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Abstract. Existing face recognition techniques struggle with their per-
formance when identities have to be determined (recognized) based on
image data captured under challenging illumination conditions. To over-
come the susceptibility of the existing techniques to illumination vari-
ations numerous normalization techniques have been proposed in the
literature. These normalization techniques, however, still exhibit some
shortcomings and, thus, offer room for improvement. In this paper we
identify the most important weaknesses of the commonly adopted illu-
mination normalization techniques and presents two novel approaches
which make use of the recently proposed non-local means algorithm. We
assess the performance of the proposed techniques on the YaleB face
database and report preliminary results.
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1 Introduction

The performance of current face recognition technology with image data cap-
tured in controlled conditions has reached a level which allows for its deployment
in a wide variety of applications. These applications typically ensure controlled
conditions for the image acquisition procedure and, hence, minimize the variabil-
ity in the appearance of different (facial) images of a given individual. However,
when employed on facial images captured in uncontrolled and unconstrained en-
vironments the majority of existing face recognition techniques still exhibits a
significant drop in their recognition performance.

The reason for the deterioration in the recognition (or verification) rates can
be found in the appearance variations induced by various environmental fac-
tors, among which illumination is undoubtedly one of the most important. The
importance of illumination was highlighted in several empirical studies where
it was shown that the illumination induced variability in facial images is often
larger than the variability induced to the facial images by the individual’s iden-
tity [1]. Due to this susceptibility, numerous techniques have been proposed in
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the literature to cope with the problem of illumination. These techniques try
to tackle the illumination induced appearance variations at one of the following
three levels: (i) at the pre-processing level, (i) at the feature extraction level,
and (74i) at the modeling or/and classification level.

While techniques from the latter two levels represent valid efforts in solving
the problem of illumination invariant face recognition, techniques operating at
the pre-processing level exhibit some important advantages which make them a
preferred choice when devising robust face recognition systems. One of their most
essential advantages lies in the fact that they make no assumptions regarding
the size and characteristics of the training set while offering a computationally
simple and simultaneously effective way of achieving illumination invariant face
recognition.

Examples of normalization techniques operating at the pre-processing level
include the single and multi scale retinex algorithms [2],[3], the self quotient
image [4], anisotropic smoothing [5], etc. All of these techniques share a common
theoretical foundation and exhibit some strengths as well as some weaknesses.
In this paper we identify (in our opinion) the most important weaknesses of the
existing normalization techniques and propose two novel techniques which try to
overcome them. We assess the proposed techniques on the YaleB database and
present encouraging preliminary results.

The rest of the paper is organized as follows. In Section 2 the theory underly-
ing the majority of photometric normalization techniques is briefly reviewed and
some weakness of existing techniques are pointed out. The novel normalization
techniques are presented in Section 3 and experimentally evaluated in Section 4.
The paper concludes with some final comments in Section 5.

2 Background and Related Work

The theoretical foundation of the majority of existing photometric normalization
techniques can be linked to the Retinex theory developed and presented by Land
and McCann in [6]. The theory tries to explain the basic principles governing the
process of image formation and/or scene perception and states that an image
I(x,y) can be modeled as the product of the reflectance R(z,y) and luminance
L(z,y) functions:

I(z,y) = R(x,y)L(x,y). (1)

Here, the reflectance R(z,y) relates to the characteristics of the objects compris-
ing the scene of an image and is dependant on the reflectivity (or albedo) of the
scenes surfaces [7], while the luminance L(x, y) is determined by the illumination
source and relates to the amount of illumination falling on the observed scene.
Since the reflectance R(z,y) relates solely to the objects in an image, it is
obvious that (when successfully estimated) it acts as an illumination invariant
representation of the input image. Unfortunately, estimating the reflectance from

1 'We will refer to these techniques as photometric normalization techniques in the
remainder of this paper.



Illumination Invariant Face Recognition by Non-Local Smoothing 3

the expression defined by (1) represents an ill-posed problem, i.e., it is impossible
to compute the reflectance unless some assumptions regarding the nature of the
illumination induced appearance variations are made. To this end, researchers
introduced various assumptions regarding the luminance and reflectance func-
tions, the most common, however, are that the luminance part of the model in (1)
varies slowly with the spatial position and, hence, represents a low-frequency phe-
nomenon, while the reflectance part represents a high-frequency phenomenon.

