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Abstract. The paper presents a novel feature extraction technique for
face recognition which uses sparse projection axes to compute a low-
dimensional representation of face images. The proposed technique de-
rives the sparse axes by first recasting the problem of face recognition
as a regression problem and then solving the new (under-determined)
regression problem by computing the solution with minimum L1 norm.
The developed technique, named Sparse Projection Analysis (SPA), is
applied to color as well as grey-scale images from the XM2VTS database
and compared to popular subspace projection techniques (with sparse
and dense projection axes) from the literature. The results of the exper-
imental assessment show that the proposed technique ensures promis-
ing results on un-occluded as well occluded images from the XM2VTS
database.

Key words: Image processing, biometrics, face recognition, regression
problem, sparse projection axes.

1 Introduction

It is a well known fact that the existing face recognition techniques are sensitive
to external factors influencing the appearance of the human face in an image.
Among these factors, glasses, scarfs, hats or any other objects occluding the
facial region have an immense effect on the representation of the face image
in the given feature space and consequently on the performance of the face
recognition technique used [1].

The reason for this sensitivity can be linked to the way the face images are
usually transformed into the feature space. This transform commonly involves
computing a projection of the facial image onto a low-dimensional subspace. If
the image contains occlusions even on a very small part of the face, the feature
(or subspace) representation may differ significantly from the true feature rep-
resentation of the un-occluded face image. To derive a stable low-dimensional
representation and hence to overcome the sensitivity of the existing methods
to occlusions in images, robust techniques (e.g., [2]) and local approaches (e.g.,
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[3]) have been proposed in the literature. By computing facial features in a ro-
bust manner or by considering only a small part of the image at a time (when
calculating the low-dimensional subspace representation) these approaches are
capable of improving upon the recognition performance of the holistic methods,
especially when parts of images are occluded or degraded in some way.

Recent advances in sparse signal recovery and compressed sensing opened up
new possibilities for the design of local techniques as well as new ways of tackling
the problem of occlusion in face recognition [4]. Based on these developments we
present in this paper a novel technique for facial feature extraction called Sparse
Projection Analysis (SPA). SPA derives a low-dimensional face representation
in the form of projection coefficients computed by projecting face images onto
a set of sparse projection axes. Different from other local appearance based
methods, such as, for example, independent component analysis (architecture I)
[3], the non-zero elements of the projection axes are not localized but are rather
distributed over the entire projection axis. Due to this property, the proposed
technique should exhibit even less sensitivity to image occlusions than traditional
local appearance based feature extraction techniques. It should be noted that
the proposed techniques exhibits similarities with established face recognition
methods such as independent component analysis [3] or non-negative matrix
factorization [5] (due to the sparse nature of the projection axes), while the
relation to the method presented in [4] is given only by the fact that SPA relies on
the L1 norm instead of the commonly used L2 norm. Hence, the work presented
in this paper is related more to the work presented in [3], [5] or [6], rather than
[4].

The developed SPA technique is ultimately assessed in a series of face verifi-
cation experiments performed on the original images of the XM2VTS database
and on degraded images with an artificially added occlusion. The results of the
assessment and comparative evaluations with the popular principal component
analysis and independent component analysis show the effectiveness of the pro-
posed approach for face recognition.

2 The Sparse Projection Analysis

This section commences by formulating the problem of face recognition as a
regression problem and then, based on this formulation, develops the novel sparse
projection analysis (SPA) for face recognition.

2.1 Face Recognition as a Regression Problem

In its most basic form the problem of face recognition can be defined as a map-
ping f from the given face pattern vector x to a class label (or identity) ωi

associated with the i-th class Ci, where i ∈ {1, 2, ..., N} and N denotes the num-
ber of identities enrolled in the recognition system. Formally, this can be written
as:

f : x 7→ ωi, for i ∈ {1, 2, ..., N}. (1)
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While the most natural way for humans is to associate identities with names, the
class labels are in general not restricted to textual descriptions, but can rather
take an arbitrary form which uniquely describes the class.

