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Abstract

Most of the existing literature on i-vector-based speakeog-
nition focuses on recognition problems, where i-vectoesexr
tracted from speech recordings of sufficient length. The ma-
jority of modeling/recognition techniques therefore siynig-
nores the fact that the i-vectors are most likely estimated u
reliably when short recordings are used for their compaotati
Only recently, were a number of solutions proposed in tlee-lit
ature to address the problem of duration variability, ahting

the i-vector as a random variable whose posterior disiohut
can be parameterized by the posterior mean and the posterior
covariance. In this setting the covariance matrix servea as
measure of uncertainty that is related to the length of tlad-av
able recording. In contract to these solutions, we addifess t
problem of duration variability through weighted statisti We
demonstrate in the paper how established feature tranaform
tion techniques regularly used in the area of speaker récogn
tion, such as PCA or WCCN, can be modified to take duration
into account. We evaluate our weighting scheme in the scbpe o
the i-vector challenge organized as part of @wyssey, Speaker
and Language Recognition Workshop 2@ achieve a min-
imal DCF of 0.280, which at the time of writing puts our ap-
proach in third place among all the participating instias.

1

The area of speaker recognition has made significant pregres
over recent years. Today, recognition systems relying on
so-called i-vectors have emerged as the de-facto standard i
this area. Most of the existing literature on i-vector-liase
speaker recognition focuses on recognition problems, evher
the i-vectors are extracted from speech recordings of geiftic
length. The length of the recordings is predefined by thedpee
corpus used for the experimentation and typically does rag d
below a length that would cause problems to the recognition
techniques. In practical applications, however, speakeog-
nition systems often deal with i-vectors extracted fromrsho
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recordings, which may be estimated less reliably than tersc
extracted from recordings of sufficient length.

The problem of duration variability is known to be one of
importance for practical speaker-recognition applicai@nd
has also been addressed to a certain extent in the literatile
context of i-vector-based speaker-recognition systergs,[&],

[2], [31, [3), [40, [5), [6], [7], [8],[9], [10].The most recent so-
lutions of the duration-variability problem (e.g.5][[€], or [7]

do not treat i-vectors as point estimates of the hidden bkasa

in the eigenvoice model, but rather as random vectors. b thi
slightly different perspective, the i-vectors appears @stgrior
distributions, parameterized by the posterior mean angdise
terior covariance matrix. Here, the covariance matrix can b
interpreted as a measure of the uncertainty of the poirmasgi
that relates to the duration of the speech recording useaite ¢
pute the i-vectors.

In this paper we propose a slightly different approach and
try to compensate for the problem of duration variability of
the speech recordings through weighted statistics. Tifpica
feature-transformation techniques commonly used in tea ar
of speaker recognition, such as principal component aisalys
(PCA) or within-class covariance normalization (WCCN) es-
timate the covariance matrices and sample means by consid-
ering the contribution of each available i-vector equatiythe
statistics, regardless of the fact that the i-vectors magdie
mated unreliably. To address this point, we associate with e
ery i-vector a weight that is proportional to the duratiortoeé
speech recording from which the i-vector was extracted.s Thi
weight is then used to control the impact of a given i-vector t
the overall statistics being computed. The described plwee
can be applied to any feature transformation technique end r
sults in duration-weighted techniques that should leacetteb
estimates of the feature transforms.

We evaluate the proposed weighting scheme in the scope of
the i-vector challenge (IVC) organized by NIST as part of the
Odyssey, Speaker and Language Recognition Workshop 2014
The goal of the challenge is to advance the state-of-teolggyol
in the area of speaker recognition by providing a standapeex
imental protocol and pre-computed i-vectors for experitaen
tion. Based on the data provided by the challenge, we shaw tha
it is possible to apply the proposed weighting scheme torsupe
vised as well as unsupervised feature-transformatiomigabs
and that in both cases performance gains can be expectdu. Wit
our best performing (duration-weighted) system we managed
achieve a minimal decision-cost-function (DCF) value @80,
which puts our approach in third place among the partiaigati
institutions (and in seventh place individually out of 98tjua



pants) at the time of writing.
Before we conclude this section, let us summarize the con-
tributions of this paper:

e we propose a novel weighting scheme to address the
problem of variable durations of the speech recordings
used to compute i-vectors from,

we introduce duration-weighted versions of established
feature-transformation techniques, namely, PCA and
WCCN, and

we present a detailed experimental assessment of the
proposed duration-weighted techniques and benchmark
them against state-of-the-art speaker-recognition tech-
niques submitted for evaluation at the 2014 i-vector chal-
lenge organized by NIST.

