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Abstract

Most of the existing literature on i-vector-based speaker recog-
nition focuses on recognition problems, where i-vectors are ex-
tracted from speech recordings of sufficient length. The ma-
jority of modeling/recognition techniques therefore simply ig-
nores the fact that the i-vectors are most likely estimated un-
reliably when short recordings are used for their computation.
Only recently, were a number of solutions proposed in the liter-
ature to address the problem of duration variability, all treating
the i-vector as a random variable whose posterior distribution
can be parameterized by the posterior mean and the posterior
covariance. In this setting the covariance matrix serves asa
measure of uncertainty that is related to the length of the avail-
able recording. In contract to these solutions, we address the
problem of duration variability through weighted statistics. We
demonstrate in the paper how established feature transforma-
tion techniques regularly used in the area of speaker recogni-
tion, such as PCA or WCCN, can be modified to take duration
into account. We evaluate our weighting scheme in the scope of
the i-vector challenge organized as part of theOdyssey, Speaker
and Language Recognition Workshop 2014and achieve a min-
imal DCF of 0.280, which at the time of writing puts our ap-
proach in third place among all the participating institutions.

1. Introduction
The area of speaker recognition has made significant progress
over recent years. Today, recognition systems relying on
so-called i-vectors have emerged as the de-facto standard in
this area. Most of the existing literature on i-vector-based
speaker recognition focuses on recognition problems, where
the i-vectors are extracted from speech recordings of sufficient
length. The length of the recordings is predefined by the speech
corpus used for the experimentation and typically does not drop
below a length that would cause problems to the recognition
techniques. In practical applications, however, speaker recog-
nition systems often deal with i-vectors extracted from short
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recordings, which may be estimated less reliably than i-vectors
extracted from recordings of sufficient length.

The problem of duration variability is known to be one of
importance for practical speaker-recognition applications and
has also been addressed to a certain extent in the literaturein the
context of i-vector-based speaker-recognition systems, e.g., [1],
[2], [3], [3], [4], [5], [6], [7], [8], [9], [10].The most recent so-
lutions of the duration-variability problem (e.g., [5], [6], or [7]
do not treat i-vectors as point estimates of the hidden variables
in the eigenvoice model, but rather as random vectors. In this
slightly different perspective, the i-vectors appears as posterior
distributions, parameterized by the posterior mean and thepos-
terior covariance matrix. Here, the covariance matrix can be
interpreted as a measure of the uncertainty of the point estimate
that relates to the duration of the speech recording used to com-
pute the i-vectors.

In this paper we propose a slightly different approach and
try to compensate for the problem of duration variability of
the speech recordings through weighted statistics. Typically,
feature-transformation techniques commonly used in the area
of speaker recognition, such as principal component analysis
(PCA) or within-class covariance normalization (WCCN) es-
timate the covariance matrices and sample means by consid-
ering the contribution of each available i-vector equally in the
statistics, regardless of the fact that the i-vectors may beesti-
mated unreliably. To address this point, we associate with ev-
ery i-vector a weight that is proportional to the duration ofthe
speech recording from which the i-vector was extracted. This
weight is then used to control the impact of a given i-vector to
the overall statistics being computed. The described procedure
can be applied to any feature transformation technique and re-
sults in duration-weighted techniques that should lead to better
estimates of the feature transforms.

We evaluate the proposed weighting scheme in the scope of
the i-vector challenge (IVC) organized by NIST as part of the
Odyssey, Speaker and Language Recognition Workshop 2014.
The goal of the challenge is to advance the state-of-technology
in the area of speaker recognition by providing a standard exper-
imental protocol and pre-computed i-vectors for experimenta-
tion. Based on the data provided by the challenge, we show that
it is possible to apply the proposed weighting scheme to super-
vised as well as unsupervised feature-transformation techniques
and that in both cases performance gains can be expected. With
our best performing (duration-weighted) system we managedto
achieve a minimal decision-cost-function (DCF) value of 0.280,
which puts our approach in third place among the participating
institutions (and in seventh place individually out of 98 partici-



pants) at the time of writing.
Before we conclude this section, let us summarize the con-

tributions of this paper:

• we propose a novel weighting scheme to address the
problem of variable durations of the speech recordings
used to compute i-vectors from,

• we introduce duration-weighted versions of established
feature-transformation techniques, namely, PCA and
WCCN, and

• we present a detailed experimental assessment of the
proposed duration-weighted techniques and benchmark
them against state-of-the-art speaker-recognition tech-
niques submitted for evaluation at the 2014 i-vector chal-
lenge organized by NIST.