To determine the reflectance of an image, and thus, to obtain an illumination
invariant image representation, the luminance L(x,y) of an image is commonly
estimated first. This estimate L(x, y) is then exploited to compute the reflectance
via the manipulation of the image model given by the expression (1), i.e.:

InR(z,y) =Inl(x,y) —InL(xz,y) or R(z,y)=I1(x,y)/L(z,y), (2)

where the right hand side equation of (2) denotes an element-wise division of the
input image I(z,y) with the estimated luminance L(z,y). We will refer to the
reflectance computed with the left hand side equation of (2) as the logarithmic
reflectance and to the reflectance computed with the right hand side equation
of (2) as the quotient reflectance in the rest of this paper.

As already emphasized, the luminance is considered to vary slowly with the
spatial position [8] and can, therefore, be estimated as a smoothed version of the
original image I(z,y). Various smoothing filters and smoothing techniques have
been proposed in the literature resulting in different photometric normalization
procedures that were successfully applied to the problem of face recognition
under severe illumination changes.

The single scale retinex algorithm [2], for example, computes the estimate of
the luminance function L(z, y) by simply smoothing the input image I(x,y) with
a Gaussian smoothing filter. The illumination invariant image representation is
then computed using the expression for the logarithmic reflectance. While such
an approach generally produces good results with a properly selected Gaussian,
its broader use in robust face recognition systems is still limited by an important
weakness: at large illumination discontinuities caused by strong shadows that are
casted over the face halo effects are often visible in the computed reflectance [8].
To avoid this problem the authors of the algorithm extended their normaliza-
tion technique to a multi scale form [3], where Gaussians with different widths
are used and basically outputs of different implementations of the single scale
retinex algorithm are combined to compute the final illumination invariant face
representation.

Another solution to the problem of halo effects was presented by Wang et
al. [4] in form of the self quotient image technique. Here, the authors approach
the problem of luminance estimation by introducing an anisotropic smoothing
filter. Once the anisotropic smoothing operation produces an estimate of the
luminance L(z,y), the quotient reflectance R(x,y) is computed in accordance
with the right hand side equation of (2). However, due to the anisotropic nature
of the employed smoothing filter flat zones in the images are not smoothed

properly.
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Gross and Brajovic [5] presented a solution to the problem of reliable lu-
minance estimation by adopting an anisotropic diffusion based smoothing tech-
nique. In their method the amount of smoothing at each pixel location is con-
trolled by the images local contrast. Adopting the local contrast as means to con-
trol the smoothing process results in flat image regions being smoothed properly
while still preserving image edges and, thus, avoiding halo effects. Despite the
success of the normalization technique in effectively determining the quotient re-
flectance, one could still voice some misgivings. An known issue with anisotropic
diffusion based smoothing is that it smoothes the image only in the direction
orthogonal to the images gradient [9]. Thus, it effectively preserves only straight
edges, but struggles at edge points with high curvature (e.g., at corners). In these
situations an approach that better preserves edges would be preferable. To this
end, we present in the next section two novel algorithms which make use of the
recently proposed non-local means algorithm.

3 Non-Local Means for Luminance Estimation

3.1 The Non-Local Means Algorithm

The non-local means (NL means) algorithm [9] is a recently proposed image
denoising technique, which, unlike existing denoising methods, considers pixel
values from the entire image for the task of noise reduction. The algorithm
is based on the fact that for every small window of the image several similar
windows can be found in the image as well, and, moreover, that all of these
windows can be exploited to denoise the image.

Let us denote an image contaminated with noise as I,,(x) € R**’, where
a and b are image dimensions in pixels, and let x stand for an arbitrary pixel
location x = (x,y) within the noisy image. The NL means algorithm constructs
the denoised image I;(x) by computing each pixel value of I;(x) as a weighted
average of pixels comprising I,,(x), i.e. [9]:

Lix)= > w(zx),(x), (3)

x€el, (x)

where w(z,x) represents the weighting function that measures the similarity
between the local neighborhoods of the pixel at the spatial locations z and x.
Here, the weighting function is defined as follows:

1 _ GollIn(2x)=1n(22) 113 _ GollIn(92x)=1n(22)113
w(z,x) = e hZ and Z(z) = E e 3
A
x€l, (x)

(4)
In the above expressions G, denotes a Gaussian kernel with the standard devia-
tion o, {2, and {2, denote the local neighborhoods of the pixels at the locations
x and z, respectively, h stands for the parameter that controls the decay of the
exponential function, and Z(z) represents a normalizing factor.
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From the presented equations it is clear that if the local neighborhoods of
a given pair of pixel locations z and x display a high degree of similarity, the
pixels at z and x will be assigned relatively large weights when computing their
denoised estimates. Some examples of image windows used by the algorithm
are presented in Fig. 1. Here, similar image windows are marked white, while

Fig. 1. The principle of the NL means algorithm: an input image (left), similar and
dissimilar image windows (right).

dissimilar image windows are marked black. When computing the denoised value
of the center pixel of each of the white windowed image regions, center pixels of
the similar windows will be assigned relatively large weights, the center pixels
of the dissimilar windows, on the other hand, will be assigned relatively low
weights.