The rest of the paper is structured as follows. In Seciion
we briefly survey the state-of-the-art in the field of speaker
recognition and introduce all the techniques relevantHerre-
mainder of the paper. In Sectidhwe present our duration-
based weighting scheme and show how it can be applied to
established feature-transformation techniques usedanmbgin
the field of speaker recognition. In Sectidrwe describe the
i-vector challenge, its goals, the experimental data amfbpe
mance metrics used to measure the recognition performdnce o
the participating systems. We assess the proposed wejghtin
scheme in Sectio® and conclude the paper with some final
comments in Sectio.

2. Prior work

l-vectors represent low-dimensional feature represemsitof
variable length speech. The i-vector extraction procedare
be seen as an extension of the well-known GMM-UBM model-
ing of the short-time acoustic featuresl], where each speech
utterance is represented by the (MAP-adapted) parameters
the UBM model. The main difference between the i-vector ex-
traction procedure and the GMM-UBM modeling approach is
that instead of the classical MAP algorithm, an i-vectoraxt
tor uses a generalized version of the same algorithm, which
takes the dependence of the parameters into account. The al-
gorithm is — depending on the context — known by different
names like eigenvoice MAP or total variability modeling asd
in fact a slightly modified version of the classical factoabr
sis’. Moreover, the algorithm is a special case of the joint facto
analysis 2], which tries to model speaker and channel variabil-
ity in the supervectors’ space. To avoid the complicatidra t
arise from the fact that the dimension of supervectors igliysu
very large, the total variability model takes a differenpegach
and does not try to disentangle the speaker and channetsffec
by itself, but postpones this task to the subsequent steps.

Two of the most frequently used classification methods in
i-vector-based speaker recognition are the cosine siityi[ar]
and probabilistic linear discriminant analysis (PLDA)d&
pendently developed for face 4], [15] and speaker recogni-
tion [16]. Since its introduction, the PLDA model has been
extended in different ways, e.g. the underlying Gaussian as
sumption have been relaxefd], the parameters of the model
have been treated as random variabie§ §nd an extension to
the mixture case has been proposed as weé]l [

1The mean vectors of individual Gaussian components can be
stacked on top of each other, forming the so called supamsct

2The modification is needed due to the fact that the parameténe
GMM are not directly observed and should be treated as lasgiables.

Before given to the classifier, i-vectors are usually prepro
cessed in various ways. Common preprocessing methods in-
clude whitening (PCA), linear discriminant analysis (LDdd
within-class covariance normalization (WCCN), which can b
applied in combination. Another important preprocessiegp s
is length normalization, as it turns otitq] that length normal-
ization brings the i-vectors closer to a normal distribntand
therefore provides for a better fit with the assumptions tgde
ing Gaussian PLDA.

3. Duration-based weighting
3.1. Introduction

In this section we introduce our duration-dependent waight
scheme. We assume that the front-end processing of thetspeec
recording has already been conducted and that all we have at
our disposal is a set of extracted i-vectors and a single item
of metadata in the form of the duration of the recording from
which a given i-vector was extracted]. Under the presented
assumptions the solutions to the problem of duration vaitiab

that treat the i-vectors as random variables charactetbyeal
posterior distribution, such as those presented]in f], or [7],

are not applicable.