The rest of the paper is structured as follows. In Section2
we briefly survey the state-of-the-art in the field of speaker
recognition and introduce all the techniques relevant for the re-
mainder of the paper. In Section3 we present our duration-
based weighting scheme and show how it can be applied to
established feature-transformation techniques used regularly in
the field of speaker recognition. In Section4 we describe the
i-vector challenge, its goals, the experimental data and perfor-
mance metrics used to measure the recognition performance of
the participating systems. We assess the proposed weighting
scheme in Section5 and conclude the paper with some final
comments in Section6.

2. Prior work
I-vectors represent low-dimensional feature representations of
variable length speech. The i-vector extraction procedurecan
be seen as an extension of the well-known GMM-UBM model-
ing of the short-time acoustic features [11], where each speech
utterance is represented by the (MAP-adapted) parameters1 of
the UBM model. The main difference between the i-vector ex-
traction procedure and the GMM-UBM modeling approach is
that instead of the classical MAP algorithm, an i-vector extrac-
tor uses a generalized version of the same algorithm, which
takes the dependence of the parameters into account. The al-
gorithm is — depending on the context — known by different
names like eigenvoice MAP or total variability modeling andis
in fact a slightly modified version of the classical factor analy-
sis2. Moreover, the algorithm is a special case of the joint factor
analysis [12], which tries to model speaker and channel variabil-
ity in the supervectors’ space. To avoid the complications that
arise from the fact that the dimension of supervectors is usually
very large, the total variability model takes a different approach
and does not try to disentangle the speaker and channel effects
by itself, but postpones this task to the subsequent steps.

Two of the most frequently used classification methods in
i-vector-based speaker recognition are the cosine similarity [13]
and probabilistic linear discriminant analysis (PLDA), inde-
pendently developed for face [14], [15] and speaker recogni-
tion [16]. Since its introduction, the PLDA model has been
extended in different ways, e.g. the underlying Gaussian as-
sumption have been relaxed [16], the parameters of the model
have been treated as random variables [17] and an extension to
the mixture case has been proposed as well [18].

1The mean vectors of individual Gaussian components can be
stacked on top of each other, forming the so called supervectors.

2The modification is needed due to the fact that the parametersof the
GMM are not directly observed and should be treated as latentvariables.

Before given to the classifier, i-vectors are usually prepro-
cessed in various ways. Common preprocessing methods in-
clude whitening (PCA), linear discriminant analysis (LDA)and
within-class covariance normalization (WCCN), which can be
applied in combination. Another important preprocessing step
is length normalization, as it turns out [19] that length normal-
ization brings the i-vectors closer to a normal distribution and
therefore provides for a better fit with the assumptions underly-
ing Gaussian PLDA.

3. Duration-based weighting
3.1. Introduction

In this section we introduce our duration-dependent weighting
scheme. We assume that the front-end processing of the speech
recording has already been conducted and that all we have at
our disposal is a set of extracted i-vectors and a single item
of metadata in the form of the duration of the recording from
which a given i-vector was extracted [20]. Under the presented
assumptions the solutions to the problem of duration variability
that treat the i-vectors as random variables characterizedby a
posterior distribution, such as those presented in [5], [6], or [7],
are not applicable.