To illustrate this concept let us assume that we have a set of three face
pattern vectors x1, x2, x3 each belonging to a different class C1, C2, C3. The
corresponding class labels could then be written as vectors of the following form:
ω1 = [1 0 0], ω2 = [0 1 0] and ω3 = [0 0 1]. From this example we can see that
the class labels can be chosen as an orthonormal basis of a vector space, whose
dimensionality is defined by the number of classes that need to be labeled.

Let us now consider a more general case and presume a set of n d-dimensional
face pattern vectors X = {xi ∈ R

d, i = 1, 2, ..., n} belonging to N classes C1, C2,
..., CN with associated class labels ω1, ω2, ..., ωN . If we arrange the face pattern
vectors in X into the n × d row data matrix X and use the same principle as
illustrated in the above example to construct our labels, then we can build the
n × N label matrix Y, whose rows represent labels of the pattern vectors in X.
In this case the label matrix Y takes the following form [7], [8], [9]:

Y =











1nC1
0nC1

· · · 0nC1

0nC2
1nC2

· · · 0nC2

...
...

. . .
...

0nCN
0nCN

· · · 1nCN











, (2)

where nCi
represents the number of face pattern vectors corresponding to class

Ci, 1nC1
denotes a nCi

×1 vector of all ones and 0nCi
stands for a nCi

×1 vector
of all zeros.

Since we have encoded the class labels in the form of a (label) data matrix
Y, we can use this matrix to define the mapping f . We implement f using a
simple linear transformation of the pattern vectors in X as follows:

Y = XW, (3)

where W denotes the d × N transformation matrix.
Clearly, the above expression can be thought of as being a regression problem

with the goal of finding the regression matrix W capable of mapping the input
variables in X to the response variables in Y.

2.2 Computing the Projection Basis

While there are several ways to determine the regression matrix W (see, for
example, [8]), we present in this paper a method which results in the N d-
dimensional column vectors comprising the regression matrix W being sparse.

Let us first have a closer look at our problem defined by Eq. (3). It is easy to
notice that each of the columns in Y represents the projection coefficients of all
pattern vectors in the data matrix X on one of the N column vectors comprising
W. Hence, the problem of determining the regression matrix W can be broken
down into a set of N independent sub-problems of the following form:

yi = Xwi, for i = 1, 2, ..., N, (4)
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where the n × 1 vector yi denotes the i-th column of the response matrix Y,
and similarly the d × 1 vector wi stands for the i-th column of W. It has to be
noted that the vector yi does not correspond to an encoded label, but is rather
composed of the i-th elements of all encoded labels.

In the field of face recognition the dimensionality of the face pattern vectors
in X is usually much larger than the available number of training pattern vectors,
i.e., d ≫ n. The equation defined by (4) is, therefore, under-determined and its
solution is not unique. We can, however, overcome this problem by selecting the
solution with minimum norm [4]. While usually the L2 norm is used for this
purpose, recent research in the field of compressed sensing suggests that, when
adopting the L1 norm rather than the L2 norm, the found solution exhibits a
number of desirable properties, e.g., sparseness. To solve Eq. (4) for wi, i.e., to
find the i-th projection axis, we therefore recast the problem as follows:

wi = arg min ‖w‖L1
, subject to yi = Xw, (5)

where w denotes the (non-unique) solution of the above problem. As stated in
[4] the above problem can be solved in polynomial time using standard linear
programming techniques (see [10],[11]).

If we examine the projection matrix W more closely, we can notice that the
individual projection axes wi are not orthogonal and, hence, do not necessary
form a basis of our N -dimensional vector space. As the final processing step we,
therefore, orthogonalize the projection matrix and use the result as our final
mapping from X to Y, i.e.:

W = W(WT W)−0.5. (6)

Clearly, the orthogonalization procedure also influences the label data matrix
Y, which now turns into

Y′ = Y(WT W)−0.5. (7)

This matrix, i.e., Y′, is ultimately employed to construct client models, which are
then stored in the system’s database. Note that the client model (or template)
for the i-th subject is computed as the mean vector of all encoded class labels
(i.e., rows of Y′) corresponding to the subject labeled as ωi.