Most feature-extraction (or feature-transformation)htec
niqgues used in conjunction with i-vector-based speaker-
verification systems (e.g., PCA, WCCN, NAP, etc.) rely orrest
mates of the first- and second-order statistics to compatieti
ture transforms. Given some training i-vectars x2, . . . , Xn,
with x;, € R™ and: = 1,2,...,n, the first- £) and second-
order @) statistics are defined as:

f:f:xi

)

and

n
S = Z XiX; (2
where” denotes the transpose operator. Based on these statis-
tics it is straight forward to compute the sample covariamee
trix (X,) and sample meap , which are at the heart of many
feature extraction techniques:
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Note that in the case, where all the training vectorelong to
the same class (i.e., to the same speaker), the above etatio
represent the class-conditional mean and the class-comalit
covariance matrix. In the remainder we will limit our diseus
sion on the presented definitions of the sample mean and the
covariance matrix. Note, however, that the same reasoring c
be applied to any statistics computed frérandS.

The definitions of the covariance matrix and sample mean
given in Egs. 4) and @) assume that all the training vectots
(i = 1,2,...,n) are equally reliable and are, therefore, given
equal weights when computing the mean and covariance matrix
While such an interpretation of the equations is (most yikel
valid if the training vectors are computed from speech recor
ings of sufficient length, this may not be true if some of the
vectors are extracted from short recordings. In this cazmges



of the training vectors are unreliable and should not cbutd
equally to the computed statistics.

To account for the above observation we propose to use
weighted statistics instead of the statistics in E4¥.ahd @),
where the weight associated with th&h sample is defined by
the duration of the recording from which the vector was ex-
tracted. To formalize our weighting scheme, let us assuae th
each of the available training vectats also has an associated
data instance;, defining the duration from which the vector
was extractedi(= 1,2, ...,n). Based on this additional data,
we can define duration-weighted versions of zeRy,) first-
(f4) and second-ordeS(;) statistics:

Ta=> t )
=1
f, = En:tixi, (6)
i—1
Sq = zn:tixixiT, (7)
=1

and consequently, a duration-weighted sample mean and-cova
ance matrix:

(8)

9)

Sd T
E — HaHg s
Note that all the presented statistics are reduced to tlogir n
weighted versions if the speech recordings, from which the
training vectors are extracted, are of the same length.idfish

not the case, the presented weighting scheme gives larger em
phasis to more reliably estimated i-vectors. In the remaind
we present modifications of two popular feature-transfaiona
techniques based on the presented weighting scheme, namely
principal component analysis and within-class covariamme
malization. We first briefly describe the theoretical basisath
techniques and then show, how they can be modified based on
the presented statistics.

3.2. Principal component analysis

Principal component analysis (PCA) is a powerful statitic
learning technique with applications in many differentzargn-
cluding speaker verification. PCA learns a subspace fronesom
training data in such a way that the learned basis vectors-cor
spond to the maximum variance directions present in thé-orig
nal training dataf1]. Once the subspace is learned, any given
feature vector can be projected into the subspace to begzede
further or to be used with the selected scoring procedure. In
state-of-the-art speaker-verification systems the featactors
used with PCA typically take the form of i-vectors, which af-
ter processing with the presented technique are fed to &gcor
technique, based on which identity inference is conducted.
Formally PCA can be defined as follows. Given a data ma-
trix X = [x1,X2,...,Xn],x; € R™ containing in its columns
n training vectors;, fori = 1,2, ..., n, PCA computes a sub-
space basi®J € R™*? by factorizing of the covariance matrix

3 of the vectors ifX into the following form:
> = UAUT, (10)

whereU = [u1, ug, ..., uq],u; € R™ denotes an orthogonal
eigenvector vector matrix (i.e., the projection basis) ang=

diag{A1, A2, ..., Aq, } stands for a diagonal eigenvalue matrix
with the eigenvalues arranged in decreasing order. Note tha
if X is full-rank the maximum possible value for the subspace
dimensionality isd = n, if the covariance matrix is not full-
rank the upper bound fetis defined by the number of non-zero
eigenvalues imA. In practice, the dimensionality of the PCA
subspacel is an open parameter and can be selected arbitrarily
(up to the upper bound).

