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nel methods such as generalized discriminant analysis (Gk@#nel fisher analysis (KFA) and
complete kernel fisher discriminant analysis (CKFA) as wsltombinations of these methods
with features extracted using the trace transform.
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1 INTRODUCTION

In recent decades automatic face recognition has beconw tremost active research areas in
the field of biometrics, with possible applications in lai@weement, access control, e-banking,
entertainment, smart homes, and numerous other domais [1,

Based on the face representation used for the recognitioe;recognition techniques can
be divided into two groups [3lappearance-baseandfeature-basedAppearance-based meth-
ods consider the global properties of the face and use théevidaoe image (or specific image
regions) to extract facial features, while feature-basethods, on the other hand, rely on lo-
cal facial characteristics (such as eyes, nose and mouth)smangles and distances between
fiducial points on the face as descriptors for face recogmiti

A typical example of appearance-based methods is the pahoomponent analysis (PCA),
introduced by Turk and Pentland [4]. PCA identifies a subspawose basis vectors correspond
to the maximum variance directions of the given traininggesm Face recognition is performed
by comparing the projection coefficients of different fangages in this subspace, in which
information compression, dimensionality reduction andadeslation of the pixel values of the
face images are achieved.

Another representative of appearance-based methode#s liiiscriminant analysis (LDA),
which tries to improve upon PCA by considering the class-ivenship information of the train-
ing images. Unlike PCA, LDA constructs a linear subspace laximizing the ratio of the
between-class scatter matrix to the within-class scattdrixy which serves as a criterion for
class separability. Several techniques have been preserttee literature that make use of this
discrimination criterion, including the Fisherface terjue [5], Regularized LDA (RLDA) [6],
Enhanced LDA (ELDA) [7], Fractional-step LDA (F-LFA) [8] a@Direct LDA (DLDA) [9].

To cope with nonlinear changes in the appearance of the ifaagds due to varying illu-
mination, pose and facial expression, linear appearantieote (such as PCA or LDA) were
recently extended to their nonlinear (kernel) form. Popldernel appearance-based meth-
ods are kernel principal component analysis (KPCA) [10hagelized discriminant analysis
(GDA) [11], kernel Fisher analysis (KFA) [12], complete kel Fisher discriminant analysis
(CKFA) [13] and the kernel fractional-step discriminanafrsis (KFDA) [14].

Srisuk et al. [15] proposed a face-recognition techniqusetan the trace transform [16];
this can also be considered to be appearance-based ag$emteiextracted from the whole face
image. The proposed technique first extracts shape infaxmgom binarized trace transforms
of a face image and then uses a dissimilarity measure, céilkedHausdorff context, for the
recognition.

Although appearance-based methods have been dominantefamgnition techniques for
years, it is widely believed [17] that local face-features more robust to face-image changes
caused by varying illumination, pose and facial expressiot are therefore very suitable for
face recognition.

Examples of feature-extraction techniques that make uieedbcal characteristics of face
images can be found in Gabor wavelet-based methods. One dir$h methods to incorpo-
rate Gabor-based features was the dynamic link archie¢RIitA) presented in [18]. In DLA
a rectangular graph is placed over a face image and a numiBakudr features (called Gabor
jets) are extracted at each of the graph’s nodes. Once gfapér-is built, a graph-matching pro-
cedure is employed for the recognition. Based on DLA, Wiskb#l. [19] proposed a method
called elastic bunch graph matching (EBGM), which improupdn DLA by introducing a face
graph with nodes located at specific facial landmarks (fedymints).

Liu and Wechsler combined elements from appearance-baskéeature-based methods
and proposed the Gabor-Fisher Classifier (GFC) [20]. The &is€Cemploys a set of forty
Gabor wavelets to derive an augmented Gabor-feature vaetbthen uses the enhanced Fisher



linear discriminant model (EFM) to reduce the vector’s diasienality. Several modifications
of the described approach were presented in the literdhaleding [1,12, 21].

This paper introduces a hybrid feature-extraction apgroealled trace kernel partial-least-
squares discriminant analysis (TKPA), which applies theeshkernel partial-least-squares dis-
criminant analysis (KPA) to a feature vector derived by gghre trace transform. Experimental
results on the XM2VTS database show that the trace facarfeaector can significantly im-
prove the authentication performance of the subspacedgop techniques and that the pro-
posed approach (TKPA) can outperform popular face-retiogntechniques such as GDA,
KDA and CKFA as well as combinations of these techniques V¥étiures extracted by the
trace transform. The novelty of this paper therefore conmsf

e the derivation of the trace face-feature vector,

o the kernel partial-least-squares discriminant analy&d®\), which improves upon Yang’s
CKFA [13] by replacing the kernel principal component as&yKPCA) subspace with
the kernel partial-least-squares (KPLS) subspace,

e the integration of the trace transform and the KPA technioue the hybrid TKPA
feature-extraction approach,

e a comparative assessment of the proposed hybrid approackeaaral state-of-the-art
feature-extraction methods.

