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Abstract— Gabor filters have proven themselves to be a in the data dimensionality can mainly be linked to the fact
powerful tool for facial feature extraction. An abundance that the Gabor filters are not orthogonal, we are capable
of recognition techniques presented in the literature exploits of devising efficient countermeasures. Rather than usiag th

these filters to achieve robust face recognition. However, while . . | filter bank of Gabor filt for the derivati f
exhibiting desirable properties, such as orientational selectivity onginat Tilter Dank- o Sanor iers Hol e defivation o

or spatial locality, Gabor filters have also some shortcomings the Gabor face representation, we propose to employ novel
which crucially affect the characteristics and size of the orthogonal filters constructed as a linear combination ef th
Gabor representation of a given face pattern. Amongst these griginal Gabor filters. As shown in the experimental segtion
shortcomings the fact that the filters are not orthogonal one these filters are capable of achieving similar recognition
to another and are, hence, correlated is probably the most L. .

important. This makes the information contained in the Gabor rates than the o_rlglnal_ ones, but “S'“Q a far more_ compact
face representa’[ion redundant and also affects the size of face representat|0n. Since the nOVel fllterS are del’lvenh fI‘O
the representation. To overcome this problem we propose in correlation matrices of the original filters by means of
this paper to employ orthonormal linear combinations of the  principal component analysis, we call them principal Gabor
original Gabor filters rather than the filters themselves for filters.

deriving the Gabor face representation. The filters, named h fth . foll .
principal Gabor filters for the fact that they are computed The rest of the paper is structured as follows. In Section Il

by means of principal component analysis, are assessed in face the theory underlying Gabor filter construction and the& us

recognition experiments performed on the XM2VTS and YaleB in face recognition systems is briefly reviewed. In Sectibn |

databases, where encouraging results are achieved. the novel principal Gabor filters are introduced and tested i
| INTRODUCTION qxperiments in Section_ IV. The paper concludes with some

final comments in Section V.

Deriving a discriminative and compact representation of

a face pattern is of paramount importance for the success||. GABOR FILTERS FOR FACE RECOGNITION

of any face recognition approach. Several techniques have_ ) ) ) ) o

been presented in the literature to achieve this goal, hemvev This section briefly reviews the basic principles of face

techniques exploiting Gabor filters are not only amongst tHgc0gnition using Gabor filters. It commences by introdgcin
most popular, but are extremely effective as well. the Gabor filters and the Gabor face representation and

Gabor filters are capable of deriving multi-orientationaPf0c€€ds by highlighting some characteristics of the Slter
information from a face image at several scales, with thwhich affet_:t_ the Gabor face representa_ltlon and conseq/u_e_ntl
derived information being of local nature. The commorine recognition performance of Gabor filter based recogmiti

approach when using Gabor filters for face recognition iEchniques.

to construct a filter bank with filters of different scales and )

orientations and to filter the given face image with all fiter A. Gabor filters

from the bank. Obviously, such an approach results in an Gabor filters are among the most popular tools for facial
explosion of information, as the dimensionality of the ihpufeature extraction. Their use in automatic face recogmitio
face pattern is increased by a factor equaling the numbgystem is motivated by two major factors: their computa-
of filters in the filter bank. The amount of data (in thetional properties and their biological relevance.

Gabor face representation) is then commonly reduced to aFormally, a 2D Gabor filter in the spatial domain is defined
more manageable size by exploiting various downsamplingy the following expression [2]:

feature selection and subspace projection techniquesebefo

it is finally fed to a classifier [1]. Yoo, y) = i 67(%1’%%@/’2)63'2”@5’ 1)
Unlike other work found in the literature [1], [2], [3], ’ B
[4] which primarily deals with the problem of effectively wherez’ = x cos 8, +ysinf,, vy’ = —x sin 6, +ycosb,,, and

reducing the size of the Gabor face representation ontiee parameterg, and6, are defined ag, = fyq./2(%/?