When a new query image arrives at the input of the face recognition system
it is simply projected into the sparse subspace using the orthogonalized version
of W.

As already indicated above, the exploited algorithm for finding the projection
basis results in the computed projection axes being sparse. This fact is especially
important for the feature extraction technique using this projection basis, since
sparse axes insure that only a few pixels affect the value of each feature com-
ponent. Such an approach should be robust to a number of image degradations
including occlusion. A visual example of the sparseness of the projection basis
is presented in Fig. 1, where a sample orthogonalized vector wi in image form
(Fig. 1 left) and its 3D surface plot (Fig. 1 right) are depicted.
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Fig. 1. A visual example of a sparse projection axis: in image form (left), as a surface
(right).

3 Experiments

The feasibility of the SPA technique was empirically assessed using the XM2VTS
database, which has long been the standard face-image database for evaluating
novel authentication algorithms [12]. The database comprises 2360 images of 295
distinct subjects of different gender, age and race. The images were recorded
in four separate sessions over a period of five months with the recording setup
featuring controlled conditions, i.e., uniform background, controlled illumination,
etc. Due to this recording setup, the variability in the images is induced mainly
by the temporal factor. Thus, images of the same subjects differ in appearance
due to changes in hairstyle, head-pose, presence or absence of make-up, glasses,
etc.

For the experiments we followed the first configuration of the established
experimental protocol associated with the XM2VTS database [12]. The protocol,
known as the Lausanne protocol, partitions the subjects of the database into two
disjoint groups of clients (200 subjects) and impostors (95 subjects) and further
divides the images of these two groups into image sets used for: (i) training and
enrollment - images which are used to train feature extractors and build client
models/templates in form of mean feature vectors, (ii) evaluation - images which
are used to determine the operating point, i.e., the decision threshold, of the
face verification system and to define any potential parameters of the feature
extractor (e.g., number of features, selection of features, etc.), and (iii) testing -
images which are used to determine the verification error rates in real operating
conditions.

While the first image set features only images belonging to the client group,
the latter two image sets comprise images belonging to both the client and the
impostor groups. These images are used in our assessment to determine the
two error rates commonly exploited to quantify the performance of a given face
verification system, namely, the false rejection and false acceptance error rates
(FRR and FAR). These two error rates are defined as the relative frequency with
which a face verification system falsely rejects a legitimate- and falsely accepts
an impostor-identity-claim [7].



6 V. Štruc and N. Pavešić
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Fig. 2. DET curves generated during the experiments on the evaluation image set.

Unfortunately, both the FAR and the FRR depend on the value of the so-
called decision threshold ∆ and, hence, selecting a threshold which ensures a
small value of FRR inevitably results in a high value of the FAR and vice versa,
selecting a threshold which ensures a small value of the FAR results in a high
value of the FRR. To compare the performance of two face verification systems an
operating point has to be determined or the error rates should be plotted against
a number of values of the decision threshold, thus generating a performance
curve. Here we choose the latter approach and present our verification results as
performance curves [7].

The employed protocol results in 600 client and 40000 impostor verification
attempts in the evaluation stage to determine the decision thresholds needed to
construct the performance curves, and 400 client and 112000 impostor verifica-
tion attempts in the test stage to determine the final performance of the assessed
techniques.

