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Abstract— Gabor filters have proven themselves to be a
powerful tool for facial feature extraction. An abundance
of recognition techniques presented in the literature exploits
these filters to achieve robust face recognition. However, while
exhibiting desirable properties, such as orientational selectivity
or spatial locality, Gabor filters have also some shortcomings
which crucially affect the characteristics and size of the
Gabor representation of a given face pattern. Amongst these
shortcomings the fact that the filters are not orthogonal one
to another and are, hence, correlated is probably the most
important. This makes the information contained in the Gabor
face representation redundant and also affects the size of
the representation. To overcome this problem we propose in
this paper to employ orthonormal linear combinations of the
original Gabor filters rather than the filters themselves for
deriving the Gabor face representation. The filters, named
principal Gabor filters for the fact that they are computed
by means of principal component analysis, are assessed in face
recognition experiments performed on the XM2VTS and YaleB
databases, where encouraging results are achieved.

I. INTRODUCTION

Deriving a discriminative and compact representation of
a face pattern is of paramount importance for the success
of any face recognition approach. Several techniques have
been presented in the literature to achieve this goal, however,
techniques exploiting Gabor filters are not only amongst the
most popular, but are extremely effective as well.

Gabor filters are capable of deriving multi-orientational
information from a face image at several scales, with the
derived information being of local nature. The common
approach when using Gabor filters for face recognition is
to construct a filter bank with filters of different scales and
orientations and to filter the given face image with all filters
from the bank. Obviously, such an approach results in an
explosion of information, as the dimensionality of the input
face pattern is increased by a factor equaling the number
of filters in the filter bank. The amount of data (in the
Gabor face representation) is then commonly reduced to a
more manageable size by exploiting various downsampling,
feature selection and subspace projection techniques before
it is finally fed to a classifier [1].

Unlike other work found in the literature [1], [2], [3],
[4] which primarily deals with the problem of effectively
reducing the size of the Gabor face representation once
this has already been computed, this paper takes a different
approach and tries to propose a way of deriving a more
compact representation. By presuming that the big increase
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ulty of Electrical Engineering, University of Ljubljana, Tržǎska 25,
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in the data dimensionality can mainly be linked to the fact
that the Gabor filters are not orthogonal, we are capable
of devising efficient countermeasures. Rather than using the
original filter bank of Gabor filters for the derivation of
the Gabor face representation, we propose to employ novel
orthogonal filters constructed as a linear combination of the
original Gabor filters. As shown in the experimental section,
these filters are capable of achieving similar recognition
rates than the original ones, but using a far more compact
face representation. Since the novel filters are derived from
correlation matrices of the original filters by means of
principal component analysis, we call them principal Gabor
filters.

The rest of the paper is structured as follows. In Section II
the theory underlying Gabor filter construction and their use
in face recognition systems is briefly reviewed. In Section III
the novel principal Gabor filters are introduced and tested in
experiments in Section IV. The paper concludes with some
final comments in Section V.

II. GABOR FILTERS FOR FACE RECOGNITION

This section briefly reviews the basic principles of face
recognition using Gabor filters. It commences by introducing
the Gabor filters and the Gabor face representation and
proceeds by highlighting some characteristics of the filters,
which affect the Gabor face representation and consequently
the recognition performance of Gabor filter based recognition
techniques.

A. Gabor filters

Gabor filters are among the most popular tools for facial
feature extraction. Their use in automatic face recognition
system is motivated by two major factors: their computa-
tional properties and their biological relevance.