this has already been computed, this paper takes a differemd 6, = vxr/8. As we can see, Gabor filters represent

approach and tries to propose a way of deriving a mor@aussian kernel functions modulated by a complex plane

compact representation. By presuming that the big increasave whose center frequency and orientation are defined by
o _ _ _ f. and @, respectively. The parametetsandrn determine
Vitomir_ Struc, Rok Gajek and Nikola Pa&t are with the Fac- the ratio between the center frequency and the size of the
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SI-1000 Ljubliana, Slovenia{vi tomir.struc, rok.gajsek, Gaussian envelope and, when set to a fixed value, ensure
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behave as scaled versions of each dth@ommonly the its initial size. To cope with this problem, the magnitude
values ofy andn are set toy = = /2. The last parameter responses are typically downsampled using either a simple
fmaz denotes the maximum frequency of the filters and isectangular sampling grid or some kind of feature selection
usually set tof,,... = 0.25. By closer examining expression scheme. Nevertheless, even after the downsampling, aay fac
(1) it becomes evident that Gabor filters represent complerpresentation constructed, for example, by a concatenati
filters which combine an even (cosine-type) and an odd (sinef the downsampled magnitude responses, still resides in a
type) [5] part as shown in Fig. 1. high dimensional space. A popular solution to this problem
is to use a subspace projection technique, such as principal
component analysis or linear discriminant analysis, tthier

A N reduce the data’s dimensionality.
—\'\\\ In the experiments presented in the Section IV of this
' paper, we use a simple rectangular sampling grid with 256

nodes for the initial dimensionality reduction and line&s-d
criminant analysis for the subspace projection of the featu
vector built by concatenating the downsampled magnitude
presponses.

Fig. 1. An example of a Gabor filter: the real (cosine-type} faft), the
imaginary (sine-type) part (right)

When exploited for feature extraction, a filter bank wit
several filters is usually created and used to extract multj-
orientational and multi-scale features from the given facg'
image. This filter bank commonly consist of Gabor filters of It is obvious that the mathematical properties of the Gabor
5 different scales and 8 orientations, i.e.=0,1,....,p— 1 filters crucially influence the characteristics and sizehaf t
andv =0,1,....,7 — 1, wherep = 5 andr = 8 [1],[2],[3], Gabor face representation and thus deserve to be discussed
[4]. in more detail. A large number of papers dealing with

) ) i face recognition using Gabor filters emphasize the fact that
B. Extracting features with Gabor filters the filters exhibit properties, such as spatial locality and

Let I(z,y) denote a grey-scale face image defined oorientational selectivity, and that they are optimallydbzed
a grid of sizea x b and lety, ,(x,y) represent a Gabor in the space and frequency domains. While these properties
filter determined by the parametefs andd,. The filtering are certainly appealing, they might not necessarily be the
operation with the Gabor filter can then be written as followsnost important when deriving discriminative and most of alll
[1], [2]: compact representations of a face pattern. Optimal r@ealut

Guw(z,y) = I(z,y) * Yy o(z,y). (2) of the filters in both the spatial as well as the frequency
domain, for example, is desirable to derive spatially local
Lfe_atures of a confined frequency band, but is unfortunately
aglso exactly the reason why the dimensionality of the (not-

Euv(2,y) = Re[Gyo(,y)] 3) downsampled) Gabor face representation is that much bigger
Oupw(,y) = IMm[Gy (2, y)]. than the initial size of the input face image.
Based on the decomposed filtering result both the phaﬁ%ﬁn(;)itf?;;rl? g:’tvgrssrrzrtr:c:?;nf%tg: lSa ?,iogrgltﬁft E‘rt::)e fact
. : gonal
$un(w,y) as well as the ma.gmtudelw,(x,y) filter re- one to another. The information encoded in the final Gabor
sponses can be computed as: f LT .
ace representation is therefore redundant and mighttaffec

Properties of Gabor filters

where G, ,(z,y) denotes the complex convolution resul
which can be decomposed into a real and an imaginary p

Ayo(z,y) = JE2 (z,y) + 02 (z,y) the recognition accuracy of the classifier relying on the
N \ "O” 5’” (4)  Gabor face representation. In the next Section, we will try
Gu,v(w,y) = arctan (Ou o (,Y) /By o (7, y)). to modify the classical Gabor filters in such a way that some

Since the computed phase responses vary significantly evahthe properties just described are altered and, hence, the
for spatial locations only a few pixels apart, Gabor phaseew filters are more effective in deriving a compact and
features are considered unstable and are usually discarddi$criminative face representation.