Based on the computed subspace basis, a given feature vec-
tor x can be projected onto th&-dimensional PCA subspace
using the following mapping:

y=U"(x—p),

wherey € R? stands for the PCA transformed feature vector.
Commonly, the above transformation is implemented in a

slightly different form, which next to projecting the givéea-

ture vectorx into the PCA subspace, also whitens the data:

(11)

y = (UAV*) T (x - p). (12)

Note that with standard PCA the covariance ma¥and
sample meap in Egs. (L0), (11) and (L2) are computed based
on non-weighted statistics, i.& = X, andp = p,. If the
duration-weighted statistics are used instead, Xe= 3, and
u = p,, we obtain a modified version of PCA, which takes
duration into account when computing the subspace basis.

3.3. Within-class covariance nor malization

Within-Class Covariance Normalization (WCCN) is a feature
transformation technique originally introduced in the teom

of Support Vector Machine (SVM) classificatiof]. WCCN
can under certain conditions be shown to minimize the exgect
classification errcrby applying a feature transformation on the
data that as a result whitens the within-class scatter xaftthe
training vectors. Thus, unlike PCA, WCCN represents a super
vised feature extraction/transformation technique awmglires
the training data to be labeled. In state-of-the-art speade-
fication systems, the feature vectors used with WCCN tylyical
represent i-vectors (or PCA-processed i-vectors) that ffie
WCCN feature transformation are subjected to a scoringgaroc
dure.

Typically WCCN is implemented as follows. Consider a
data matrixX = [x1, x2,...,Xn],x; € R™ containing in its
columnsn training vectorsx;, fori = 1,2,...,n, and let us
further assume that these vectors belongVtalistinct classe's
C1,Cy, ..., Cn with the j-th class containing; samples and
n Zj\’:l n;. WCCN computes the transformation matrix
based on the following Cholesky factorization:

>,  =LL7, (13)
whereL andL” stand for the lower and upper triangular ma-
trices, respectively, an®l,! denotes the inverse of the within-
class scatter matrix computed from the training data.

Once computed, the WCCN transformation matkixcan
be used to transform any given feature vectdoased on the
following mapping:

y=L"x, (14)

wherey € R™ stands for the transformed feature vector.

3on the training data

“Note that for the weighted case, presented in the remaingter,
actually assume that the classes contain pairs of feateterseand as-
sociated duration-data instances, i.&,, ;).



Commonly, the within-class scatter matb, is computed
based on class-conditional (i.e., speaker-conditiones)-f{f;)
and second-ordefS() statistics. The expressions for computing
these statistics for thgth classC; are defined as:

fj = Z X, and Sj = Z XZ’X?,

i
xT;ECj

(15)

xT;GCj

which results in the following within-class scatter matrix

Ss = EN: i f )
N = n]
N (16)
N Z n, Z - IJ]')T7
E
wherep; denotes the class conditional mean for jHé class.

For the weighted-version of WCCN relying on our
duration-dependent weighting scheme the class-condition
zero (Iy;), first- (f4;) and second-ordeiS(;) statistics are de-
fined as:

Ty = Z t:, whereT, = ZTdJ, (17)
t; EC
n; nj
£, = Z tix;, and Sg; = Z tixix;, (18
e xi€C;

where we assume thék;, t;) € C;.
With these definitions the weighted within-class scatter ma
trix X,,4 can be defined as:

IR T

Jj=1

Sl

1
(Saj — T—dfdjftg)
Ly
(19)
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where p,,; denotes the duration-weighted class conditional
mean for thej-th class.

Similar to the PCA case, factorizing the inverse of the stan-
dard within-class scatter matrix (i.e5~! = X,!) based on
Eq. 14results in the classical implementation of WCCN, while
using the weighted version (i.e5~' = X_!) results in the
modified duration-weighted implementation of WCCN.

4. Thel-vector challenge

We evaluate the feasibility of the proposed duration-wigigh
scheme in the scope of the i-vector challenge (IVC) orgahize
by NIST as part of the Odyssey, Speaker and Language Recog-
nition Workshop 2014. In this section we provide some basic
information on the challenge, present the experimentabpod

and define the performance metric used to assess the recogni-

tion techniques.