Formally, a 2D Gabor filter in the spatial domain is defined
by the following expression [2]:
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wherex′ = x cos θv +y sin θv, y′ = −x sin θv +ycosθv, and
the parametersfu and θv are defined asfu = fmax/2

(u/2)

and θv = vπ/8. As we can see, Gabor filters represent
Gaussian kernel functions modulated by a complex plane
wave whose center frequency and orientation are defined by
fu and θv, respectively. The parametersγ and η determine
the ratio between the center frequency and the size of the
Gaussian envelope and, when set to a fixed value, ensure
that Gabor filters of different scales and a given orientation



behave as scaled versions of each other1. Commonly the
values ofγ andη are set toγ = η =

√
2. The last parameter

fmax denotes the maximum frequency of the filters and is
usually set tofmax = 0.25. By closer examining expression
(1) it becomes evident that Gabor filters represent complex
filters which combine an even (cosine-type) and an odd (sine-
type) [5] part as shown in Fig. 1.

Fig. 1. An example of a Gabor filter: the real (cosine-type) part (left), the
imaginary (sine-type) part (right)

When exploited for feature extraction, a filter bank with
several filters is usually created and used to extract multi-
orientational and multi-scale features from the given face
image. This filter bank commonly consist of Gabor filters of
5 different scales and 8 orientations, i.e.,u = 0, 1, ..., p − 1
and v = 0, 1, ..., r − 1, wherep = 5 and r = 8 [1],[2],[3],
[4].

B. Extracting features with Gabor filters

Let I(x, y) denote a grey-scale face image defined on
a grid of sizea × b and letψu,v(x, y) represent a Gabor
filter determined by the parametersfu andθv. The filtering
operation with the Gabor filter can then be written as follows
[1], [2]:

Gu,v(x, y) = I(x, y) ∗ ψu,v(x, y). (2)

where Gu,v(x, y) denotes the complex convolution result
which can be decomposed into a real and an imaginary part:

Eu,v(x, y) = Re[Gu,v(x, y)]
Ou,v(x, y) = Im[Gu,v(x, y)].

(3)

Based on the decomposed filtering result both the phase
φu,v(x, y) as well as the magnitudeAu,v(x, y) filter re-
sponses can be computed as:

Au,v(x, y) =
√

E2
u,v(x, y) +O2

u,v(x, y)

φu,v(x, y) = arctan (Ou,v(x, y)/Eu,v(x, y)).
(4)

Since the computed phase responses vary significantly even
for spatial locations only a few pixels apart, Gabor phase
features are considered unstable and are usually discarded.
The magnitude responses, on the other hand, vary slowly
with the spatial position, and are thus the preferred choice
when deriving Gabor filter based features.

To derive the Gabor face representation from a given
face imageI(x, y), the Gabor magnitude responses for the
entire filter bank of the 40 Gabor filters are commonly
computed first. However, since each of the responses is of
the same dimensionality as the input image, this procedure
results in an inflation of the original pixel space to 40 times

1Note that with fixed values of the parametersγ andη the scale of the
Gabor filter is defined by its center frequencyfu

its initial size. To cope with this problem, the magnitude
responses are typically downsampled using either a simple
rectangular sampling grid or some kind of feature selection
scheme. Nevertheless, even after the downsampling, any face
representation constructed, for example, by a concatenation
of the downsampled magnitude responses, still resides in a
high dimensional space. A popular solution to this problem
is to use a subspace projection technique, such as principal
component analysis or linear discriminant analysis, to further
reduce the data’s dimensionality.

In the experiments presented in the Section IV of this
paper, we use a simple rectangular sampling grid with 256
nodes for the initial dimensionality reduction and linear dis-
criminant analysis for the subspace projection of the feature
vector built by concatenating the downsampled magnitude
responses.

C. Properties of Gabor filters

It is obvious that the mathematical properties of the Gabor
filters crucially influence the characteristics and size of the
Gabor face representation and thus deserve to be discussed
in more detail. A large number of papers dealing with
face recognition using Gabor filters emphasize the fact that
the filters exhibit properties, such as spatial locality and
orientational selectivity, and that they are optimally localized
in the space and frequency domains. While these properties
are certainly appealing, they might not necessarily be the
most important when deriving discriminative and most of all
compact representations of a face pattern. Optimal resolution
of the filters in both the spatial as well as the frequency
domain, for example, is desirable to derive spatially local
features of a confined frequency band, but is unfortunately
also exactly the reason why the dimensionality of the (not-
downsampled) Gabor face representation is that much bigger
than the initial size of the input face image.