The magnitude responses, on the other hand, vary slowly

with the spatial position, and are thus the preferred choice I1l. PRINCIPAL GABOR FILTERS

erIfzon g(Srril\\//(Iangthiagc;rbgl;[efraggs?gpfrizgjr:teastion from a given Orthogon_ality is one of the key elements for_many pattern
face imagel(z,y), the Gabor magnitude responses for thégpresentqnons. Howgver, as already emphasized in th? pre
entire filter ba;nk, of the 40 Gabor filters are commonIyVIous section, Qaborﬂltgrs do not rep.resent prthogonamlt .

al?d hence the information encoded in the filter responses is

computed first. However, since each of the responses is ferefore likely to be redundant. To overcome this problem

the same dimensionality as the input image, this procedu\%ae propose to orthogonalize the commonly adopted filter

results in an inflation of the original pixel space to 40 t'me%ank (featuring filters of 5 scales and 8 orientations and
INote that with fixed values of the parametersaind 5 the scale of the def'n.e'd by the parameter vglues given in Section II-A) using
Gabor filter is defined by its center frequenty principal component analysis (PCA) [6].



At this point the question arises how to orthogonalize thenatrices we arrange the filters first in order of orientatiod a
filter bank while still (at least partially) preserving othe then scale, thus, the fir8t 8 block in the upper left corner of
important characteristics such as orientational seliégg@nd the matrices presented in Fig. 3 depicts the correlatiohef t
spatial locality. To answer this question let us consider thfilters of the smallest scale (and different orientatiorisi
Gabor filter banlg defined agf = {G(f.,0,) = Gu,» : u = next block down the diagonal depicts the correlations fer th
0,1,...,p—1;v=0,1,...,r—1}. For each filter orientatiofs,  second filter scale and so forth. We can see that there dre stil
we can form a complex valued data matkty of sizeab x p
whose columns correspond to Gabor filters of different scale
rearranged into vector form, i.€, = [9y ,, 91 s -+ Gp—1,0s
whereg, , denotes the column vector corresponding to the
Gabor filterG,, ,,. Using the constructed data matricEs,
we can compute a correlation matrX, for each filter
orientation as follows:

T Fig. 3. Visual comparison of the correlation matrices of tressical Gabor
%, =ILT,, (5) filter bank (left) and the principal Gabor filter bank (right)

Wr:frceaTn E?l?}so\f\?r: :EZttrea;cshp?:i?r:Igﬁfgor;am has ex- small correlations between filters of two adjacent orieotest
. : for both filter types; however, the principal Gabor filters
actly p eigenvectors that correspond to non-zero eigenvalues,, .. . ; . )
; . exhibit no correlations between different filter scales tees t
These eigenvectors are orthogonal and in appearance qwre

similar to Gabor filters. The orthogonality of the eigeneest c_asswal filters do (i.e., t_he two_lme_s parallel tp the main
diagonal are not present in the right image of Fig. 3).

is a consequence of the symmetry of the correlation matrices While the orthogonality of the principal Gabor filters
while the appearance of the eigenvectors can be ascribedng?

. . o ght have a positive effect on the (principal) Gabor face
the fact that the eigenvectors of a matrix must lie in the Spaft]—!presentation in terms of compactness, this comes ate, pric
of all data samples (in our case in the span of the Gabaqr

filters | tor f q h thi th 95 the filters are not localized optimally in the spatial ror i
ters in vector orm) an are, hence, nothing more than g, frequency domain anymore. This fact is illustrated o Fi
linear combination of the input data. Fig. 2 shows a visu