Most feature-extraction (or feature-transformation) tech-
niques used in conjunction with i-vector-based speaker-
verification systems (e.g., PCA, WCCN, NAP, etc.) rely on esti-
mates of the first- and second-order statistics to compute the fea-
ture transforms. Given some training i-vectorsx1,x2, . . . ,xn,
with xi ∈ R

m and i = 1, 2, . . . , n, the first- (f ) and second-
order (S) statistics are defined as:

f =
n∑

i

xi (1)

and

S =
n∑

i

xix
T
i , (2)

whereT denotes the transpose operator. Based on these statis-
tics it is straight forward to compute the sample covariancema-
trix (Σs) and sample meanµs, which are at the heart of many
feature extraction techniques:

µs =
1

n

n∑

i=1

xi =
1

n
f , (3)

Σs =
1

n

n∑

i=1

(xi − µs)(xi − µs)
T =

S

n
− µsµ

T
s , (4)

Note that in the case, where all the training vectorsxi belong to
the same class (i.e., to the same speaker), the above equations
represent the class-conditional mean and the class-conditional
covariance matrix. In the remainder we will limit our discus-
sion on the presented definitions of the sample mean and the
covariance matrix. Note, however, that the same reasoning can
be applied to any statistics computed fromf andS.

The definitions of the covariance matrix and sample mean
given in Eqs. (4) and (3) assume that all the training vectorsxi

(i = 1, 2, . . . , n) are equally reliable and are, therefore, given
equal weights when computing the mean and covariance matrix.
While such an interpretation of the equations is (most likely)
valid if the training vectors are computed from speech record-
ings of sufficient length, this may not be true if some of the
vectors are extracted from short recordings. In this case, some



of the training vectors are unreliable and should not contribute
equally to the computed statistics.

To account for the above observation we propose to use
weighted statistics instead of the statistics in Eqs. (1) and (2),
where the weight associated with thei-th sample is defined by
the duration of the recording from which the vector was ex-
tracted. To formalize our weighting scheme, let us assume that
each of the available training vectorsxi also has an associated
data instanceti, defining the duration from which the vector
was extracted (i = 1, 2, . . . , n). Based on this additional data,
we can define duration-weighted versions of zero (Td), first-
(fd) and second-order (Sd) statistics:

Td =
n∑

i=1

ti, (5)

fd =
n∑

i=1

tixi, (6)

Sd =

n∑

i=1

tixix
T
i , (7)

and consequently, a duration-weighted sample mean and covari-
ance matrix:

µd =
n∑

i=1

ti

Td
xi =

1

Td
fd, (8)

Σd =

n∑

i=1

ti

Td
(xi − µd)(xi − µd)

T =
Sd

Td
− µdµ

T
d , (9)

Note that all the presented statistics are reduced to their non-
weighted versions if the speech recordings, from which the
training vectors are extracted, are of the same length. If this is
not the case, the presented weighting scheme gives larger em-
phasis to more reliably estimated i-vectors. In the remainder,
we present modifications of two popular feature-transformation
techniques based on the presented weighting scheme, namely,
principal component analysis and within-class covariancenor-
malization. We first briefly describe the theoretical basis of both
techniques and then show, how they can be modified based on
the presented statistics.

3.2. Principal component analysis

Principal component analysis (PCA) is a powerful statistical
learning technique with applications in many different areas, in-
cluding speaker verification. PCA learns a subspace from some
training data in such a way that the learned basis vectors corre-
spond to the maximum variance directions present in the origi-
nal training data [21]. Once the subspace is learned, any given
feature vector can be projected into the subspace to be processed
further or to be used with the selected scoring procedure. In
state-of-the-art speaker-verification systems the feature vectors
used with PCA typically take the form of i-vectors, which af-
ter processing with the presented technique are fed to a scoring
technique, based on which identity inference is conducted.

Formally PCA can be defined as follows. Given a data ma-
trix X = [x1,x2, . . . ,xn],xi ∈ R

m containing in its columns
n training vectorsxi, for i = 1, 2, . . . , n, PCA computes a sub-
space basisU ∈ R

m×d by factorizing of the covariance matrix
Σ of the vectors inX into the following form:

Σ = UΛU
T
, (10)

whereU = [u1,u2, . . . ,ud],ui ∈ R
m denotes an orthogonal

eigenvector vector matrix (i.e., the projection basis) andΛ =

diag{λ1, λ2, . . . , λd, } stands for a diagonal eigenvalue matrix
with the eigenvalues arranged in decreasing order. Note that
if Σ is full-rank the maximum possible value for the subspace
dimensionality isd = n, if the covariance matrix is not full-
rank the upper bound ford is defined by the number of non-zero
eigenvalues inΛ. In practice, the dimensionality of the PCA
subspaced is an open parameter and can be selected arbitrarily
(up to the upper bound).