600
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Figure 1: Histogram of recording durations. The histograas w
computed from the durations corresponding to the i-vedtors
the IVC development set.

4.1. Challengedescription

The single task of IVC is that of speaker detection, i.e. ged
mine whether a specified speaker (the target speaker) ik-spea
ing during a given segment of conversational speech. The IVC
data is given in the form of 600-dimensional i-vectors, diéd
into disjoint development and evaluation sets. The devatog

set consists of 36,572 (unlabeled) i-vectors, while théuatin

set consists of 6,530 target i-vectors belonging to 1,36feta
speakers (5 i-vectors per speaker) and 9,643 test i-veot@s
unknown number of speakers. Note that no explicit informa-
tion is provided on whether the 1,306 speakers are distinct o
not. Hence, it is possible that some of the target identdies
duplicated.

The experimental protocol of IVC defines that a total of
12,582,004 experimental trials need to be conducted, where
each trial consists of matching a single i-vector from tH&49,
test vectors against a given target model constructed hased
the five target i-vectors belonging to the targeted speaker.
should be noted that — according to the rule§] [— the output
produced for each trial must be based (in addition to theldeve
opment data) solely on the training and test segment i-v@cto
provided for that particular trial, while the i-vectors pided
for other trials may not be used in any way. The main charac-
teristics of the experimental protocol are summarized ida

The durations of the speech segments used to compute the i-
vectors for IVC are sampled from a log-normal distributiaithw
a mean of 39.58 seconds (see Higwhere a histogram of the
duration from the development data is presented). Thisestgg
that methods that take the uncertainty of the i-vectors dualei
ration variability into account should be effective in theat
lenge. However, since the only information provided witblea
i-vector is the duration of the speech recording used to coenp
the corresponding i-vector, techniques exploiting thetqrasr
covariance, such as]| [6], [7], are not feasible. Nevertheless,
we expect that performance improvements should be possible
by augmenting the information contained in the i-vectorthwi
duration information in one way or another.

4.2. Performance metrics

In order to establish the performance of the given recagmiti
technique, the file containing the scores for all trials seted

be uploaded to the IVC website. Each registered particiant
allowed to upload up to 10 submission per day. The overall per
formance of the submitted techniques is measured in terms of



Table 1: Characteristics of IVC experimental protocol. Biimboln/a stands for the fact that the information is not available.

Data set # i-vectors‘ #speakers quality # trials
development set 36,572 n/a arbitrary

evaluation set - target vectors 6,530 1,306 telephone speech 12,582,004
evaluation set - test vectors 9,643 n/a arbitrary

the minimal value of the decision cost function (DCF) obégin
over all thresholds, where the DCF for a given threshois
computed as:

# false alarm§)

_ #misse$t)
DCH(t) # non-target trials

~ #target trials

(20)

Note that the minimial DCF value (minDCF) is the only per-
formance metric returned by the on-line system and is, there
fore, also the only metric reported in our experiments. When
assessing the performance of a submitted recognitionrayste
only 40% of the trials are used, while the remaining 60% are
withheld for calculating the official results at the end & tthal-
lenge. As a consequence, the final performance of our best per
forming system may differ in other reports on the 2014 i-gect
challenge from what is reported here.

5. Experiments and results
5.1. Experimental setup

The experiments presented in the remainder are conducted in
accordance with the experimental protocol defined for the i-
vector challenge and presented in Secdoh The processing

is done on a personal desktop computer using Matlab R2010b
and the following open source toolboxes:

e the PhD toolbox 3], [24]°, which among others
features implementations of popular dimensionality-
reduction techniques;

e the Bosaris toolkit 5]°, which contains implementa-
tions of score calibration, fusion and classification tech-
niques;

e the Liblinear library (with the Matlab interfaceP]’,
which contains fast routines for training and deploy-
ing linear classifiers such as linear SVMs or logistic-
regression classifiers.