) ! where the top row shows the magnitudes of the classical
comparison between the rea'l part of the Gabor flltgr bay abor filters at different scales and the bottom row shows
G and the real part of the eigenvector of allcorrelation

matricess, . the magnitudes of the principal filters at different scales.
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Fig. 4. Comparison of the magnitudes of the two filter types fat stiales.
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Fig. 2.  Visual comparison of the real part of the eigenvectufrghe )
correlation matrices (left) and the real part of the Gaboerfitiank (right). Last but not least Fig. 5 shows the coverage of the power

spectrum (together with the mirrored channels) of the two
Due to the great similarity between the presented eigefitter banks. We can see that, while the classical filters cove
vectors and the original Gabor filters and the fact thathe frequency plane evenly, the principal filters give more
the eigenvectors (of each orientation) of the correlatioemphasis to certain frequency bands.
matrices are orthogonal, we propose to employ the unitary
eigenvectors rather than the classical filters for the dddn
of the Gabor face representation. In analogy with principal
component analysis, we will refer to these eigenvectors as @
principal Gabor filters in the remainder of this paper. '

A. Properties of principal Gabor filters

Recently, Wang et al. [7] proposed to inspect a correlation
matrix constructed using a bank of Gabor filters with the god]ig- 5. Comparison of the coverage of the power spectrum: fopticipal
of selecting such filter parameters that the filters compgisi "' Pank (left) and the classical Gabor filter bank (right)
the filter bank would be as uncorrelated as pos_:3|ble_z. The IV. EXPERIMENTAL RESULTS
same methodology can also be used here to visualize the
difference between the classical and the principal Gabor fift- The Experimental Databases
ters. To this end, onet{) x 40) correlation matrix is build for To assess the expediency of the proposed principal Gabor

each of the two filter banks. When computing the correlatiofilters for face recognition, two popular face databaseswer



adopted for the experiments presented in the remainder ofe total humber of client access trials in the evaluation
this paper - the XM2VTS and YaleB databases [8], [9]. phasen.. = 600 (3 images per subject),

The first, the XM2VTS database, comprises 2360 facial ¢ number of impostor access trials in the evaluation phase:
images that correspond to 295 distinct subjects. Eachsubje  n;,. = 40000 (each of the 25 evaluation impostors
in the database is accounted for with 8 facial images, which  claims 200 enrolled identities using 8 different images),
were taken during four separate recording sessions. Thee total number of client access trials in the test phase:
images were captured in front of a uniform background and  n:. = 400 (2 images per subject),
in controlled illumination conditions. Thus, the variatyilin e number of impostor access trials in the test phage=
the appearance of a given subjects face images is induced 112000 (each of the 70 evaluation impostors claims 200
mainly by the temporal factor, as the recording sessions enrolled identities using 8 different images).
were _distributec_i over a period of approximately fiv_e months. Following the presented experimental protocol, our first
The images differ in terms of pose, head-rotation, presseries of verification experiments assessed the perfornanc
ence/absance of glasses, mustaches and makeup, differgnine principal Gabor filters with respect to the employed
hairstyle, etc. o number of filter scales. Since the procedure of principafilt

The second, the YaleB face database, contains images@gation presented in Section IIl involves filters of onlyeon
only 10 subjects. These images, however, exhibit large varigyientation at the time, we fixed the angular resolution of
tions in pose and illumination. The database comprisesah tog filter bank to the most common value found in the
of 5760 grey-scale facial images which were taken undeerature and employed eight filter orientations in all of
576 different viewing conditions (9 poses 64 illumination oy experiments. We adopted linear discriminant analysis
conditions). In the experiments presented in this paper, WE.DA) for the dimensionality reduction and the nearest
however, use only a subset of the database featwitly nejghbor for classification. The results of the experiments
facial images with frontal pose. Some examples of the imaggge presented in Fig. 7, where the Detection-Trade-Off (DET
from the two databases employed in our experiments aggrves (which plot the false rejection error rate (FRR) agi
shown in Fig. 6. the false acceptance error rate (FAR) at various valueseof th

Prior to the experiments, a preprocessing procedure Wagcision threshold) are shown. Here, the left graph depicts
applied to all images of the YaleB and XM2VTS databaseshe performance of the principal Gabor filters in conjunetio
Specifically, the procedure comprisef) a rotation and jth LDA, while the right graph depicts the performance of
scaling step, which, based on the manually labeled eyge classical Gabor filters in conjunction with LDA. From the
coordinates, positioned the eyes at predefined locati@ys; graphs we can see that the verification performance of the
a cropping step (to a standard size I8 x 128 pixels), principal Gabor filters saturates or at least does not iserea
which removed all image parts not belonging to the facejgnificantly from three scales upwards. The performance
and(iii) an image enhancement step in the form of histogragyf the classical Gabor filters, on the other hand, improves
equalization, which improved the contrast of the image$. [10yjth the deployment of more filter scales (for most of the
operating points on the DET curves). Fig. 8 shows a more
detailed comparison of the best performing configuration of