Based on the computed subspace basis, a given feature vec-
tor x can be projected onto thed−dimensional PCA subspace
using the following mapping:

y = U
T (x− µ), (11)

wherey ∈ R
d stands for the PCA transformed feature vector.

Commonly, the above transformation is implemented in a
slightly different form, which next to projecting the givenfea-
ture vectorx into the PCA subspace, also whitens the data:

y = (UΛ
−1/2)T (x− µ). (12)

Note that with standard PCA the covariance matrixΣ and
sample meanµ in Eqs. (10), (11) and (12) are computed based
on non-weighted statistics, i.e.,Σ = Σs andµ = µs. If the
duration-weighted statistics are used instead, i.e.,Σ = Σd and
µ = µd, we obtain a modified version of PCA, which takes
duration into account when computing the subspace basis.

3.3. Within-class covariance normalization

Within-Class Covariance Normalization (WCCN) is a feature
transformation technique originally introduced in the context
of Support Vector Machine (SVM) classification [22]. WCCN
can under certain conditions be shown to minimize the expected
classification error3 by applying a feature transformation on the
data that as a result whitens the within-class scatter matrix of the
training vectors. Thus, unlike PCA, WCCN represents a super-
vised feature extraction/transformation technique and requires
the training data to be labeled. In state-of-the-art speaker veri-
fication systems, the feature vectors used with WCCN typically
represent i-vectors (or PCA-processed i-vectors) that after the
WCCN feature transformation are subjected to a scoring proce-
dure.

Typically WCCN is implemented as follows. Consider a
data matrixX = [x1,x2, . . . ,xn],xi ∈ R

m containing in its
columnsn training vectorsxi, for i = 1, 2, . . . , n, and let us
further assume that these vectors belong toN distinct classes4

C1, C2, . . . , CN with thej-th class containingnj samples and
n =

∑N
j=1

nj . WCCN computes the transformation matrix
based on the following Cholesky factorization:

Σ
−1

w = LL
T
, (13)

whereL andLT stand for the lower and upper triangular ma-
trices, respectively, andΣ−1

w denotes the inverse of the within-
class scatter matrix computed from the training data.

Once computed, the WCCN transformation matrixL can
be used to transform any given feature vectorx based on the
following mapping:

y = L
T
x, (14)

wherey ∈ R
m stands for the transformed feature vector.

3on the training data
4Note that for the weighted case, presented in the remainder,we

actually assume that the classes contain pairs of feature vectors and as-
sociated duration-data instances, i.e., (xi, ti).



Commonly, the within-class scatter matrixΣw is computed
based on class-conditional (i.e., speaker-conditional) first- (fj )
and second-order (Sj) statistics. The expressions for computing
these statistics for thej-th classCj are defined as:

fj =

nj∑

i=1

xi∈Cj

xi, and Sj =

nj∑

i=1

xi∈Cj

xix
T
i , (15)

which results in the following within-class scatter matrix:

Σws =
1

N

N∑

j=1

1

nj
(Sj −

1

nj
fjf

T
j )

=
1

N

N∑

j=1

1

nj

nj∑

i=1

xi∈Cj

(xi − µj)(xi − µj)
T
,

(16)

whereµj denotes the class conditional mean for thej-th class.
For the weighted-version of WCCN relying on our

duration-dependent weighting scheme the class-conditional
zero (Tdj), first- (fdj) and second-order (Sdj) statistics are de-
fined as:

Tdj =

nj∑

i=1

ti∈Cj

ti, whereTd =

N∑

j=1

Tdj , (17)

fdj =

nj∑

i=1

xi∈Cj

tixi, and Sdj =

nj∑

i=1

xi∈Cj

tixix
T
i , (18)

where we assume that(xi, ti) ∈ Cj .
With these definitions the weighted within-class scatter ma-

trix Σwd can be defined as:

Σwd =
N∑

j=1

1

Td
(Sdj −

1

Tdj
fdjf

T
dj)

=

N∑

j=1

Tdj

Td

nj∑

i=1

xi∈Cj

ti

Tdj
(xi − µdj)(xi − µdj)

T
,

(19)

where µdj denotes the duration-weighted class conditional
mean for thej-th class.