In all experiments we assume that the facial images are already localized
and scaled to a standard size of 64 × 64 pixels. To compensate for any poten-
tial illumination induced appearance changes we further normalize the images
by applying histogram equalization followed by a zero mean and unit variance
normalization. The presented procedure is employed on all three color compo-
nents of the YIQ color space into which the images of the XM2VTS database
are transformed. It should be noted that the YIQ color space [13] rather than
the RGB color space is used in the experiments to reduce the correlations be-
tween the individual color components and to make additional discriminatory
information not present in the commonly adopted grey-scale images available to
the feature extraction techniques. As a final step, we construct the SPA feature
vector (of size 1 × 3N) of each face image by simply concatenating the feature
vectors of the three color components. In addition to the experiments on the
color images, we also provide baseline comparisons with experiments performed
on grey-scale images.
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The goal of our first series of verification experiments is to assess the perfor-
mance of the proposed SPA feature extraction technique on the evaluation image
sets and to compare the obtained error rates to that of some baseline feature
extraction techniques. To this end, we implement the principal component anal-
ysis (PCA)[14] and independent component analysis (ICA - architecture I)[3]
face verification techniques and test them on the XM2VTS database. For all
assessed techniques we employ the nearest neighbor (to the mean) classifier in
conjunction with the cosine similarity measure for the matching stage. The clas-
sifier is chosen for the comparison, as it represents a non-parametric classifier
and hence does not introduce any classifier-dependant bias to the results.

From the DET curves in Fig. 21, which plot the false acceptance error rate
against the false rejection error rate at various values of the decision threshold,
we can find that the proposed technique significantly outperforms the PCA and
ICA methods on the grey scale images (Fig. 2 (left)), and performs better at the
lower values of the FAR on the color images (Fig. 2 (right)). The reason for the
good performance of the SPA technique can be found in the way the projection
axes are computed. As the label data matrix encodes the class membership
of the training face pattern vectors and all training samples from each class
are mapped to the same encoded label, the proposed technique compresses the
intra-class scatter similar to the popular linear discriminant analysis technique.

It was argued in [15] that DET curves cannot be used to effectively compare
two face recognition systems, since in real operating conditions an operational
threshold has to be set and the performance with this threshold on unseen data
might differ from the performance achieved when setting the threshold. To this
end, the so-called expected performance curves (EPC) were introduced in [15]. To
construct these curves two data sets of impostor and client images are needed.
The first, the evaluation data set, is used to set a decision threshold which
minimizes the following weighted error rate: αFAR(∆)+(1−α)FRR(∆), where
the parameter α controls the relative importance of the two error rates FAR and
FRR. This threshold is then used on the second, the test image set, to determine
the value of the half total error rate (HTER) defined as HTER = (FAR+FRR)/2.
When plotting the obtained HTER against a number of values of α, we obtain
an example of the EPC.

In our second series of experiments we produce EPC curves for all three
tested techniques. The generated curves are shown in the graphs labeled as Fig.
3(a) and Fig. 3(b) for the grey-scale and color images, respectively. We can see
that as with the evaluation image set, the proposed technique performs the best,
followed by a similar performance of the remaining PCA and ICA techniques.
On the remaining two graphs of Fig. 3 (i.e., on the graphs labeled as Fig. 3(c)
and Fig. 3(d)) we present the results of the assessment on grey-scale and color
images, where the goal was to test the robustness of the two techniques to partial
occlusion of the facial region. Here, the facial images were occluded by setting

1 Note that the axis labels in Fig. 2 Miss probability and False Alarm Probability

correspond to the false acceptance and false rejection error rates, respectively.
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Fig. 3. EPC curves generated during the experiments: (a) on grey-scale images of the
original test set, (b) on color images of the original test set, (c) on grey-scale images
of the occluded test set, (d) on color images of the occluded test set.

Fig. 4. Examples of occluded images.

at most 30% of the pixels in each image to zero. The location and the size of the
occlusion were chosen randomly as shown in the examples presented in Fig. 4.

From the results we can see that the proposed technique results in much
better verification rates than the PCA technique, and even the ICA technique,
which, similarly as SPA, represents a local method. While all methods deteriorate
in their performance, the deterioration is more extreme for the PCA and ICA
techniques.
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4 Conclusion

In the paper we have presented a novel feature extraction technique for face
recognition. The technique, which uses a sparse projection basis to reduce the
dimensionality of the face pattern vectors, was assessed in a series of face verifi-
cation experiments performed on the XM2VTS database. In the experiments it
was shown to outperform the popular PCA and ICA techniques and to perform
reasonably well even if parts of the facial images are occluded.
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