The experiments on the XM2VTS database were conhe classical Gabor filters (i.e., 8 orientations and 5 sjale
ducted in accordance with the first configuration of thend the principal Gabor filters (i.e., 8 orientations andt@fil
databases experimental protocol [8]. The protocol part#ti scales) on the evaluation image set. For baseline compariso
the subjects of the database into two disjoint groups ohtdie the performance of the popular Fisherface technique (eenot
(200 subjects) and impostors (95 subjectand further as LDA) [11] is also given in the graph.
defines which images from the two groups should be usedThe results clearly show that both filter types improve
for training, evaluation and testing. Since the XM2VTS'sypon the performance of the raw image data, while the direct
experimental protocol represents a closed-set protobel, tcomparison of the principal and classical filters suggews t
training images also coincide with the enroliment imagege former perform better at operating points correspandin
of the clients and are also often referred to as develogo low false acceptance rates and the classical Gabor filters
ment images. These images are exploited to train the giveiitperform the principal ones at operating points corraepo
face recognition technique and subsequently to build t'leﬁhg to h|gher values of the false acceptance rate.
models. Images designated for the evaluation phase aregefore we make any final conclusions, let us further
used to set an operational decision threshold, while imagggamine the performance of both filter types using the test
designated for the test phase are employed solely in tijaage set. To this end, we first fix the decision threshold on
final performance assessment (with a pre-trained recognitithe evaluation image set to the equal error operating point
technique and a pre-set decision threshold). The details ghd then perform verification experiments on the test image
the employed protocol are shown below: set with this pre-set decision threshold. The results o thi

e number of training images per subjeat; = 3,

B. Verification experiments on the XM2VTS database

3The equal error operating point is defined as the point on & Burve
2Note that clients represent users making a genuine ideréitjmcwhile  where the values of the false acceptance error rate and It rigiection
impostors represent users claiming an identity differenmnftbeir own. error rate are equal.



Fig. 6. Sample images from the employed databases: examplesHeoXM2VTS database (left image block), examples from the Balatabase (right

image block).
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Fig. 7. DET curves generated during the evaluation experisng@nincipal Gabor filters + LDA (left), Gabor filters + LDAi¢ht).

TABLE |
THE VALUES OF FAR, FRRAND HTER (ON THE TEST SE'I) FOR DIFFERENT CONFIGURATIONS OF THE CLASSICAL AND PRINCIRAGABOR FILTERS
AS WELL AS FOR THEFISHERFACE TECHNIQUE

[ Method T IDA ] pl | p2 [ p3 [ p4 ] p5 ] 91 [ 92 ] o3 ] g4 [ o5 |
FAR (%) 4.04 154 | 117 | 118 | 115| 146 | 0.83| 1.19| 1.04| 0.98| 0.99
FRR (%) 3.25 1.75| 0.v5| 050 | 100 | 1.00| 225| 150| 1.25| 1.00| 0.75

HTER (%) 3.65 165| 096 | 084 | 108 | 123| 154 | 134 | 1.15| 099 | 0.87

part of our assessment are presented in Table IV-B. Hemequires only 24 filters for the same HTER. Moreover, as
we again measure the performance in terms of the FAR atide same downsampling factor was used for both filter types,
FRR and, furthermore, provide the values of the half totahe feature vector derived using the principal filters (prio
error rate (HTER), which is defined as the average value ¢d dimensionality reduction with LDA) is less dimensional
the FAR and FRR. It should be noted that the letter "p” irthan the one obtained with the classical approach. Henee, th
Table IV-B denotes the principal filters, while "g” stands fo verification performance could be further improved by using
the classical Gabor filters. In all cases the number next ®@ smaller downsampling factor for the (principal Gabor)
the letter stands for the number of employed filter scales. filtered images.