The rest of the paper is organized a follows. In Section 2lkery behind the trace trans-
form is reviewed and the methodology to derive the trace-faatre vector is outlined. The
kernel partial-least-squares discriminant analysisti@@uced in Section 3 and the novel TKPA
feature-extraction approach is detailed in Section 4. i&eé& describes the matching proce-
dure, while the experimental results are given in SectioMBe paper concludes with some
final comments and directions for future work in Section 7.

2 THE TRACE FACE-FEATURE VECTOR

The trace transform (TT), first introduced by Kadyrov andr@ein [16], is a generalization
of the Radon transform, which can be used for the extractforoloust image features and
subsequently for object recognition. It has already begul@yad in the field of face recognition
(i.e., face authentication), yielding excellent resulfs,p2], but its wider use is still limited due
to the complexity of the algorithms used for TT-based fem@uxtraction. This section introduces
a novel, simplified, approach for the derivation of the TBdxh face-feature vector, which in
contrast to the methods presented in [15, 22] only relies paiaof eye coordinates and thus
eliminates the need for any masking of the facial regioreghold selection, weight calculation,
etc. As will be shown in Section 6, the proposed trace faatufe vector (in comparison with
intensity images) improves the performance of differeftitspace projection techniques by at
least30%, making the trace transform a useful image preprocessemfst future biometric
systems.

2.1 The trace transform

Let I(x,y) € R**? represent an image of sizex b (in pixels) and letC denote a set of all
the possible lines (called tracing lines) throufflx, v), determined by the parameterandé.
The parametep denotes the shortest distance from a tracing line to theecefithe image)..,
while 6 defines the angle of the tracing lines normal to the refereireetion (i.e., thec-axis).
We further assume thatrepresents a variable defining the position on a tracing(kee Fig.
1 for a visualization of these parameters). The trace toans{TT) [15, 16, 22] can then be



defined as a functiow(p, ), which is calculated by applying the trace functioabn all the
lines of Z, i.e.:

w(p,0) = F(g(0,p,1)) 1)

whereg(0, p, t) denotes the function values of the tracing line defined by#ie(p, §), and the
parameterg andp lie in the range(), 2] and [—py, p4], respectively. Note that; equals half
the length of the diagonal df{z, y).

Fig. 1. Example of a line with parameterandd through a sample image.

With a closer examination of the equation (1) we can see bl provides a mapping
from the original image space to a 2D parameter space spanyneahdd. A trace-transformed
image can therefore again be interpreted as an imageuicg, #)) whose pixel locations are
given by p and ¢ and pixel values by the values of the functiorfalon the corresponding
tracing lines. Using different trace functional resultgifierent TTs, which depending on the
functional used exhibit different properties that can befulsfor face recognition.

In our experiments we made use of thietrace functionals that are presented in Table 1.
Note that there is no specific rule about which or how manytionels should be used for the

Number Trace functional Number Trace functional

1 F(f(6) = [y f(t)dt 9 Fy(f(t)) = median{f(t)"}

2 B(ft) = (fy~ [£(1)[05dt)? 10 Fio(f(t)) = maz{f(t)'}

3 F3(f(t)) = median{f(t)} 11 Fii(f(t)) = range{f(t)'}

4 Fy(f(t)) = max{f(t)} 12 Fio(f(t)) = var{f(t)'}

5 F5(f(t)) =range{f(t)} 13 Fi3(f(t)) = mad{f(t)'}

6 Fo(f(t) = [y~ ft)dt 14 Fu(ft) = (fo 1£@)]>dt)?
7 Fr(f(t)) = var{f(t)} 15 Fis(f(t) = (Jy~ I£(@)'?at)"?
8 Fy(f(t)) = mad{f(t)}

Table 1. The trace functionals used for the derivation oftthee face-feature vectomigx =
maximum valueynin = minimum value,range = maximum value - minimum valuejar =
variancejnad = mean absolute deviation arfdt) = ¢(0, p,t))

calculation of the trace transform. For example, Srisuk.¢2a] made use of 22 functionals to
derive their features with the trace transform. In this pape selected a set db functionals,



consisting mainly of statistical descriptors of the traciimes (and their derivatives) to analyze
the statistical properties of different face images andetive the trace face-feature vectors.