Another known shortcoming of Gabor filters is the fact
that different filters from the filter bank are not orthogonal
one to another. The information encoded in the final Gabor
face representation is therefore redundant and might affect
the recognition accuracy of the classifier relying on the
Gabor face representation. In the next Section, we will try
to modify the classical Gabor filters in such a way that some
of the properties just described are altered and, hence, the
new filters are more effective in deriving a compact and
discriminative face representation.

III. PRINCIPAL GABOR FILTERS

Orthogonality is one of the key elements for many pattern
representations. However, as already emphasized in the pre-
vious section, Gabor filters do not represent orthogonal filters
and hence the information encoded in the filter responses is
therefore likely to be redundant. To overcome this problem
we propose to orthogonalize the commonly adopted filter
bank (featuring filters of 5 scales and 8 orientations and
defined by the parameter values given in Section II-A) using
principal component analysis (PCA) [6].



At this point the question arises how to orthogonalize the
filter bank while still (at least partially) preserving other
important characteristics such as orientational selectivity and
spatial locality. To answer this question let us consider the
Gabor filter bankG defined asG = {G(fu, θv) = Gu,v : u =
0, 1, ..., p−1; v = 0, 1, ..., r−1}. For each filter orientationθv

we can form a complex valued data matrixΓv of sizeab×p
whose columns correspond to Gabor filters of different scales
rearranged into vector form, i.e,Γv = [g0,v,g1,v, ...,gp−1,v],
wheregu,v denotes the column vector corresponding to the
Gabor filterGu,v. Using the constructed data matricesΓv,
we can compute a correlation matrixΣv for each filter
orientation as follows:

Σv = ΓvΓ
T
v , (5)

whereT stands for the transpose operator.
It can be shown that each correlation matrixΣv has ex-

actly p eigenvectors that correspond to non-zero eigenvalues.
These eigenvectors are orthogonal and in appearance quite
similar to Gabor filters. The orthogonality of the eigenvectors
is a consequence of the symmetry of the correlation matrices,
while the appearance of the eigenvectors can be ascribed to
the fact that the eigenvectors of a matrix must lie in the span
of all data samples (in our case in the span of the Gabor
filters in vector form) and are, hence, nothing more than a
linear combination of the input data. Fig. 2 shows a visual
comparison between the real part of the Gabor filter bank
G and the real part of the eigenvector of allr correlation
matricesΣv.

Fig. 2. Visual comparison of the real part of the eigenvectorsof the
correlation matrices (left) and the real part of the Gabor filter bank (right).

Due to the great similarity between the presented eigen-
vectors and the original Gabor filters and the fact that
the eigenvectors (of each orientation) of the correlation
matrices are orthogonal, we propose to employ the unitary
eigenvectors rather than the classical filters for the derivation
of the Gabor face representation. In analogy with principal
component analysis, we will refer to these eigenvectors as
principal Gabor filters in the remainder of this paper.

A. Properties of principal Gabor filters

Recently, Wang et al. [7] proposed to inspect a correlation
matrix constructed using a bank of Gabor filters with the goal
of selecting such filter parameters that the filters comprising
the filter bank would be as uncorrelated as possible. The
same methodology can also be used here to visualize the
difference between the classical and the principal Gabor fil-
ters. To this end, one (40×40) correlation matrix is build for
each of the two filter banks. When computing the correlation

matrices we arrange the filters first in order of orientation and
then scale, thus, the first8×8 block in the upper left corner of
the matrices presented in Fig. 3 depicts the correlation of the
filters of the smallest scale (and different orientations),the
next block down the diagonal depicts the correlations for the
second filter scale and so forth. We can see that there are still

Fig. 3. Visual comparison of the correlation matrices of the classical Gabor
filter bank (left) and the principal Gabor filter bank (right).

small correlations between filters of two adjacent orientations
for both filter types; however, the principal Gabor filters
exhibit no correlations between different filter scales as the
classical filters do (i.e., the two lines parallel to the main
diagonal are not present in the right image of Fig. 3).