Whit a proper selection of the decay parameter h, the presented algorithm
results in a smoothed image whit preserved edges. Hence, it can be used to esti-
mate the luminance of an input image and, consequently, to compute the (loga-
rithmic) reflectance. An example of the deployment of the NL means algorithm
(for a 5 x 5 local neighborhood and h = 10) for estimation of the logarithmic
reflectance is shown in Fig. 2 (left triplet).

Fig. 2. Two sample images processed with the NL means (left triplet) and adaptive NL
means (right triplet) algorithms. Order of images in each triplet (from left to right):
the input image, the estimated luminance, the logarithmic reflectance.

3.2 The Adaptive Non-Local Means Algorithm

The NL means algorithm assigns different weights to each of the pixel values in
the noisy image I,,(x) when estimating the denoised image I;(x). As we have
shown in the previous section, this weight assignment is based on the similarity
of the local neighborhoods of arbitrary pixel pairs and is controlled by the decay
parameter h. Large values of h result in a slow decay of the Gaussian weighted
Euclidian distance? and, hence, more neighborhoods are considered similar and

2 Recall that the Euclidian distance serves as the similarity measure between two local
neighborhoods.
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are assigned relatively large weights. Small values of h, on the other hand, result
in a fast decay of the Euclidian similarity measure and consequently only a small
number of pixels is assigned a large weight for the estimation of the denoised
pixel values.

Rather than using the original NL means algorithm for estimation of the
luminance of an image, we propose in this paper to exploit an adaptive version
of the algorithm, where the decay parameter h is a function of local contrast and
not a fixed and preselected value. At regions of low contrast, which represent
homogeneous areas, the image should be smoothed more (i.e., more pixels should
be considered for the estimation of the denoised pixel value), while in regions
of high contrast the image should be smoothed less, (i.e., less pixels should be
considered for the estimation of the denoised pixel value ).

Following the work of Gross and Brajovic [5], we define the local contrast
between neighboring pixel locations a and b as: pap =| In(a) — I(b) | / |
I,(a) + I,(b) |. Assuming that a is an arbitrary pixel location within I,,(x)
and b stands for a neighboring pixel location above, below, left or right from a,
we can construct four contrast images encoding the local contrast in one of the
possible four directions. The final contrast image I..(x) is ultimately computed as
the average of the four (directional) contrast images. To link the decay parameter
h to the contrast image we first compute the logarithm of the inverse of the (8-
bit grey-scale) contrast image I;.(x) = log[1/I.(x)], where 1 denotes a matrix
of all ones and the operator ”/” stands for the element-wise division. Next,
we linearly map the values of our inverted contrast image I;.(x) to values of
the decay parameter h, which now becomes a function of the spatial location:
h(x) = [(Lie(%) — Lic,... )/ (Licy,n — Lic, 0 )] % Bimaz + Pomin, where I and I .
denote the maximum and minimum value of the inverted contrast image I;.(x),
respectively, and A4, and hp,, stand for the target maximum and minimum
values of the decay parameter h. An example of the deployment of the presented
algorithm is shown in Fig. 2 (right triplet).

4 Experiments

To assess the presented two photometric normalization techniques we made use
of the YaleB face database [10]. The database contains images of ten distinct
subjects each photographed under 576 different viewing conditions (9 poses 64
illumination conditions). Thus, a total of 5760 images is featured in the database.
However, as we are interested only in testing our photometric normalization
techniques, we make use of a subset of 640 images with frontal pose in our
experiments. We partition the 640 images into five image set according to the
extremity in illumination under which they were taken and employ the first
image set for training and the remaining ones for testing.

In the experiments we use principal component analysis as the feature extrac-
tion technique and the nearest neighbor (to the mean) classifier in conjunction
with the cosine similarity measure as the classifier. The number of features is set
to its maximal value in all experiments.
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In our first series of recognition experiments we assess the performance of the
NL means (NLM) and adaptive NL means (ANL) algorithms for varying values
of their parameters, i.e., the decay parameter h for the NLM algorithm and h,qz
for the ANL algorithm. It has to be noted that the parameter h,,;, of the ANL
algorithm was fixed at the value of h,,;; = 0.01 and the local neighborhood of
5 x 5 pixels was chosen for the NLM and ANL algorithms in all experiments.
The results of the experiments in terms of the rank one recognition rates for the
individual image sets as well as its average value over the entire database are
presented in Table 1. We can see that the best performing implementations of

Table 1. The rank one recognition rates (in %) for the NLM and ANL algorithms.