Similar to the PCA case, factorizing the inverse of the stan-
dard within-class scatter matrix (i.e.,Σ−1 = Σ−1

ws ) based on
Eq.14 results in the classical implementation of WCCN, while
using the weighted version (i.e.,Σ−1 = Σ−1

wd) results in the
modified duration-weighted implementation of WCCN.

4. The I-vector challenge
We evaluate the feasibility of the proposed duration-weighted
scheme in the scope of the i-vector challenge (IVC) organized
by NIST as part of the Odyssey, Speaker and Language Recog-
nition Workshop 2014. In this section we provide some basic
information on the challenge, present the experimental protocol
and define the performance metric used to assess the recogni-
tion techniques.
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Figure 1: Histogram of recording durations. The histogram was
computed from the durations corresponding to the i-vectorsin
the IVC development set.

4.1. Challenge description

The single task of IVC is that of speaker detection, i.e., to deter-
mine whether a specified speaker (the target speaker) is speak-
ing during a given segment of conversational speech. The IVC
data is given in the form of 600-dimensional i-vectors, divided
into disjoint development and evaluation sets. The development
set consists of 36,572 (unlabeled) i-vectors, while the evaluation
set consists of 6,530 target i-vectors belonging to 1,306 target
speakers (5 i-vectors per speaker) and 9,643 test i-vectorsof a
unknown number of speakers. Note that no explicit informa-
tion is provided on whether the 1,306 speakers are distinct or
not. Hence, it is possible that some of the target identitiesare
duplicated.

The experimental protocol of IVC defines that a total of
12,582,004 experimental trials need to be conducted, where
each trial consists of matching a single i-vector from the 9,643
test vectors against a given target model constructed basedon
the five target i-vectors belonging to the targeted speaker.It
should be noted that — according to the rules [20] — the output
produced for each trial must be based (in addition to the devel-
opment data) solely on the training and test segment i-vectors
provided for that particular trial, while the i-vectors provided
for other trials may not be used in any way. The main charac-
teristics of the experimental protocol are summarized in Table1.

The durations of the speech segments used to compute the i-
vectors for IVC are sampled from a log-normal distribution with
a mean of 39.58 seconds (see Fig.1, where a histogram of the
duration from the development data is presented). This suggests
that methods that take the uncertainty of the i-vectors due to du-
ration variability into account should be effective in the chal-
lenge. However, since the only information provided with each
i-vector is the duration of the speech recording used to compute
the corresponding i-vector, techniques exploiting the posterior
covariance, such as [5], [6], [7], are not feasible. Nevertheless,
we expect that performance improvements should be possible
by augmenting the information contained in the i-vectors with
duration information in one way or another.

4.2. Performance metrics

In order to establish the performance of the given recognition
technique, the file containing the scores for all trials needs to
be uploaded to the IVC website. Each registered participantis
allowed to upload up to 10 submission per day. The overall per-
formance of the submitted techniques is measured in terms of



Table 1: Characteristics of IVC experimental protocol. Thesymboln/astands for the fact that the information is not available.

Data set # i-vectors #speakers quality # trials

development set 36,572 n/a arbitrary

12,582,004evaluation set - target vectors 6,530 1,306 telephone speech

evaluation set - test vectors 9,643 n/a arbitrary

the minimal value of the decision cost function (DCF) obtained
over all thresholds, where the DCF for a given thresholdt is
computed as:

DCF(t) =
# misses(t)

# target trials
+ 100

# false alarms(t)
# non-target trials

(20)

Note that the minimial DCF value (minDCF) is the only per-
formance metric returned by the on-line system and is, there-
fore, also the only metric reported in our experiments. When
assessing the performance of a submitted recognition system
only 40% of the trials are used, while the remaining 60% are
withheld for calculating the official results at the end of the chal-
lenge. As a consequence, the final performance of our best per-
forming system may differ in other reports on the 2014 i-vector
challenge from what is reported here.

