distancedgd [30] was used as the similarity measure. Thedgd-
based matching score was computed as follows:

dgd(y, ȳi) =
‖(y− ȳi)

T∇P (i|y)‖

‖∇P (i|y)‖
(17)

where∇P (i|y) is defined as

∇P (i|y) =

C
∑

j=1, j 6=i

p(y|j)(ȳj − ȳi) (18)

andp(y|j) equals

p(y|j) =
1

√

(2π)d
exp{−

1

2
(y− ȳj)

T (y− ȳj)}. (19)

In the above equationsy denotes the feature vector of the given input image,ȳi and ȳj

denote the mean feature vectors of thei-th andj-th client (i, j = 1, 2, ..., C), C denotes the total
number of clients,d is the KPA subspace dimension,∇P (i|y) stands for the gradient direction of
thei-th client’s aposteriori probability function,p(y|j) represents thej-th clients measurement
distribution, and, finally,‖.‖ andT denote the norm and the transpose operator, respectively.

Note that the gradient distance was chosen as the similaritymeasure in this paper because
it was specifically developed to be used in conjunction with feature-extraction methods that are
based on Fisher’s criterion (13) for class separability [30].

6 EXPERIMENTS AND DISCUSSION

6.1 Database and experimental protocol
Our experiments were conducted on face images from the multi-modal XM2VTS database [31],
which contains audio and video data as well as color images of295 individuals, recorded in four
separate sessions that were uniformly distributed over a period of five months. At each session
two recordings were made, resulting in a total of 2360 frontal face images (8 per subject) that
were available for the training and testing of the proposed TKPA feature-extraction algorithm.

To enable a direct comparison of our approach with other methods presented in the literature
the first configuration of the standard experimental protocol (i.e., the Lausanne protocol [32]),
associated with the XM2VTS database, was used in the experiments. The protocol splits the 295
subjects into groups of 200 clients (i.e.,C = 200) and 95 impostors (25 used for the evaluation
and 70 for the testing). The images of these groups are then further divided into sets of training,
evaluation and test images. Specifically, the first configuration of the Lausanne protocol resulted
in the following experimental setup [32]:

• client training examples: 3 images per client

• client access trials in the evaluation stage:qce = 600

• impostor access trials in the evaluation stage:qie = 40, 000 (25× 8× 200)
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• client access trials in the test stage:qct = 400

• impostor access trials in the test stage:qit = 112, 000 (70× 8× 200)

The images of the training set were used for the calculation of the KPA face-feature vectors
16 and for the construction of the client models (i.e., the mean feature vectors). The images
of the evaluation set were employed for the tuning of the KPA subspace projection technique
(i.e., selection of the kernel function and the optimal number of features) and for an estimation
of the global decision threshold that is used for accepting or rejecting a person claiming a
client identity, while the images of the test set were employed only for the final performance
evaluation.

Two standard error rates were used in our experiments for measuring the performance of
the proposed TKPA approach. The first, called the false acceptance rate (FAR), is defined as
the ratio of successful impostor accessesqsi to the number of impostor access trialsqi (i.e.,
qie in the evaluation orqit in the test stage, respectively), while the second, called the false
rejection rate (FRR), is defined as the ratio of unsuccessfulclient access trialsquc to the total
number of client access trialsqc (i.e.,qce in the evaluation orqct in the test stage, respectively).
Additionally, the total error rate (TER) was computed in each experiment to provide a single
quantitative error measure of our approach. The described error rates are given by:

FAR = (
qsi

qi
)100% FRR = (

quc

qc
)100% (20)

TER = FAR + FRR (21)

In addition to serving as quantitative performance measures for a biometric authentication
system, the FAR and FRR are used to compute the decision threshold, which is usually set to a
value that guaranties equal false acceptance and false rejection rates on the evaluation set.

6.2 Image preprocessing
Image preprocessing is one of the most important steps in (image-based) biometric authentica-
tion systems. It was shown in [33] that many face-recognition methods exhibit a drop in per-
formance when images with poorly localized faces are used for the feature extraction instead
of properly localized faces. Similarly, varying lighting conditions in the image-acquisition pro-
cess also cause a deterioration of the authentication performance [34]. To avoid the presented
problems we performed the following procedures:

• Face localization- for each face image of the XM2VTS database a pair of eye coordi-
nates was manually determined.

• Geometric normalization - first, each image was rotated and scaled in such a way that
the centers of the eyes were located at predefined positions;then the face parts of the
image were cropped to a standard size of88× 110 pixels.

• Photometric normalization - each image was photometrically normalized using zero
mean and unit variance normalization.

Some examples of the preprocessed face images from the XM2VTS database are shown in
Fig. 3.
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Fig. 3. Examples of preprocessed images from the XM2VTS database.