While the orthogonality of the principal Gabor filters
might have a positive effect on the (principal) Gabor face
representation in terms of compactness, this comes at a price,
as the filters are not localized optimally in the spatial nor in
the frequency domain anymore. This fact is illustrated in Fig.
4, where the top row shows the magnitudes of the classical
Gabor filters at different scales and the bottom row shows
the magnitudes of the principal filters at different scales.

Fig. 4. Comparison of the magnitudes of the two filter types at diff. scales.

Last but not least Fig. 5 shows the coverage of the power
spectrum (together with the mirrored channels) of the two
filter banks. We can see that, while the classical filters cover
the frequency plane evenly, the principal filters give more
emphasis to certain frequency bands.

Fig. 5. Comparison of the coverage of the power spectrum: for the principal
filter bank (left) and the classical Gabor filter bank (right).

IV. EXPERIMENTAL RESULTS

A. The Experimental Databases

To assess the expediency of the proposed principal Gabor
filters for face recognition, two popular face databases were



adopted for the experiments presented in the remainder of
this paper - the XM2VTS and YaleB databases [8], [9].

The first, the XM2VTS database, comprises 2360 facial
images that correspond to 295 distinct subjects. Each subject
in the database is accounted for with 8 facial images, which
were taken during four separate recording sessions. The
images were captured in front of a uniform background and
in controlled illumination conditions. Thus, the variability in
the appearance of a given subjects face images is induced
mainly by the temporal factor, as the recording sessions
were distributed over a period of approximately five months.
The images differ in terms of pose, head-rotation, pres-
ence/absance of glasses, mustaches and makeup, different
hairstyle, etc.

The second, the YaleB face database, contains images of
only 10 subjects. These images, however, exhibit large varia-
tions in pose and illumination. The database comprises a total
of 5760 grey-scale facial images which were taken under
576 different viewing conditions (9 poses× 64 illumination
conditions). In the experiments presented in this paper, we,
however, use only a subset of the database featuring640
facial images with frontal pose. Some examples of the images
from the two databases employed in our experiments are
shown in Fig. 6.

Prior to the experiments, a preprocessing procedure was
applied to all images of the YaleB and XM2VTS databases.
Specifically, the procedure comprised:(i) a rotation and
scaling step, which, based on the manually labeled eye
coordinates, positioned the eyes at predefined locations;(ii)
a cropping step (to a standard size of128 × 128 pixels),
which removed all image parts not belonging to the face;
and(iii) an image enhancement step in the form of histogram
equalization, which improved the contrast of the images [10].

B. Verification experiments on the XM2VTS database

The experiments on the XM2VTS database were con-
ducted in accordance with the first configuration of the
databases experimental protocol [8]. The protocol partitions
the subjects of the database into two disjoint groups of clients
(200 subjects) and impostors (95 subjects)2 and further
defines which images from the two groups should be used
for training, evaluation and testing. Since the XM2VTS’s
experimental protocol represents a closed-set protocol, the
training images also coincide with the enrollment images
of the clients and are also often referred to as develop-
ment images. These images are exploited to train the given
face recognition technique and subsequently to build client
models. Images designated for the evaluation phase are
used to set an operational decision threshold, while images
designated for the test phase are employed solely in the
final performance assessment (with a pre-trained recognition
technique and a pre-set decision threshold). The details of
the employed protocol are shown below:

• number of training images per subject:nt = 3,

2Note that clients represent users making a genuine identity claim, while
impostors represent users claiming an identity different from their own.

• total number of client access trials in the evaluation
phase:nce = 600 (3 images per subject),

• number of impostor access trials in the evaluation phase:
nie = 40000 (each of the 25 evaluation impostors
claims 200 enrolled identities using 8 different images),

• total number of client access trials in the test phase:
nte = 400 (2 images per subject),

• number of impostor access trials in the test phase:nte =
112000 (each of the 70 evaluation impostors claims 200
enrolled identities using 8 different images).