All the experiments presented in the next sections canyeassil
reproduced using the above tools and functions.

5.2. Experimentswith PCA

Our duration-dependent weighting scheme is based on the as-
sumption that not all the available i-vectors are computethf
speech recordings of the same length and are, therefore, not
equally reliable. If the i-vectors are computed from redogd

of comparable length, the weighting scheme would have only
little effect on the given technique, as similar weights \@ou

be assigned to all the statistics and the impact of the wieight
would basically be lost. On the other hand, if the i-vectors a
computed from speech recordings of very different lengths,
weighting scheme is expected to provide more reliable t&sul

Shttp://luks.fe.uni-lj.si/sl/osebje/vitomir/faceols/PhDface
Shttps://sites.google.com/site/bosaristoolkit/
http://www.csie.ntu.edu.tw/ cjlin/liblinear/

Table 2: Effect of the proposed weighting scheme on the base-
line system defined for IVC. The Table shows minDCF values
achieved by the baseline and weighted baseline systems as re
turned by the web-platform of the IVC as well as the relative
change (in%) in the minDCF value, achieved with the weight-
ing.

| Technique| Baseline| Weighted baselin4| minDCF,.; |
| 0386 | 0.372 | 363% |

| Score

as more reliable i-vectors are given larger weights when-com
puting statistics for the given speaker-verification tegha.
Considering the histogram of durations presented in Fige
expect that our weighting scheme should provide some benefit
in terms of performance.

To assess our weighting scheme we first implement the
baseline technique defined for the i-vector challenge aadhes
baseline performance for comparative purposes. Note W@t |
defines a PCA-based system used together with cosine scoring
as its baseline. Specifically, the baseline system corfiste
following steps P0]

e estimation of the global mean and covariance based on
the development data,

e centering and whitening of all i-vectors based on PCA
(see Eql2),

e projecting all i-vectors onto the unit sphere (i.e., length

H H .. X
normalization:x < m),

e computing models by averaging the five target i-vectors
of each speaker and normalizing the result to uhit
norm, and

e scoring by computing inner products between all models
and test i-vectors.

In our first series of experiments, we modify the baselinéesys

by replacing the PCA step (second bullet) with our duration-
weighted version of the PCA. We provide the comparative re-
sults in terms of the minDCF values in Taldle Here, the last
column denotes the relative change in the minDCF value mea-
sured against the baseline:

MIiNDCFR,qse — MINDCRcs:
mMinDCR,qc '

where minDCE, . stands for the minDCF value of the baseline
system and minDCE;: stands for the minDCF value achieved
by the currently assessed system.

Note that the proposed weighting scheme results in a rela-
tive improvement of 3.63% in the minDCF value over the base-
line. This result suggests that a performance improvengent i
possible with the proposed weighting scheme, but a more de-
tailed analysis of this results is still of interest. Forstnéason
we examine the behavior of the baseline and weighted baselin

minDCF,..; =

(21)


http://luks.fe.uni-lj.si/sl/osebje/vitomir/face_tools/PhDface
https://sites.google.com/site/bosaristoolkit/
http://www.csie.ntu.edu.tw/~cjlin/liblinear/

Table 3:Effect of excluding samples from the development set of
the IVC data on the performance of the baseline and weighted
baseline systems. The exclusion criterion is a thresholthen
duration of the recording used to compute the i-vectors. The
Table shows minDCF values as returned by the web-platform
of the IVC.

Exclusion criteri0n| < 10s | < 15s | < 20s | < 25s |

0.385 | 0.381 | 0.379 | 0.377
0.372 | 0371 | 0.371 | 0.371

Baseline
Weighted

techniques with respect to a smaller development set, where
vectors computed from shorter recordings are excluded from
the estimation of the global mean and covariance. Based on
this strategy, we construct four distinct development setis
the first excluding all the i-vectors with the associatedation
shorter than 10s, the second excluding all the i-vectons thi
associated duration shorter than 15s, the third excludingea
i-vectors with the associated duration shorter than 203 tlaa
last excluding all i-vectors with the associated duratibarter
than 25s. The baseline and weighted baseline techniquleaare t
trained on the described development sets. The resultdsof th
series of experiments are presented in T&ble