5. Experiments and results
5.1. Experimental setup

The experiments presented in the remainder are conducted in
accordance with the experimental protocol defined for the i-
vector challenge and presented in Section4.1. The processing
is done on a personal desktop computer using Matlab R2010b
and the following open source toolboxes:

• the PhD toolbox [23], [24]5, which among others
features implementations of popular dimensionality-
reduction techniques;

• the Bosaris toolkit [25]6, which contains implementa-
tions of score calibration, fusion and classification tech-
niques;

• the Liblinear library (with the Matlab interface) [26]7,
which contains fast routines for training and deploy-
ing linear classifiers such as linear SVMs or logistic-
regression classifiers.

All the experiments presented in the next sections can easily be
reproduced using the above tools and functions.

5.2. Experiments with PCA

Our duration-dependent weighting scheme is based on the as-
sumption that not all the available i-vectors are computed from
speech recordings of the same length and are, therefore, not
equally reliable. If the i-vectors are computed from recordings
of comparable length, the weighting scheme would have only
little effect on the given technique, as similar weights would
be assigned to all the statistics and the impact of the weighting
would basically be lost. On the other hand, if the i-vectors are
computed from speech recordings of very different lengths,our
weighting scheme is expected to provide more reliable results,

5http://luks.fe.uni-lj.si/sl/osebje/vitomir/facetools/PhDface
6https://sites.google.com/site/bosaristoolkit/
7http://www.csie.ntu.edu.tw/ cjlin/liblinear/

Table 2:Effect of the proposed weighting scheme on the base-
line system defined for IVC. The Table shows minDCF values
achieved by the baseline and weighted baseline systems as re-
turned by the web-platform of the IVC as well as the relative
change (in%) in the minDCF value, achieved with the weight-
ing.

Technique Baseline Weighted baseline minDCFrel

Score 0.386 0.372 3.63%

as more reliable i-vectors are given larger weights when com-
puting statistics for the given speaker-verification technique.
Considering the histogram of durations presented in Fig.1 we
expect that our weighting scheme should provide some benefits
in terms of performance.

To assess our weighting scheme we first implement the
baseline technique defined for the i-vector challenge and use the
baseline performance for comparative purposes. Note that IVC
defines a PCA-based system used together with cosine scoring
as its baseline. Specifically, the baseline system consistsof the
following steps [20]

• estimation of the global mean and covariance based on
the development data,

• centering and whitening of all i-vectors based on PCA
(see Eq.12),

• projecting all i-vectors onto the unit sphere (i.e., length
normalization:x← x√

x
T
x

),

• computing models by averaging the five target i-vectors
of each speaker and normalizing the result to unitL2

norm, and

• scoring by computing inner products between all models
and test i-vectors.

In our first series of experiments, we modify the baseline system
by replacing the PCA step (second bullet) with our duration-
weighted version of the PCA. We provide the comparative re-
sults in terms of the minDCF values in Table2. Here, the last
column denotes the relative change in the minDCF value mea-
sured against the baseline:

minDCFrel =
minDCFbase −minDCFtest

minDCFbase
, (21)

where minDCFbase stands for the minDCF value of the baseline
system and minDCFtest stands for the minDCF value achieved
by the currently assessed system.

Note that the proposed weighting scheme results in a rela-
tive improvement of 3.63% in the minDCF value over the base-
line. This result suggests that a performance improvement is
possible with the proposed weighting scheme, but a more de-
tailed analysis of this results is still of interest. For this reason
we examine the behavior of the baseline and weighted baseline

http://luks.fe.uni-lj.si/sl/osebje/vitomir/face_tools/PhDface
https://sites.google.com/site/bosaristoolkit/
http://www.csie.ntu.edu.tw/~cjlin/liblinear/


Table 3:Effect of excluding samples from the development set of
the IVC data on the performance of the baseline and weighted
baseline systems. The exclusion criterion is a threshold onthe
duration of the recording used to compute the i-vectors. The
Table shows minDCF values as returned by the web-platform
of the IVC.