Following the presented experimental protocol, our first
series of verification experiments assessed the performance
of the principal Gabor filters with respect to the employed
number of filter scales. Since the procedure of principal filter
creation presented in Section III involves filters of only one
orientation at the time, we fixed the angular resolution of
our filter bank to the most common value found in the
literature and employed eight filter orientations in all of
our experiments. We adopted linear discriminant analysis
(LDA) for the dimensionality reduction and the nearest
neighbor for classification. The results of the experiments
are presented in Fig. 7, where the Detection-Trade-Off (DET)
curves (which plot the false rejection error rate (FRR) against
the false acceptance error rate (FAR) at various values of the
decision threshold) are shown. Here, the left graph depicts
the performance of the principal Gabor filters in conjunction
with LDA, while the right graph depicts the performance of
the classical Gabor filters in conjunction with LDA. From the
graphs we can see that the verification performance of the
principal Gabor filters saturates or at least does not increase
significantly from three scales upwards. The performance
of the classical Gabor filters, on the other hand, improves
with the deployment of more filter scales (for most of the
operating points on the DET curves). Fig. 8 shows a more
detailed comparison of the best performing configuration of
the classical Gabor filters (i.e., 8 orientations and 5 scales)
and the principal Gabor filters (i.e., 8 orientations and 3 filter
scales) on the evaluation image set. For baseline comparisons
the performance of the popular Fisherface technique (denoted
as LDA) [11] is also given in the graph.

The results clearly show that both filter types improve
upon the performance of the raw image data, while the direct
comparison of the principal and classical filters suggests that
the former perform better at operating points corresponding
to low false acceptance rates and the classical Gabor filters
outperform the principal ones at operating points correspond-
ing to higher values of the false acceptance rate.

Before we make any final conclusions, let us further
examine the performance of both filter types using the test
image set. To this end, we first fix the decision threshold on
the evaluation image set to the equal error operating point3

and then perform verification experiments on the test image
set with this pre-set decision threshold. The results of this

3The equal error operating point is defined as the point on the DET curve
where the values of the false acceptance error rate and the false rejection
error rate are equal.



Fig. 6. Sample images from the employed databases: examples fromthe XM2VTS database (left image block), examples from the YaleB database (right
image block).
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Fig. 7. DET curves generated during the evaluation experiments: principal Gabor filters + LDA (left), Gabor filters + LDA (right).

TABLE I

THE VALUES OF FAR, FRRAND HTER (ON THE TEST SET) FOR DIFFERENT CONFIGURATIONS OF THE CLASSICAL AND PRINCIPAL GABOR FILTERS

AS WELL AS FOR THEFISHERFACE TECHNIQUE.

Method LDA p1 p2 p3 p4 p5 g1 g2 g3 g4 g5

FAR (%) 4.04 1.54 1.17 1.18 1.15 1.46 0.83 1.19 1.04 0.98 0.99
FRR (%) 3.25 1.75 0.75 0.50 1.00 1.00 2.25 1.50 1.25 1.00 0.75

HTER (%) 3.65 1.65 0.96 0.84 1.08 1.23 1.54 1.34 1.15 0.99 0.87

part of our assessment are presented in Table IV-B. Here,
we again measure the performance in terms of the FAR and
FRR and, furthermore, provide the values of the half total
error rate (HTER), which is defined as the average value of
the FAR and FRR. It should be noted that the letter ”p” in
Table IV-B denotes the principal filters, while ”g” stands for
the classical Gabor filters. In all cases the number next to
the letter stands for the number of employed filter scales.