Algorithm ANL - parameter hpmaa NLM - parameter h
Parameter value[| 40 [ 80 | 120 ] 160 | 200 [ 10 [ 30 [ 60 | 120
Image set no. 2[[ 100.0] 100.0] 100.0] 100.0] 100.0[[ 100.0[ 100.0] 100.0[ 100.0
Image set no. 3| 98.3 | 100.0[ 100.0[ 100.0] 100.0[| 100.0[ 100.0] 100.0[ 100.0
Image set no. 4] 90.7| 94.3] 943 921 929 91.4] 95.0| 97.1[ 95.7
Image set no. 5| 87.9| 97.4| 92.6| 84.7| 82.1| 96.3| 99.5| 92.6| 85.3

| Average [ 94.2[ 97.9] 96.7] 94.2] 93.8] 96.9] 98.6] 97.4] 95.3]

the NLM and ANL algorithm feature parameter values of h = 30 and h,q, = 80,
respectively.

In our second series of recognition experiments we compare the performance
of the two proposed algorithms (for A = 30 and h,,4, = 80) and several popular
photometric normalization techniques. Specifically, the following techniques were
implemented for comparison: the logarithm transform (LN), histogram equal-
ization (HQ), the single scale retinex (SR) technique and the adaptive retinex
normalization approach (AR) presented in [8]. For baseline comparisons, exper-
iments on unprocessed grey scale images (GR) are conducted as well. It should
be noted that the presented recognition rates are only indicative of the general
performance of the tested techniques, as the YaleB database represent a rather
small database, where it is possible to easily devise a normalization technique
that effectively discriminates among different images of the small number of sub-
jects. Several techniques were presented in the literature that normalize the facial
images by extremely compressing the dynamic range of the images, resulting in
the suppression of most of the images variability, albeit induced by illumination
or the subjects identity. The question of how to scale up these techniques for use
with larger numbers of subjects, however, still remains unanswered. To get an
impression of the scalability of the tested techniques we present also recognition
rates obtained with the estimated logarithmic luminance functions (where appli-
cable). These results provide an estimate of how much of the useful information
was removed from the facial image during the normalization. For the experi-
ments with the logarithmic luminance functions logarithm transformed images
from the first image set were employed for training.

The presented results show the competitiveness of the proposed techniques.
Similar to the best performing AR technique, they achieve an average recognition
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Table 2. Comparison of the rank one recognition rates (in %) for various algorithms.

Representation Normalized image Log. luminance - In L(x, y)
Image sets No. 2[ No. 3[ No. 4[ No. 5[ Avg.|| No. 2[ No. 3[ No. 4[ No. 5[ Avg.
GR 100.0| 100.0{ 57.9 | 16.3 | 68.6|| n/a | n/a | n/a | n/a | n/a
HQ 100.0{ 100.0| 58.6 | 60.0 | 79.7|| n/a | n/a | n/a | n/a | n/a
LN 100.0| 98.3 | 58.6 | 52.6 | 77.4|| n/a | n/a | n/a | n/a | n/a
SR 100.0{ 100.0| 92.1 | 84.2 | 94.1|| 100.0| 90.8 | 46.4 | 41.1 | 69.6
AR 100.0{ 100.0| 97.1 | 98.4 | 98.9| 100.0| 95.0 | 49.3 | 44.3 | 72.1
NLM 100.0| 100.0| 95.0 | 99.5 | 98.6 || 100.0| 86.7 | 39.3 | 26.3 | 63.1
ANL 100.0| 100.0| 94.3 | 97.4 | 97.9| 100.0| 65.8 | 36.4 | 26.8 | 57.3

rate of approximately 98%, but remove less of the useful information as shown
by the results obtained on the luminance estimates. The results suggest that the
proposed normalization techniques will perform well on larger databases as well.

5 Conclusion and Future Work

In this paper we have presented two novel image normalization techniques, which
try to compensate for the illumination induced appearance variations of facial
images at the preprocessing level. The feasibility of the presented techniques was
successfully demonstrated on the YaleB database were encouraging results were
achieved. Our future work with respect to the normalization techniques will be
focused on their evaluation on larger and more challenging databases.
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