2.2 Calculating the trace face-feature vector

Consider the set of5 trace functionals = {F; : i = 1,2,...15} presented in Table 1. To
derive the trace face-feature vector of a given face imggey), the image is first mapped
into the trace space using all the functionals7aof The mapping results in a set o trace-
transformed images);(p,0) (i = 1,2, ...,15), each carrying information about the statistical
properties of the tracing lines of the original input imagje.incorporate all of this information

in a single feature vector we concatenate all the tracesftoamed images and derive the trace
face-feature vectox. Before the concatenation, we first downsample the T](®,0) (i =
1,2,...,15) to a size ofu x v (Whereu < a andv < b) to reduce the trace-space dimension, and
then normalize them to zero mean and unit variance. In thateg we create vectovs; out of

the downsampled images (p, ) by concatenating their rows (or columns) and combine all of
the vectorsw; (i = 1,2, ..., 15) into the trace-face feature vectari.e.:

x=(wi wy - wip)T eRY (2)

whereT' denotes the transpose operator ahé= 15uv (v andv denote the dimensions of the
resized images;(p, 0) fori = 1,2, ..., 15).

Three examples of the trace face-feature vector (the TTprasented in image form) are
shown in Fig. 2. The first two belong to the same person (Fig) &nhd 2 b)), while the third
trace face-feature vector corresponds to the face imageddfement person (Fig. 2 c)). It
will be shown in Section 6.5 that the trace transform empeasihe discriminative information
contained in the original (face) images, leading to a radndh the face-authentication error
rates.
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Fig. 2. Examples of trace-transformed images for a), b) éimesperson, c¢) a different person.

Although the procedure for deriving the trace face-featueetor is relatively simple in
theory, there are several practical issues one has to ensid

e To calculate the trace transform of a face image, the pamsteandp have to be quan-
tized (e.g., in our experiments (Section 6) we u$gdl values for the parametértaken
from the range(], 2] with a step size ofA§ = pi/90 (i.e.,f0 = iAf, fori =1,2,...180)
and similarly, we used40 discrete values (wherel0 equals the length of the diagonal of
a88 x 110 image rounded up to an integer value) for the parametsken from the range
[—70, 70] with a step size of\p = 1; thus, the size of one TT image equaleid x 180).



e To reduce the size of the final trace face-feature vectolh eathe fifteen TT images
w;i(p,0) (i = 1,2,...,15) has to be downsampled prior to concatenation (e.g., we used
a rectangular sampling grid witss horizontal andt5 vertical grid lines uniformly dis-
tributed over the trace-transformed image to reduce tleedsithew; (p, 6) (i = 1,2, ..., 15)
from 140 x 180 to 35 x 45).

Despite the downsampling of the TTs to a size36fx 45, the concatenation of all fifteen
trace-transformed images still results in a feature vestarse dimension i&V = 23,625. To
further reduce the vector’s dimension we will subject it taavel subspace-projection tech-
nique, which will be presented in the next section.

3 KERNEL PARTIAL-LEAST-SQUARES DISCRIMINANT ANALYSIS
(KPA)

Subspace projection techniques based on Fisher’s critéoioclass separability are among
the most popular methods for facial feature extraction. Brguas discriminant approaches
have been presented in the literature in the past, incluti@damous Fisherface approach [5],
regularized linear discriminant analysis (RLDA) [6] andaedit linear discriminant analysis
(DLDA) [9]. In recent years, however, kernel variants ofdgbenethods have emerged as a pow-
erful tool for nonlinear feature extraction. Popular exéesmf kernel discriminant methods are
the generalized discriminant analysis (GDA) [11], kernisher analysis (KFA) [12] and the
complete kernel Fisher discriminant analysis (CKFA) [13}llowing the idea of CKFA (where
features are extracted by first applying kernel principahponent analysis (KPCA) to reduce
the space dimension and subsequently using LDA in the redsjgace) we propose a novel
kernel discriminant approach, called Kernel partialHestgiares discriminant Analysis (KPA),
where the KPCA part of the CKFA is replaced with the kernettiphteast-squares (KPLS)
algorithm.

In the remainder of this section we first review the basic ephof the partial-least-squares
algorithm, then a description of KPLS is given, and finallg #tiPA method is introduced.

3.1 Extracting latent vectors with kernel partial least squaes (KPLS)

The kernel partial-least-squares (KPLS) algorithm [23] isonlinear extension of the partial-
least-squares technique presented in [24]. It can be useelébing several dependent variables
(responses) to a large number of independent variabledi¢poes). The basic idea of KPLS
is to create latent vectors (components, factors) thatuaddor as much of the variance of the
independent variables as possible, while simultaneoustjating the dependent variables well.

3.1.1 The concept of partial least squares (PLS)

Denote byX = [x{,x3, ..., xf]T an x N matrix ofn N-dimensional input variablesand by
Y an x C matrix of corresponding C-dimensional response variablgsThe PLS algorithm
finds the matrice§, P, E, U, Q andF in a way that the matrices andY can be expressed as

follows [25]:

X=TPT +E
Y =UQ" +F @)
whereT andU aren x r matrices containing latent vectors fom inputs, P and Q denote

N x r matrices of weights (used to determine linear combinatmmigiputs and responses,
respectively) and the x N andn x C matricesE andF stand for the matrices of residuals.