6.3 Kernel function selection
To select the most appropriate kernel function to be used in conjunction with the proposed
TKPA feature-extraction approach, the first set of experiments evaluated the performance of the
algorithm using different kernels. Only images from the evaluation set were used at this point,
while the test images were reserved exclusively for the finalcomparative assessments presented
in Sections 6.5 and 6.6. Four types of kernels were tested in the comparison, i.e., the first-,
second-, third- and fourth-degree polynomial kernels (i.e., K(xi, xj) = (xi ·xj)

z, for z = 1, 2, 3
and4). The feature-vector length was set to its maximal value (i.e.,d = C − 1 = 199) and the
gradient distance (17) was used to calculate the matching scores.

The results of the described experiments are presented in Table 2. From the table we can
see that the TKPA implementation with the third-degree polynomial (z = 3) kernel performed
best, followed in order by the first-degree (z = 1) polynomial kernel, second-degree polynomial
(z = 2) kernel and the fourth-degree polynomial (z = 4) kernel.

Poly. degree (z) FAR(%) FRR(%) TER(%)

1 1.74 1.83 3.57

2 1.78 1.83 3.61

3 1.64 1.67 3.41

4 1.83 1.83 3.66

Table 2. Authentication performance of the TKPA with different kernel functions (evaluation

set)

Based on the presented results we can conclude that the optimal kernel function to be used
in conjunction with the TKPA approach is the third-degree polynomial kernel.

6.4 Selecting the optimal number of features
The second set of experiments assessed the performance of the proposed TKPA approach with
respect to the dimension of the KPA subspace. For this purpose the dimension of the feature
vector was gradually increased fromd = 10 to its maximal value ofd = 199 (recall that the
maximum number of features equalsd = C−1 = 199, whereC denotes the number of clients in
the database - Section 3.2) with a step size of∆d = 20 (except for the last step). Consistent with
the findings of our previous experiments, the KPA part of the TKPA feature-extraction method
was implemented using the third-degree polynomial kernel.Again, the gradient distance was
used in the matching stage.

Fig. 4a shows the results of the assessment. From the graph (showing the dependency of the
total error rate (TER) and the feature dimensiond for the TKPA approach implemented with
the third-degree polynomial kernel) we can see that the bestauthentication performance (on
the evaluation set) was achieved when the maximum possible number of features was used (i.e.,
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Fig. 4. TKPA authentication performance with respect to thefeature dimension (evaluation set),
a) for the third-degree polynomial kernel, b) for the first-,second- and fourth-degree polynomial
kernel

d = 199). In fact, each increase in the number of features led to an increase in the authentication
performance of the TKPA approach. The presented findings suggest that the maximum number
of features should be used for further comparative assessments of the proposed TKPA method.

To validate our decision to use the third-degree polynomialkernel for the implementation
of the TKPA approach, curves showing the dependency of TER and d for the remaining three
kernel functions are shown in Fig. 4b. We can see that TKPA performs best (regardless of
the kernel function) when alld = 199 features are used. The result supports our finding from
the previous section that the optimal kernel function to be used in conjunction with the TKPA
approach is the third-degree polynomial kernel.

6.5 Comparison with other methods
In the third set of experiments we compared the performance of the proposed TKPA feature-
extraction approach to that of three state-of-the-art kernel methods that make use of Fisher’s
criterion (13) for deriving discriminative facial features. Specifically, the following methods
were used for the comparison: GDA [11], KFA [12] and CKFA [13]. To assess the effect of the
trace face-feature vector on the performance of the subspace projection techniques, all the listed
methods were additionally implemented on the trace face-feature vectors (denoted by TGDA,
TKFA and TCKFA).

The parameters (i.e., the number of features, the kernel function, the threshold, ...) of the
feature-extraction methods used in the comparison were alloptimized to yield the lowest pos-
sible error rates (on the evaluation set). The gradient distance was employed to calculate the
matching scores of all the methods as it was specially designed to be used in conjunction with
feature-extraction techniques based on Fisher’s criterion (13) [30].

The ROC curves (displaying the dependency of the false acceptance rate and the false re-
jection rate at various operating points) of the authentication experiments are shown in Fig. 5,
while the error rates for a specific threshold (i.e., the threshold that ensures equal error rates
FAR and FRR on the evaluation set) are presented in Table 3. From the graphs and the table we
can see that the KPA technique performs the best, both on the original grey-scale images (Fig.
5a) as well as on the trace face-feature vectors (Fig. 5b). Ifwe compare all the tested methods
we can further see that the top performer in the comparison was the TKPA method, followed in
order by TKFA, TCKFA, TGDA, KPA, KFA, GDA and CKFA. Generally, all the methods per-
formed significantly better when they were implemented on trace face-feature vectors instead of
the original intensity images, achieving a performance improvement (of TER) of at least40%.
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Fig. 5. ROC curves of the tested methods (test set), a) applied on grey-scale images, b) applied
on trace face-feature vectors

Method FAR(%) FRR(%) TER(%)
GDA 4.06 3.75 7.81
KFA 3.76 3.00 6.67
CKFA 3.41 4.50 7.91
KPA 3.47 3.00 6.47
TGDA 2.44 1.75 4.19
TKFA 2.32 1.50 3.82
TCKFA 2.45 1.50 3.95
TKPA 2.11 1.25 3.36

Table 3. Comparison of the authentication performance for different methods (test set)

The reason for such a result is that trace-transformed images emphasize specific (depending
on the functional used) information of the tracing lines of the face images, which seems to be
of great importance for face recognition. Additionally, subspace methods performed on grey-
scale pixel values exhibit great sensitivity to even small changes in pose, illumination or facial
expression [34], while the TT, on the other hand, extracts features that are more robust with
respect to the listed changes in the image characteristics [22].