Exclusion criterion < 10s < 15s < 20s < 25s

Baseline 0.385 0.381 0.379 0.377

Weighted 0.372 0.371 0.371 0.371

techniques with respect to a smaller development set, wherei-
vectors computed from shorter recordings are excluded from
the estimation of the global mean and covariance. Based on
this strategy, we construct four distinct development setswith
the first excluding all the i-vectors with the associated duration
shorter than 10s, the second excluding all the i-vectors with the
associated duration shorter than 15s, the third excluding all the
i-vectors with the associated duration shorter than 20s, and the
last excluding all i-vectors with the associated duration shorter
than 25s. The baseline and weighted baseline technique are then
trained on the described development sets. The results of this
series of experiments are presented in Table3.

Note that by excluding vectors from the development set,
the baseline technique gradually improves in performance as
more and more of the unreliable i-vectors are excluded from
training. Continuing this procedure would clearly turn thetrend
around and the minDCF values would start getting worse, as too
much information would be discarded. The weighted baseline
system, on the other hand, ensures minDCF values compara-
ble to those that were achieved when the entire development set
was used for the training. This result again suggests that dura-
tion variability is addressed quite reasonably with the proposed
weighting scheme.

5.3. Experiments with WCCN

In the next series of experiments we assess the performance of
WCCN-based recognition systems. As a baseline WCCN sys-
tem, we implement a similar processing pipeline as presented
for the IVC baseline technique in the previous section, but add
an additional step, which after whitening with PCA also whitens
the within-class covariance matrix using WCCN. All the re-
maining steps of our WCCN-based baseline stay the same in-
cluding length normalization, model construction and scoring.
Whenever using the weighted version of WCCN we also use the
weighted version of PCA in the experiments.

To further improve upon the baseline, we implement a sec-
ond group of WCCN-based systems, where the cosine-based
scoring procedure is replaced with a logistic-regression classi-
fier and the length normalization is removed from the process-
ing pipeline. With this approach all five target i-vectors ofa
given speaker are considered as positive examples of one class,
while 5,000 i-vectors most similar to the given target speaker8

are considered as negative examples of the second class. Based
on this setup a binary classifier is trained for each target speaker,
resulting in a total of 1,306 classifiers for the entire IVC data.

8Here, the similarity between the target vectors and the development
vectors is measured by means of the IVC baseline system. Notethat
5,000 negative examples are used to speed up experimentation. Our
best results were achieved with the entire development set as counter-
examples.

Before we turn our attention to the experimental results,
it has to be noted that unlike PCA, which is an unsupervised
technique, WCCN represents a supervised feature transforma-
tion techniques, which requires that all i-vectors comprising the
development data are labeled. Unfortunately, the development
data provided for the i-vector challenge is not labeled nor is the
number of speakers present in the data known. To be able to
apply supervised algorithms successfully we need to generate
labels in an unsupervised manner by applying an appropriate
clustering algorithm [27], [28]. Clustering will, however, never
be perfect in practice, so the errors (utterances originated from
the same speaker can be attributed to different clusters or ut-
terances from different speakers can be attributed to the same
cluster) are inevitable. Although there exists some evidence that
labeling errors can degrade the recognition performance (seen
as a bending of the DET curve), it is not completely obvious
how sensitive different methods are with respect to those errors.

Since the selection of an appropriate clustering technique
is (clearly) crucial for the performance of the supervised fea-
ture transformation techniques, we first run a series of prelim-
inary experiments with respect to clustering and elaborateon
our main findings. The basis for our experiments is whitened
i-vectors processed with the (PCA-based) baseline IVC sys-
tem. We experiment with different clustering techniques (i.e.,
k-means, hierarchical clustering, spectral clustering, mean-shift
clustering, k-medoids and others), using different numbers of
clusters and different (dis-)similarity measures (i.e., Euclidian
distances and cosine similarity measures). The results of our
preliminary experiments suggest the cosine similarity measure
results in i-vector labels that ensure better verification perfor-
mance than the labels generated by the Euclidian distance (with
the same number of clusters). Despite the fact that several alter-
natives have been assessed, classical k-means clustering ensures
the best results in our experiments and was, therefore, chosen
as the clustering algorithm for all of our main experiments9.
Based on our preliminary experiments, we select the k-means
clustering algorithm with the cosine similarity measure for our
experiments with WCCN and run it on the development data.
We set the number of clusters to 4,000, which also ensured the
best results during our preliminary experimentation.