The matrices of the decomposition in (3) are computed withhtelp of the nonlinear it-
erative partial-least-squares (NIPALS) algorithm [24]e(tNIPALS algorithm for the KPLS
method will be described in more detail in the next sectiarich finds the weight matrice®
andQ in such a way that the covariance betweenXhendY matrices is maximized.

3.1.2 The kernel partial least squares (KPLS) algorithm

To extend the PLS algorithm to its nonlinear form (kernetiphteast squares - KPLS), Rosi-
pal and Trejo [23] proposed a modification of the NIPALS aitjon based on the "kernel

trick” [10], which avoids calculating the potentially conmationally expensive nonlinear trans-
formation® (where® denotes a nonlinear mapping of the vectdrom the input spac&” to

a high dimensional feature spagei.e.: ® : x € RY — ®(x) € F), and finds the parameters
of the decomposition (3) using thex n kernel matrix of the input variables (: = 1,2, ..., n):

K = [®(x:)®(x;)"] = [K(xi,%))]; Vi, j 4)

As our goal is to compute latent vectors (i.e., the matritesnd U) that are useful for
classification, we construct thex C response matriX in the following way [25-27]:

]_nl On1 . On1
0n2 171,2 Tt 0n2

Y=| . C s (5)
Onc Onc 1’!Lc

whereC denotes the number of classes in the set df-dimensional inputs (matriX), n;
denotes the number of inputs in claSs 1,,, (i = 1,2, ..., C) stands for a; x 1 vector of all
ones, and,,, (i = 1,2,...,C) is an; x 1 vector of all zeros. It is easy to see that the row¥ of
represent encoded labels of theclasses oK.

The NIPALS algorithm for the KPLS approach can now be descrifs follows [28]:

Input: MatricesK . andY

Output: r n-dimensional latent vectotsandu

=

randomly initialize the/-latent vectou

2. calculate the-latent vector:

t=K.K u, t —t/|t|

3. update thg-latent vector:

u=KXKT”t, u—u/|ul

4. repeat the steps 2-3 until convergence (i.e., the vectortwo consecutive iterations does
not change)

5. deflate the matricdas,. andY:



K.=K.—ttTK,, Y=Y —ttTY

6. orthonormalize the matriX:

Y =Y(YTY)~1/2

7. continue with step 2 using new matridésandy.

Note that in the above algorithm the vectoérandu denote columns of the matricdsandU,
respectively, whil&k . denotes the centered kernel matrix of the input variablés ire. [10]:

1 T 1 T
Ke=(--1,1 ) )K(Il - -1,1,), 6
(1= ~L,ADK( - ~1,17) ©)

wherel represents an-dimensional identity matrix antl, stands for a vector of all ones, with
lengthn.

After the matrice§ andU are calculated, the latent vectors of new inpXitsare computed
from:

T =KIA 7)

whereA is then x r» KPLS projection matrix, defined by
A =KIYmTk KTu)-! (8)

and ) )
Ki= (K" = =1,-1TK)(I = —1,17) 9

n n

is the centered kernel matrix of the new inputih(n* denotes the number of new inputs).

In this paper four polynomial kernels are considered forithelementation of the KPLS
algorithm, i.e., the linear or first-order polynomial kelirtee second-order , the third-order and
the forth-order polynomial kernel, i.e.:

K(x;,%;) = (X X;)* (10
wherez = 1,2, 3 and4.

3.2 Extracting features with KPA

To extract the final face features with the novel kernel phatéast-squares discriminant analysis
(KPA) we construct the within-class and between-clasdecatatrices (denoted bf,,,, and
S,.,) using the first- = n — C' (recall thatr denotes the number of extracted latent vectors,
denotes the number of input variablesinandC stands for the number of classesdiplatent
vectors of the input variables X.

Let T represent & x r matrix, containing in its columns = n — C' latent vectorg;

further denote the row vectors ofT by s. The matricesS,,,,, andS;,,, can then be defined as
follows [5]:
C
Suwe =D, D (5 -8)(s - %)" (12)
C
Siee = ) ICil(8 ~9)(5 - 97 (12)
=1



wheres; represents thg-th row vector ofT corresponding to thg-th input variable oiX, s;
represents the mean vector of the row§ dfelonging to class, Sis the mean vector of all the
rows of T, and|C;| stands for the number of variables in clags= 1,2, ..., C).
Based on these matrices, the KPA method calculates a dovjeniatrixZ that maximizes

Fisher’s criterion/(Z), i.e:
Z's,,.z

ZTSlUlaZZ ’
Since the within-class scatter matrix was computed usiryg the firstn — C' latent vec-

tors, S,,,, is always nonsingular and the optimal projection maZixan be constructed by
concatenating the eigenvectors of the generalized eigblgm defined by:

J(2) (Z+0) (13)

Sb10Zi = AiSw,o,Zi (14)

wherez; denotes the-th eigenvector of (14) and; represents the correspondifh eigen-
value.
The (n — C) x d projection matrixZ is thus defined as follows:

Z=1[21 2o - Z4] (15)

whered is the number of eigenvectors that defines the dimensigradlthe KPA subspacei(<
C — 1) and the eigenvectoin (i = 1,2, ...,d) correspond to a set of decreasing eigenvalues,
e, A\ >N > > A

Using the projection matri¥ (15), the final feature vector can be computed from the
vectors of a given input variablg, i.e.:

y=8Z (16)

where the feature vectgris of sizel x d.

4 TRACE KERNEL PARTIAL-LEAST-SQUARES DISCRIMINANT
ANALYSIS (TKPA)

In this sectionwe present a novel, hybrid feature-extraction approaclehvtombines the trace
face-feature vector, introduced in Section 2, with the h&RA subspace projection technique
presented in the previous section. The proposed approdasésl on the following facts:

e the trace transform can extract features that are robugtsiganaller changes in pose,
illumination and facial expression [22] (as the trace-$farmed images are calculated by
applying different functionals to thieacing linesof a face image, they are to some extent
insensitive to changes of the individual pixel values ofitimut face image);

¢ the trace face-feature vector contains more discrimigatiformation than the original
grey-scale input image and is therefore better suited femith subspace methods (note
that the trace transform with the first functional Bfrepresents the Radon transform,
which is known to contain the same information as the inpaigen[22,29]; the remaining
14 functionals of7 emphasize different characteristics of the input imagethacefore
provide supplementary information, useful for face redtigmn);

e it was shown in [26] that LDA-based features, computed inRh& subspace (which is
constructed using the class membership information ofrttieing images), ensure better
authentication performance than the Fisherface methoajfre discriminative features
are computed in the PCA subspace (this also applies to KPAAXKRLS).



Based on these facts the hybrid approach, called the tracelkgartial-least-squares dis-
criminant analysis or TKPA, first computes the trace fatfiee vectorx from an input face
image!(x,y) following the procedure described in Section 2 and then nifa@sectorx into
the low-dimensional KPA subspace, where the final face atittegion is performed.

The whole TKPA algorithm can be described as follows:

Training
Input: A set ofn training images of the given databake

Output: A set of low-dimensional face-feature vectdrs= {y;, € R% :i = 1,2,...n}

1. compute the trace transforms of all the training image¥ insing the set ot5 trace func-
tionals7 (1),

2. resize the trace-transformed image&®, 0) to reduce the trace feature-space dimension,

3. normalize the resized imagesp, 6) to zero mean and unit variance,

P

combine the normalized and resized trace-transformadesofY into n trace face-feature
vectorsx (2),

construct matricek (4), K. (6) andY, (5) using all the trace face-feature vectorstof
computer = n — C latent vectors using the KPLS NIPALS algorithm,

construct the KPA projection matrik (15),

© N o o

compute the low-dimensional KPA feature vecyor(i = 1,2,...,n) for all the training
images inX,

9. calculate the client models (the mean feature vector8l tifeatraining images belonging to
a specific client) for all” clients of the given database.

Feature extraction for new (test) images
Input: A set ofn* testimages of the given database

Output: A set of low-dimensional face-feature vectdrs = {y, € R :i = 1,2, ..n*}

follow the steps 1-4 of the TKPA training algorithm usinged of test images,
compute the matricds™ (4) andK’; (9) using the trace face-feature vectors frérand ',

compute the = n — C latent vectors for each trace face-feature vector®{7),

p w0 dpoE

compute the low-dimensional KPA feature vegipi = 1,2, ..., n*) for all n*test images
inS.



5 MATCHING

In the matching stage the feature veagtdd6) of a given input face image (sometimes referred
to as the live feature vector) is compared with the claimezhtk feature vector (i.e., the mean
feature vector of the clients training images). If the lieature vector and the claimed client’s
feature vector display a degree of similarity that is higtian the decision threshold, then the
input image is recognized as genuine (i.e., belonging teltiened client), otherwise the input
image is recognized as belonging to an impostor (or viceavefa dissimilarity measure is
used).

In this paper the gradient distandg; [30] was used as the similarity measure. Thg-
based matching score was computed as follows:

oy Iy =y)TVP(ily)||
whereV P(ily) is defined as
C
VPGly) = Y pIN; - V) (18)
J=1, j#i
andp(y|j) equals
pVi) = e {5 =9 0 -5 (19)

In the above equationg denotes the feature vector of the given input imageandy;
denote the mean feature vectors ofthh andj-th client ¢, j = 1,2, ..., C), C denotes the total
number of clientsq is the KPA subspace dimensi®hP(i|y) stands for the gradient direction of
thei-th client’s aposteriori probability functiom(y|;) represents thg-th clients measurement
distribution, and, finally||.|| andT denote the norm and the transpose operator, respectively.