6.6 Comparison with other methods using automatically registered
images
Until now, all the described experiments were performed with manually registered images.
However, it is well known that appearance-based methods (such as TKPA) are very sensitive
to rotation and scale variations of the face images introduced by the face-localization proce-
dure. Our last set of experiments therefore assessed the performance of the proposed TKPA
(and KPA) approach and the six methods introduced in the previous section (i.e., GDA, KFA,
CKFA, TGDA, TKFA and TCKFA) using automatically registeredtest images. The pair of eye
coordinates needed for the extraction of the face region (see Section 6.2) was determined using
the method proposed by Pozne, which located the eyes by maximizing a specially designed
criterion function (see [35] for a detailed description of the method used). The localization
procedure was applied to all the images of the client and impostor test sets and the resulting
face images were then used for testing. The client models as well as the parameters (i.e, the
kernel function, the feature vector length, the decision threshold, etc.) of the tested methods

14



were determined using manually registered images, ensuring identical experimental conditions
to those described in the previous sections (Sections 6.3-6.5).
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Fig. 6. ROC curves of the tested methods (using automatically registered test images), a) applied
on grey-scale images, b) applied on trace face-feature vectors

Method FAR(%) FRR(%) TER(%)
GDA 3.40 5.75 9.15
KFA 3.17 4.75 7.92
CKFA 3.73 5.75 9.48
KPA 3.13 4.75 7.88
TGDA 2.92 3.25 6.17
TKFA 2.06 2.75 4.81
TCKFA 2.85 3.25 6.10
TKPA 2.16 2.75 4.66

Table 4. Comparison of the authentication performance for different methods (using automati-
cally registered test images)

A comparison of the ROC curves generated in our experiments is presented in Fig. 6. We
can see that among all the tested methods the KPA technique was again found to perform the
best, both in combination with the original intensity images (Fig. 6a) as well as in combination
with the trace face-feature vectors (Fig. 6b). The same conclusion can also be made by consid-
ering the error rates presented in Table 4 (which shows the values of FAR, FRR and TER of the
authentication experiments using a threshold that ensuresequal FAR and FRR on the evaluation
set).

Furthermore, we can see that the error rates obtained with automatically registered images
(Table 4.) are considerably higher than those obtained withmanually registered images (Table
3.) for all the tested methods, while the relative ranking intheir performance remained the
same. Nevertheless, all the subspace-projection techniques still performed significantly better
when they were implemented on trace face-feature vectors rather than on the original grey-
scale images (an improvement in the total error rate of more than 30% was observed for all
the methods). As already pointed out in the previous section, there are two main reasons for
such a result: first, the trace face-feature vectors containmore discriminative information than
the original face images, and second, the trace transform produces face-features that are less
sensitive to miss-registration than the intensity face images.
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7 CONCLUSION AND FUTURE WORK

In this paper we have presented a novel trace kernel partial-least-squares discriminant Analy-
sis (TKPA) algorithm for extracting features from frontal face images. The TKPA algorithm
applies the KPA subspace-projection technique to a featurevector (i.e., the trace face-feature
vector) which is constructed using the trace transform. Thefeasibility of the proposed ap-
proach was demonstrated in a series of authentication experiments, performed on the XM2VTS
database. In a comparison where three popular discriminative kernel feature-extraction methods
(i.e., GDA, KFA and CKFA) and combinations of these methods with trace face-feature vectors
(i.e., TGDA, TKFA and TCKFA) were tested for their authentication performance in addition to
the proposed TKPA approach, the TKPA performed best, achieving a total error rate of3.36%
on manually registered images and a total error rate of4.66% on automatically registered im-
ages. Generally, all the tested methods exhibited a great improvement in their authentication
performance when they were implemented on the trace face-feature vectors instead of the orig-
inal input images. Two conclusions can be made from these results: a) the trace face-feature
vector improves the performance of all the subspace projection techniques (due to the facts pre-
sented in Section 4), b) the proposed KPA technique can outperform GDA, KFA and CKFA.
The reason that KPA performed better than the other tested subspace methods might be found
in the use of the KPLS subspace, which emphasizes the class membership information of the
face images even before Fisher’s discriminant analysis is applied, making the resulting features
contain more discriminative information than the featuresextracted with GDA, KFA or CKFA.
Based on these facts, our future research will be focused on incorporating the trace transform
and KPA into a feature-extraction approach that makes use ofGabor wavelet-based features,
which exhibit high discriminatory power and are particularly suited for face authentication.
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