Similar to the evaluation experiments we again notice that o )
the performance of the principal filters peaks when threerfilt C- !dentification experiments on the YaleB database
scales are employed for filtering. The best performance with For the identification experiments on the YaleB database
the classical filters is again observed with five filter scalesve partitioned the database into five subsets according to
While the difference in the HTERs of the top performingthe extremity in the illumination conditions present dagrin
filter configurations of both filter types at the tested opgretat the image acquisition stage. Thus, the first subset cortaine
point is statistically not necessarily significant, anothieser- images captured under relatively "good” illumination, the
vation is far more important. The classical approach of Gab@econd images captured in slightly worse illumination ¢ond
filter deployment requires 40 filters for its top performancetions and so forth. Even though the database contains some
the approach with the principal filters, on the other hand;orrupted images, these were not removed from the subsets.



TABLE I
THE RANK ONE RECOGNITION RATES(IN %) FOR THE YALEB DATABASE FOR DIFFERENT CONFIGURATIONS OF THE CLASSICAL ANPRINCIPAL
GABOR FILTERS AS WELL AS FOR THEFISHERFACE TECHNIQUE

[Method | LDA ] pI | p2 [ p3 [ p4 [ p5 [ 91 ] 92 g3 ] g4 ] g5 |
subset 2| 100 100 100 100 100 100 100 100 100 100 100
subset 3 100 100 100 100 100 100 100 100 100 100 100
subset 4| 63.6 950 | 943 | 964 | 943 | 950 | 893 | 921 | 921 | 921 | 921
subset 5| 14.2 974 | 979 | 990 | 974 | 968 | 916 | 947 | 947 | 96.3| 953

—— DA

40 |

Gabor+LDA (no. of scales = 5)
P. Gabor + LDA (no. of scales = 3)
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Fig. 8. Comparison of best performing filter configurationstfee Gabor
and principal Gabor filters and the Fisherface technique

For the training set the first image subset featuring 7 imag

per subject was adopted, while the remaining image s€e

the classical Gabor filters results in a similar recognition
performance; however, with a significant improvement in
the computational complexity, as only 24 (3 scales and 8
orientations) instead of 40 filters are needed for computing
the Gabor face representation.

V. CONCLUSION

We have presented novel image filters derived from the
popular Gabor filters, which can be used for feature extrac-
tion in the field of face recognition. Unlike the classical-Ga
bor filters, the proposed principal Gabor filters are orthwjo
and, hence, are capable of deriving face representatiorewhe
the encoded information is not redundant. Experimental
results obtained in a series of verification and identifarati
experiments suggest that the new filters result in a similar
performance as the classical Gabor filters with a signifigant
reduced computational complexity. Our future research wit
respect to principal Gabor filters will be focused on assessi
the performance of the filters on a larger database and
gseploying alternative techniques for filter decorrelatismch
S independent component analysis.

were employed for testing. It should be noted that such
an experimental configuration is also in accordance Witf‘m
real-life settings, as the enrollment process can always be
supervised, whereas the operational conditions are tjpica
unknown in advance. A more detailed description of thel?
protocol is given below:

e number of training images per subjeat; = 7, 3]
e number of ident. attempts with subseti2, = 120,
e number of ident. attempts with subset:8; = 120, (4]
e number of ident. attempts with subset, = 140,
e number of ident. attempts with subset/hs = 190. [5]

Similarly to the experiments presented in the previous
section, LDA was exploited as the dimensionality reduction
technique, and the nearest neighbor classifier with thaeosi [6]
similarity measure was adopted for the classification. Thg,,
length of the feature vector was set to its maximum value
(i.e., 9 for the YaleB database). The results of the experime
are presented in Table IV-B. (8]

The results of this series of experiments again suggest
that only three filter scales are needed to achieve the be&!
performance with the proposed principal Gabor filters. gsin
more than three filter scales actually led to a decreas¢w)
recognition performance. Interestingly, the classic@rapch
with four filter scales performed a bit better than the compy;
monly used variant with five filter scales. All in all we
can conclude that using principal Gabor filters instead of
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