Note that the gradient distance was chosen as the simitaggsure in this paper because
it was specifically developed to be used in conjunction wattdire-extraction methods that are
based on Fisher’s criterion (13) for class separability.[30

6 EXPERIMENTS AND DISCUSSION

6.1 Database and experimental protocol

Our experiments were conducted on face images from the-moltial XM2VTS database [31],
which contains audio and video data as well as color imag28®fndividuals, recorded in four
separate sessions that were uniformly distributed overiagef five months. At each session
two recordings were made, resulting in a total of 2360 frbfatee images (8 per subject) that
were available for the training and testing of the proposkBA feature-extraction algorithm.

To enable a direct comparison of our approach with other atistpresented in the literature
the first configuration of the standard experimental prdtfiae., the Lausanne protocol [32]),
associated with the XM2VTS database, was used in the expetinThe protocol splits the 295
subjects into groups of 200 clients (i.€%,= 200) and 95 impostors (25 used for the evaluation
and 70 for the testing). The images of these groups are threfudivided into sets of training,
evaluation and testimages. Specifically, the first configmmaf the Lausanne protocol resulted
in the following experimental setup [32]:

e client training examples: 3 images per client
e client access trials in the evaluation stage: = 600

e impostor access trials in the evaluation stagg:= 40, 000 (25 x 8 x 200)

10



e client access trials in the test stagg; = 400

e impostor access trials in the test stagg:= 112,000 (70 x 8 x 200)

The images of the training set were used for the calculatioheoKPA face-feature vectors
16 and for the construction of the client models (i.e., themfeature vectors). The images
of the evaluation set were employed for the tuning of the KBBAspace projection technique
(i.e., selection of the kernel function and the optimal nemixf features) and for an estimation
of the global decision threshold that is used for acceptingefecting a person claiming a
client identity, while the images of the test set were emgtbgnly for the final performance
evaluation.

Two standard error rates were used in our experiments fosunieg the performance of
the proposed TKPA approach. The first, called the false aanep rate (FAR), is defined as
the ratio of successful impostor accesggsto the number of impostor access trials(i.e.,
gie In the evaluation oy, in the test stage, respectively), while the second, caltedfdlse
rejection rate (FRR), is defined as the ratio of unsucces$ifiit access trialg, . to the total
number of client access triads (i.e., ¢.. in the evaluation o, in the test stage, respectively).
Additionally, the total error rate (TER) was computed inle@gperiment to provide a single
quantitative error measure of our approach. The descrivedmtes are given by:

FAR — (%)100% FRR = (‘Zﬂmo% (20)
TER = FAR + FRR 1)

In addition to serving as quantitative performance measfmea biometric authentication
system, the FAR and FRR are used to compute the decisiormthdesvhich is usually set to a
value that guaranties equal false acceptance and falstioejeates on the evaluation set.

6.2 Image preprocessing

Image preprocessing is one of the most important steps img@based) biometric authentica-
tion systems. It was shown in [33] that many face-recognititethods exhibit a drop in per-
formance when images with poorly localized faces are usethfofeature extraction instead
of properly localized faces. Similarly, varying lightingmrditions in the image-acquisition pro-
cess also cause a deterioration of the authenticationmpeafice [34]. To avoid the presented
problems we performed the following procedures:

e Face localization- for each face image of the XM2VTS database a pair of eye ¢oord
nates was manually determined.

e Geometric normalization - first, each image was rotated and scaled in such a way that
the centers of the eyes were located at predefined positibes;the face parts of the
image were cropped to a standard siz8%®f 110 pixels.

e Photometric normalization - each image was photometrically normalized using zero
mean and unit variance normalization.

Some examples of the preprocessed face images from the XB2MiTabase are shown in
Fig. 3.
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Fig. 3. Examples of preprocessed images from the XM2VT Shdata

6.3 Kernel function selection

To select the most appropriate kernel function to be useddmjuaction with the proposed
TKPA feature-extraction approach, the first set of expenitmevaluated the performance of the
algorithm using different kernels. Only images from theleation set were used at this point,
while the test images were reserved exclusively for the finalparative assessments presented
in Sections 6.5 and 6.6. Four types of kernels were testedeircomparison, i.e., the first-,
second-, third- and fourth-degree polynomial kernels, (K&x;, X;) = (x;-X;)*, forz =1,2,3
and4). The feature-vector length was set to its maximal valee,d.= C' — 1 = 199) and the
gradient distance (17) was used to calculate the matchorgsc

The results of the described experiments are presentecbie Za From the table we can
see that the TKPA implementation with the third-degree polyial z = 3) kernel performed
best, followed in order by the first-degree=£ 1) polynomial kernel, second-degree polynomial
(z = 2) kernel and the fourth-degree polynomial-€ 4) kernel.