The results of the WCCN-based series of experiments are
presented in Table4. Here, the relative change in the minDCF
value is measured against the WCCN baseline. The first thing
to notice is that with cosine scoring the WCCN-baseline sys-
tems (weighted and non-weighted) result in significantly worse
minDCF values. However, when the scoring procedure is re-
placed with a logistic-regression classifier, this changesdra-
matically. In this situation, the WCCN-based system becomes
highly competitive and in the case of the weighted system re-
sult in a minDCF value of 0.294. All in all, the weighting
scheme seems to ensure a consistent improvement over the non-
weighted case of around 3%. For the sake of completeness we
need to emphasize that the best score we managed to achieve
with a PCA-based system, when using a logistic-regression
classifier was 0.326.

As a final remark, it needs to be stressed that the perfor-

9It is also worth noting, that the cluster labels generated with the
k-means clustering algorithm were also used in conjunctionwith dif-
ferent PLDA-based models, i.e., the models presented in [16], [15]
and [29], but different from WCCN no improvements over the baseline
were achieved, regardless of the classifier used. This seemsto suggest
that feature transformation techniques, such as WCCN, are less suscep-
tible to labeling errors than PLDA-models. However, more research
would be needed to further validate this observation.



Table 4: Effect of the proposed weighting scheme on our
WCCN-baseline system. The Table shows minDCF values
achieved by the baseline and weighted baseline WCCN sys-
tems as returned by the web-platform of the IVC as well as the
relative change (in%) in the minDCF value, achieved with the
weighting.

Technique Baseline Weighted minDCFrel

Cosine 0.461 0.447 3.04%

Logistic 0.304 0.294 3.29%

mance of the logistic-regression classifier used in our experi-
ments was extremely dependent on the right choice of param-
eters. Changing the parameters of the classifier only slightly
resulted in minDCF values way above 0.3. To arrive at the re-
sults presented in Table4 we needed to include a bias term and
set the cost parameter to a relatively large value10.

5.4. Comparative assessment

For the i-vector challenge we further tuned our best performing
recognition system (i.e., the weighted version of our WCCN-
system) to achieve even lower minDCF values. After imple-
menting several additional steps we managed to reduce the
minDCF value of our system to 0.280 by the time of writing.
Specifically, the following improvements were implemented:

• duration was added as an additional feature to the i-
vectors to construct 601 dimensional vectors before any
processing,

• the clustering was improved by excluding clusters with a
small fisher-score,

• the entire development set was used as negative exam-
ples when training the classifiers, and

• a second set of classifiers was trained on the test vectors
and then used to classify the target vectors; the mean
score over a given target speaker was then combined with
the score computed based on the classifier trained on the
target identity11.

As indicated a couple of times throughout the paper, the
best minDCF value we managed to achieve by the time of
writing puts our system at third place in the i-vector chal-
lenge among the participating institutions. For the final rank-
ing and performance scores the reader is referred to NIST’s
IVC web-site, where the IVC leader-board can be found:
https://ivectorchallenge.nist.gov. However, it
should be noted that after the Odyssey paper-submission dead-
line, we did not make any further improvements to our tech-
nique, while other participants probably did, so the ranking pre-
sented at the IVC web-site may differ to what is reported here.

6. Conclusions
We have presented a duration-based weighting scheme for fea-
ture transformation techniques used commonly in an i-vector

10The following LIBLINEAR settings needed to be used to pro-
duce the results reported in Table4 for the logistic-regression classifier:
’-s 0 -B 1 -c 100000’.

11Here, the role of the target and test vectors was simply flipped.
Each test vector was used as a positive example of one class, while the
development set was used for the negative samples. The target vectors
were then classified based on the trained classifiers.

based speaker-recognition system. We have applied the scheme
on two established transformation techniques, namely, princi-
pal component analysis and within-class covariance normaliza-
tion. We have assessed the duration-weighted techniques inthe
scope of the i-vector challenge organized by NIST within the
Odyssey, Speaker and Language Recognition Workshop 2014
and achieved very competitive results. As part of our future
work, we plan to evaluate the possibility of using a similar
scheme with probabilistic linear discriminant analysis aswell.
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