Note that by excluding vectors from the development set,
the baseline technique gradually improves in performargce a
more and more of the unreliable i-vectors are excluded from
training. Continuing this procedure would clearly turn trend
around and the minDCF values would start getting worse,@s to
much information would be discarded. The weighted baseline
system, on the other hand, ensures minDCF values compara-
ble to those that were achieved when the entire developraént s
was used for the training. This result again suggests that du
tion variability is addressed quite reasonably with theppsed
weighting scheme.

5.3. Experimentswith WCCN

In the next series of experiments we assess the performdnce o
WCCN-based recognition systems. As a baseline WCCN sys-
tem, we implement a similar processing pipeline as predente
for the IVC baseline technique in the previous section, gt a
an additional step, which after whitening with PCA also whi

the within-class covariance matrix using WCCN. All the re-
maining steps of our WCCN-based baseline stay the same in-
cluding length normalization, model construction and sapr
Whenever using the weighted version of WCCN we also use the
weighted version of PCA in the experiments.

To further improve upon the baseline, we implement a sec-
ond group of WCCN-based systems, where the cosine-based
scoring procedure is replaced with a logistic-regressiansi-
fier and the length normalization is removed from the process
ing pipeline. With this approach all five target i-vectorseof
given speaker are considered as positive examples of os® cla
while 5,000 i-vectors most similar to the given target spefak
are considered as negative examples of the second clasd Bas
on this setup a binary classifier is trained for each targeslegr,
resulting in a total of 1,306 classifiers for the entire IVGada

8Here, the similarity between the target vectors and theldpaeent
vectors is measured by means of the IVC baseline system. tNate
5,000 negative examples are used to speed up experimentafiar
best results were achieved with the entire developmentssebuanter-
examples.

Before we turn our attention to the experimental results,
it has to be noted that unlike PCA, which is an unsupervised
technique, WCCN represents a supervised feature tranaform
tion techniques, which requires that all i-vectors conipgshe
development data are labeled. Unfortunately, the devetopm
data provided for the i-vector challenge is not labeled adhé
number of speakers present in the data known. To be able to
apply supervised algorithms successfully we need to ganera
labels in an unsupervised manner by applying an appropriate
clustering algorithmZ7], [28]. Clustering will, however, never
be perfect in practice, so the errors (utterances origihgtem
the same speaker can be attributed to different clusters-or u
terances from different speakers can be attributed to e sa
cluster) are inevitable. Although there exists some exdidehat
labeling errors can degrade the recognition performaneen(s
as a bending of the DET curve), it is not completely obvious
how sensitive different methods are with respect to thoseer

Since the selection of an appropriate clustering technique
is (clearly) crucial for the performance of the supervised-f
ture transformation techniques, we first run a series ofrprel
inary experiments with respect to clustering and elabooate
our main findings. The basis for our experiments is whitened
i-vectors processed with the (PCA-based) baseline IVC sys-
tem. We experiment with different clustering techniques.{i
k-means, hierarchical clustering, spectral clusteringamshift
clustering, k-medoids and others), using different nurmtudr
clusters and different (dis-)similarity measures (i.aiclilian
distances and cosine similarity measures). The resultsiof o
preliminary experiments suggest the cosine similarity snea
results in i-vector labels that ensure better verificatierfqo-
mance than the labels generated by the Euclidian distaritte (w
the same number of clusters). Despite the fact that sevésal a
natives have been assessed, classical k-means clustesings
the best results in our experiments and was, therefore eohos
as the clustering algorithm for all of our main experimehts
Based on our preliminary experiments, we select the k-means
clustering algorithm with the cosine similarity measure dar
experiments with WCCN and run it on the development data.
We set the number of clusters to 4,000, which also ensured the
best results during our preliminary experimentation.