Poly. degree{) FAR(%) FRR(%) TER(%)

1 1.74 1.83 3.57
2 1.78 1.83 3.61
3 1.64 1.67 3.41
4 1.83 1.83 3.66

Table 2. Authentication performance of the TKPA with di#at kernel functions (evaluation
set)

Based on the presented results we can conclude that theabnmel function to be used
in conjunction with the TKPA approach is the third-degre&/pomial kernel.

6.4 Selecting the optimal number of features

The second set of experiments assessed the performanee@bitosed TKPA approach with
respect to the dimension of the KPA subspace. For this pargiesdimension of the feature
vector was gradually increased frain= 10 to its maximal value ot = 199 (recall that the
maximum number of features equdls- C'—1 = 199, whereC denotes the number of clients in
the database - Section 3.2) with a step sizAdf= 20 (except for the last step). Consistent with
the findings of our previous experiments, the KPA part of thKéA feature-extraction method
was implemented using the third-degree polynomial kerAgain, the gradient distance was
used in the matching stage.

Fig. 4a shows the results of the assessment. From the gitaphifg) the dependency of the
total error rate (TER) and the feature dimensibfor the TKPA approach implemented with
the third-degree polynomial kernel) we can see that the detbtentication performance (on
the evaluation set) was achieved when the maximum possibier of features was used (i.e.,
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Fig. 4. TKPA authentication performance with respect tofefagure dimension (evaluation set),
a) for the third-degree polynomial kernel, b) for the firsecond- and fourth-degree polynomial
kernel

d = 199). In fact, each increase in the number of features led to@ease in the authentication
performance of the TKPA approach. The presented findinggesighat the maximum number
of features should be used for further comparative assegsrotthe proposed TKPA method.
To validate our decision to use the third-degree polynokeahel for the implementation
of the TKPA approach, curves showing the dependency of TERIdor the remaining three
kernel functions are shown in Fig. 4b. We can see that TKPAopas best (regardless of
the kernel function) when all = 199 features are used. The result supports our finding from
the previous section that the optimal kernel function to eduin conjunction with the TKPA
approach is the third-degree polynomial kernel.

6.5 Comparison with other methods

In the third set of experiments we compared the performance of the pedpbkPA feature-
extraction approach to that of three state-of-the-art édemmethods that make use of Fisher’s
criterion (13) for deriving discriminative facial featwe Specifically, the following methods
were used for the comparison: GDA [11], KFA [12] and CKFA [13b assess the effect of the
trace face-feature vector on the performance of the subgwagection techniques, all the listed
methods were additionally implemented on the trace faatife vectors (denoted by TGDA,
TKFA and TCKFA).

The parameters (i.e., the number of features, the kernetium the threshold, ...) of the
feature-extraction methods used in the comparison wegpéthized to yield the lowest pos-
sible error rates (on the evaluation set). The gradienadés was employed to calculate the
matching scores of all the methods as it was specially deditmbe used in conjunction with
feature-extraction techniques based on Fisher’s crit€i@) [30].

The ROC curves (displaying the dependency of the false tacep rate and the false re-
jection rate at various operating points) of the authetiiceexperiments are shown in Fig. 5,
while the error rates for a specific threshold (i.e., theghodd that ensures equal error rates
FAR and FRR on the evaluation set) are presented in Tableo®n Hre graphs and the table we
can see that the KPA technique performs the best, both orridjiea grey-scale images (Fig.
5a) as well as on the trace face-feature vectors (Fig. Siye lEompare all the tested methods
we can further see that the top performer in the comparis@theTKPA method, followed in
order by TKFA, TCKFA, TGDA, KPA, KFA, GDA and CKFA. Generallgpll the methods per-
formed significantly better when they were implemented aodiface-feature vectors instead of
the original intensity images, achieving a performancerowgment (of TER) of at leagi0%.
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Fig. 5. ROC curves of the tested methods (test set), a) appligyrey-scale images, b) applied
on trace face-feature vectors

Method FAR(%) FRR(%) TER(%)

GDA 4.06 3.75 7.81
KFA 3.76 3.00 6.67
CKFA 3.41 4.50 7.91
KPA 3.47 3.00 6.47
TGDA 2.44 1.75 4.19
TKFA 2.32 1.50 3.82
TCKFA 2.45 1.50 3.95
TKPA 2.11 1.25 3.36

Table 3. Comparison of the authentication performanceiftarént methods (test set)