Similar to the evaluation experiments we again notice that
the performance of the principal filters peaks when three filter
scales are employed for filtering. The best performance with
the classical filters is again observed with five filter scales.
While the difference in the HTERs of the top performing
filter configurations of both filter types at the tested operating
point is statistically not necessarily significant, another obser-
vation is far more important. The classical approach of Gabor
filter deployment requires 40 filters for its top performance,
the approach with the principal filters, on the other hand,

requires only 24 filters for the same HTER. Moreover, as
the same downsampling factor was used for both filter types,
the feature vector derived using the principal filters (prior
to dimensionality reduction with LDA) is less dimensional
than the one obtained with the classical approach. Hence, the
verification performance could be further improved by using
a smaller downsampling factor for the (principal Gabor)
filtered images.

C. Identification experiments on the YaleB database

For the identification experiments on the YaleB database
we partitioned the database into five subsets according to
the extremity in the illumination conditions present during
the image acquisition stage. Thus, the first subset contained
images captured under relatively ”good” illumination, the
second images captured in slightly worse illumination condi-
tions and so forth. Even though the database contains some
corrupted images, these were not removed from the subsets.



TABLE II

THE RANK ONE RECOGNITION RATES(IN %) FOR THEYALEB DATABASE FOR DIFFERENT CONFIGURATIONS OF THE CLASSICAL ANDPRINCIPAL

GABOR FILTERS AS WELL AS FOR THEFISHERFACE TECHNIQUE.

Method LDA p1 p2 p3 p4 p5 g1 g2 g3 g4 g5

subset 2 100 100 100 100 100 100 100 100 100 100 100
subset 3 100 100 100 100 100 100 100 100 100 100 100
subset 4 63.6 95.0 94.3 96.4 94.3 95.0 89.3 92.1 92.1 92.1 92.1
subset 5 14.2 97.4 97.9 99.0 97.4 96.8 91.6 94.7 94.7 96.3 95.3
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Fig. 8. Comparison of best performing filter configurations forthe Gabor
and principal Gabor filters and the Fisherface technique

For the training set the first image subset featuring 7 images
per subject was adopted, while the remaining image sets
were employed for testing. It should be noted that such
an experimental configuration is also in accordance with
real-life settings, as the enrollment process can always be
supervised, whereas the operational conditions are typically
unknown in advance. A more detailed description of the
protocol is given below:

• number of training images per subject:nt = 7,
• number of ident. attempts with subset 2:ns2 = 120,
• number of ident. attempts with subset 3:ns3 = 120,
• number of ident. attempts with subset 4:ns4 = 140,
• number of ident. attempts with subset 5:ns5 = 190.

Similarly to the experiments presented in the previous
section, LDA was exploited as the dimensionality reduction
technique, and the nearest neighbor classifier with the cosine
similarity measure was adopted for the classification. The
length of the feature vector was set to its maximum value
(i.e., 9 for the YaleB database). The results of the experiments
are presented in Table IV-B.

The results of this series of experiments again suggest
that only three filter scales are needed to achieve the best
performance with the proposed principal Gabor filters. Using
more than three filter scales actually led to a decreased
recognition performance. Interestingly, the classical approach
with four filter scales performed a bit better than the com-
monly used variant with five filter scales. All in all we
can conclude that using principal Gabor filters instead of

the classical Gabor filters results in a similar recognition
performance; however, with a significant improvement in
the computational complexity, as only 24 (3 scales and 8
orientations) instead of 40 filters are needed for computing
the Gabor face representation.

V. CONCLUSION

We have presented novel image filters derived from the
popular Gabor filters, which can be used for feature extrac-
tion in the field of face recognition. Unlike the classical Ga-
bor filters, the proposed principal Gabor filters are orthogonal
and, hence, are capable of deriving face representation where
the encoded information is not redundant. Experimental
results obtained in a series of verification and identification
experiments suggest that the new filters result in a similar
performance as the classical Gabor filters with a significantly
reduced computational complexity. Our future research with
respect to principal Gabor filters will be focused on assessing
the performance of the filters on a larger database and
deploying alternative techniques for filter decorrelation, such
as independent component analysis.
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