The results of the WCCN-based series of experiments are
presented in Tablé. Here, the relative change in the minDCF
value is measured against the WCCN baseline. The first thing
to notice is that with cosine scoring the WCCN-baseline sys-
tems (weighted and non-weighted) result in significantlyseo
minDCF values. However, when the scoring procedure is re-
placed with a logistic-regression classifier, this chandes
matically. In this situation, the WCCN-based system becme
highly competitive and in the case of the weighted system re-
sult in a minDCF value of 0.294. All in all, the weighting
scheme seems to ensure a consistent improvement over the non
weighted case of around 3%. For the sake of completeness we
need to emphasize that the best score we managed to achieve
with a PCA-based system, when using a logistic-regression
classifier was 0.326.

As a final remark, it needs to be stressed that the perfor-

9t is also worth noting, that the cluster labels generateth wie
k-means clustering algorithm were also used in conjunciih dif-
ferent PLDA-based models, i.e., the models presented.if [15]
and [29], but different from WCCN no improvements over the baseline
were achieved, regardless of the classifier used. This seesuggest
that feature transformation techniques, such as WCCNeasesluscep-
tible to labeling errors than PLDA-models. However, morse@ch
would be needed to further validate this observation.



Table 4. Effect of the proposed weighting scheme on our
WCCN-baseline system. The Table shows minDCF values
achieved by the baseline and weighted baseline WCCN sys-
tems as returned by the web-platform of the IVC as well as the
relative change (in%) in the minDCF value, achieved with the
weighting.

Technique| Baseline| Weighted” minDCF,.;

0.461 0.447 3.04%
0.304 0.294 3.29%

Cosine
Logistic

mance of the logistic-regression classifier used in our xpe
ments was extremely dependent on the right choice of param-
eters. Changing the parameters of the classifier only $light
resulted in minDCF values way above 0.3. To arrive at the re-
sults presented in Tablewe needed to include a bias term and
set the cost parameter to a relatively large vélue

5.4. Compar ative assessment

For the i-vector challenge we further tuned our best periiagm
recognition system (i.e., the weighted version of our WCCN-
system) to achieve even lower minDCF values. After imple-
menting several additional steps we managed to reduce the
minDCF value of our system to 0.280 by the time of writing.
Specifically, the following improvements were implemented

e duration was added as an additional feature to the i-
vectors to construct 601 dimensional vectors before any
processing,

e the clustering was improved by excluding clusters with a
small fisher-score,

e the entire development set was used as negative exam-
ples when training the classifiers, and

e a second set of classifiers was trained on the test vectors
and then used to classify the target vectors; the mean
score over a given target speaker was then combined with
the score computed based on the classifier trained on the
target identity’.

As indicated a couple of times throughout the paper, the
best minDCF value we managed to achieve by the time of
writing puts our system at third place in the i-vector chal-
lenge among the participating institutions. For the finalkra
ing and performance scores the reader is referred to NIST’s
IVC web-site, where the IVC leader-board can be found:
https://ivectorchal | enge. ni st. gov. However, it
should be noted that after the Odyssey paper-submissiaf dea
line, we did not make any further improvements to our tech-
nique, while other participants probably did, so the ragkire-
sented at the IVC web-site may differ to what is reported here

6. Conclusions

We have presented a duration-based weighting scheme for fea
ture transformation techniques used commonly in an i-vecto

10The following LIBLINEAR settings needed to be used to pro-
duce the results reported in Talléor the logistic-regression classifier:
’-s 0-B 1 -c 100000'.

11Here, the role of the target and test vectors was simply ftippe
Each test vector was used as a positive example of one clags, the
development set was used for the negative samples. Thé tacers
were then classified based on the trained classifiers.

based speaker-recognition system. We have applied thensche
on two established transformation techniques, namelpcpri

pal component analysis and within-class covariance ndzeral
tion. We have assessed the duration-weighted techniquke in
scope of the i-vector challenge organized by NIST within the
Odyssey, Speaker and Language Recognition Workshop 2014
and achieved very competitive results. As part of our future
work, we plan to evaluate the possibility of using a similar
scheme with probabilistic linear discriminant analysisvad.
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