The reason for such a result is that trace-transformed ismagphasize specific (depending
on the functional used) information of the tracing linestod face images, which seems to be
of great importance for face recognition. Additionallybspace methods performed on grey-
scale pixel values exhibit great sensitivity to even smiadinges in pose, illumination or facial
expression [34], while the TT, on the other hand, extracasuiees that are more robust with
respect to the listed changes in the image characterig@gs [

6.6 Comparison with other methods using automatically regtered
images

Until now, all the described experiments were performechwitanually registered images.
However, it is well known that appearance-based methodsh(as TKPA) are very sensitive
to rotation and scale variations of the face images intredury the face-localization proce-
dure. Our last set of experiments therefore assessed tf@mance of the proposed TKPA
(and KPA) approach and the six methods introduced in theiquie\section (i.e., GDA, KFA,
CKFA, TGDA, TKFA and TCKFA) using automatically registeragbst images. The pair of eye
coordinates needed for the extraction of the face regian $eetion 6.2) was determined using
the method proposed by Pozne, which located the eyes by rizxgra specially designed
criterion function (see [35] for a detailed description bétmethod used). The localization
procedure was applied to all the images of the client and stgodest sets and the resulting
face images were then used for testing. The client modelsefisaw the parameters (i.e, the
kernel function, the feature vector length, the decisiaeghold, etc.) of the tested methods
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were determined using manually registered images, ernpigiemtical experimental conditions
to those described in the previous sections (Sections.6)3-6

FRR (%)
FRR (%)

Fig. 6. ROC curves of the tested methods (using automaticadistered testimages), a) applied
on grey-scale images, b) applied on trace face-featurengect

Method FAR(%) FRR(%) TER(%)

GDA 3.40 5.75 9.15
KFA 3.17 4.75 7.92
CKFA 3.73 5.75 9.48
KPA 3.13 4.75 7.88
TGDA 2.92 3.25 6.17
TKFA 2.06 2.75 4.81
TCKFA 2.85 3.25 6.10
TKPA 2.16 2.75 4.66

Table 4. Comparison of the authentication performance ifterdnt methods (using automati-
cally registered test images)

A comparison of the ROC curves generated in our experimergseisented in Fig. 6. We
can see that among all the tested methods the KPA technigsi@gean found to perform the
best, both in combination with the original intensity imageig. 6a) as well as in combination
with the trace face-feature vectors (Fig. 6b). The samelasiun can also be made by consid-
ering the error rates presented in Table 4 (which shows thiesaf FAR, FRR and TER of the
authentication experiments using a threshold that ensgresl FAR and FRR on the evaluation
set).

Furthermore, we can see that the error rates obtained witmetically registered images
(Table 4.) are considerably higher than those obtained méhually registered images (Table
3.) for all the tested methods, while the relative rankinghair performance remained the
same. Nevertheless, all the subspace-projection techsisfill performed significantly better
when they were implemented on trace face-feature vecttinerghan on the original grey-
scale images (an improvement in the total error rate of moaa 80% was observed for all
the methods). As already pointed out in the previous sectitare are two main reasons for
such a result: first, the trace face-feature vectors comtaire discriminative information than
the original face images, and second, the trace transfoouiupes face-features that are less
sensitive to miss-registration than the intensity facegesa
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7 CONCLUSION AND FUTURE WORK

In this paper we have presented a novel trace kernel pégtiat-squares discriminant Analy-
sis (TKPA) algorithm for extracting features from frontalce images. The TKPA algorithm
applies the KPA subspace-projection technique to a featretor (i.e., the trace face-feature
vector) which is constructed using the trace transform. fBasibility of the proposed ap-
proach was demonstrated in a series of authentication iexpets, performed on the XM2VTS
database. In a comparison where three popular discrimélagirnel feature-extraction methods
(i.e., GDA, KFA and CKFA) and combinations of these methodk wace face-feature vectors
(i.e., TGDA, TKFA and TCKFA) were tested for their autheation performance in addition to
the proposed TKPA approach, the TKPA performed best, atigevtotal error rate 08.36%

on manually registered images and a total error ratef% on automatically registered im-
ages. Generally, all the tested methods exhibited a grgabirament in their authentication
performance when they were implemented on the trace fatarievectors instead of the orig-
inal input images. Two conclusions can be made from thesdtses) the trace face-feature
vector improves the performance of all the subspace piojettchniques (due to the facts pre-
sented in Section 4), b) the proposed KPA technique can dotpe GDA, KFA and CKFA.
The reason that KPA performed better than the other testespage methods might be found
in the use of the KPLS subspace, which emphasizes the clasdenghip information of the
face images even before Fisher’s discriminant analysigpied, making the resulting features
contain more discriminative information than the featwerisacted with GDA, KFA or CKFA.
Based on these facts, our future research will be focusedamrporating the trace transform
and KPA into a feature-extraction approach that makes uggabbr wavelet-based features,
which exhibit high discriminatory power and are particlylauited for face authentication.
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