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Abstract: Depth image acquisition with structured light approaches in outdoor environments is
a challenging problem due to external factors, such as ambient sunlight, which commonly affect
the acquisition procedure. This paper presents a novel structured light sensor designed specifically
for operation in outdoor environments. The sensor exploits a modulated sequence of structured
light projected onto the target scene to counteract environmental factors and estimate a spatial
distortion map in a robust manner. The correspondence between the projected pattern and the
estimated distortion map is then established using a probabilistic framework based on graphical
models. Finally, the depth image of the target scene is reconstructed using a number of reference
frames recorded during the calibration process. We evaluate the proposed sensor on experimental
data in indoor and outdoor environments and present comparative experiments with other existing
methods, as well as commercial sensors.

Keywords: depth imaging; modulated acquisition; structured light; triangulation; probabilistic
graphical models; 3D reconstruction

1. Introduction

Over the last few years, we have witnessed the rapid growth of 3D imaging technologies in
various application areas, ranging from autonomous navigation of robots, drones or cars [1–3], medical
applications [4,5], consumer electronics [6] and surveillance systems [7,8] to object reconstruction [9,10],
biometrics [11–13], and others [14–16]. Especially, with the introduction of low-cost commercial 3D
imaging sensors, such as Microsoft’s Kinect (Microsoft, Redmond, WA, USA) [6], depth sensing has
become a popular research direction with new applications and use cases being presented on a regular
basis. Several major corporations have since introduced their own depth imaging technology (e.g., Intel
(Santa Clara, CA, USA) recently announced the Euclid sensor; Sony (Tokio, Japan) introduced the
PlayStation Camera with the PS4 console; and Infineon (Neubiberg, Germany) developed the Real3
sensor) with the goal of participating in this rapidly growing depth-sensor market.

Existing 3D imaging techniques can be divided into two main categories: (i) active and (ii) passive.
Active techniques utilize an active source of illumination to project a suitably-devised pattern of
structured light onto the target scene and then perform 3D reconstruction based on temporal or
spatial distortions of the projected pattern caused by interactions with the target scene. Examples of
active techniques include standard structured light approaches [17–19], time-of-flight methods [20,21]
or interferometry [22]. A comprehensive review of existing techniques from this group can be
found in [23,24]. Passive techniques, on the other hand, do not rely on active illumination, but
commonly require only a calibrated pair of cameras. Typical examples of passive techniques represent
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stereo-vision [25], shape-from-focus [26], shape-from-shading [27] and other related shape-from-X
approaches [28]. The reader is referred to [29] for more detailed coverage of this topic.

When applied in outdoor environments, 3D imaging techniques are expected to provide accurate
depth information regardless of the external lighting and atmospheric conditions, which are known
to negatively affect the existing range measurement techniques. This property is crucial for various
outdoor applications that require reliable depth information to function properly. This paper addresses
the problem of outdoor depth imaging with structured light approaches and presents a novel sensor
designed specifically for outdoor deployment [30]. The sensor exploits the recently-proposed concept
of modulated pattern projection, introduced by our group in [31], which facilitates the acquisition of
spatial distortion maps in real-world environments (even in the presence of strong incident sunlight),
where other existing approaches often fail or at least struggle with their performance. Correspondences
between the projected pattern and the acquired distortion map are established based on a novel
probabilistic approach relying on graphical models (inspired by [32,33]) and are used in conjunction
with prerecorded reference frames to compute the depth information for each point of the projected
structured light pattern. All components of the sensor presented are designed for outdoor deployment
and contribute to the overall performance, as demonstrated in the experimental section.

We make the following three contributions in this paper: (i) we present a novel 3D imaging sensor
that supports robust acquisition of spatial distortion maps and is able to generate accurate depth
maps in challenging outdoor environments; (ii) we describe the complete hardware and software
(algorithmic) design of the sensor; and (iii) we present a comprehensive experimental evaluation,
as well as comparative results with competing techniques and existing commercial sensors.

The paper is organized as follows: Section 2 presents the main components of the depth sensor
and outlines their characteristics. The individual components are discussed in Sections 3, 4 and 5.
Experimental results and comparative evaluations are described in detail in Section 6. The paper
concludes with some final remarks and directions for future work in Section 7.

2. Sensor Overview

This section presents a short overview of a novel sensor designed for depth image acquisition.
The sensor presented was developed as part of our research efforts with respect to an active
triangulation system (ATRIS) capable of capturing depth images in difficult settings; for example,
under exposure to strong incident sunlight. The sensor relies on the established concept of depth image
acquisition based on structured light, in which a light pattern is first projected onto a target scene, and
the shape (i.e., depth information) of the scene is then inferred based on the spatial distortions of the
projected pattern and the (known) geometrical properties of the prototype.

A schematic representation of the three key components of the ATRIS sensor is shown in Figure 1.

• The image acquisition procedure uses specialized hardware (comprised of a laser projector and
a high-speed camera) to project a structured light pattern onto the target scene with the goal of
capturing an image of the distorted pattern (i.e., a spatial distortion map). The procedure is based
on the recently-introduced concept of modulated pattern projection [31,34], which ensures that
spatial distortion maps of good quality can be captured in challenging conditions; for example,
in the presence of strong incident sunlight or under mutual interference caused by other similar
sensors directed at the same scene.

• The light plane-labeling procedure establishes the correspondence between all parts of the
projected light pattern and the detected pattern that has been distorted due to the interaction
with the target scene. The procedure uses loopy-belief-propagation inference over probabilistic
graphical models (PGMs) as proposed in [33] to solve the correspondence problem and, differently
from other existing techniques in the literature, exploits spatial relationships between parts
of the projected pattern, as well as temporal information from several consecutive frames to
establish correspondence.
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• The 3D reconstruction procedure reconstructs the depth image of the target scene based on (i) the
reference frames of the light pattern projected onto a planar surface at different distances from the
camera and (ii) the established correspondence between parts of the projected pattern and the
detected distortion map.

A detailed description of all three key ATRIS components is presented below.

ATRIS Sensor

Acquisition setup (i)
• laser
• high-speed camera
• modulation for robust

pattern detection
• demodulation on FPGA

Light plane labeling (ii)
• probabilistic graphical models
• loopy belief propagation
• temporal information

3D reconstruction (iii)

• calibration
• interpolation
• reconstruction

(iii)

Figure 1. Schematic representation of our active triangulation system (ATRIS) sensor. The sensor
comprises three key components: (i) an image acquisition procedure, which captures an image of
the projected light pattern; (ii) a light plane labeling technique, which establishes the correspondence
between all parts of the projected and detected patterns; and (iii) a 3D reconstruction procedure, which
constructs a depth image from the detected light pattern.

3. The Acquisition Procedure

This section describes the modulated pattern acquisition procedure used in the ATRIS sensor.
The section starts by presenting the hardware setup used in the sensor and then proceeds by describing
the pattern acquisition procedure and its characteristics. Note that the underlying concept of the
acquisition procedure was originally introduced in [31].

The hardware setup (shown in Figure 2a) used in the ATRIS sensor comprises a high-speed
industrial camera with an integrated FPGA processing core and a modulable 650-nm LED laser.
The high-speed (Velociraptor [35]) camera (Optomotive, Ljubljana, Slovenia) is capable of operating at
a frame rate of 480 fps, which allows the ATRIS sensor to capture images of the structured light pattern
at a speed of several frames per second. The sensor can therefore be used with static or dynamic scenes.

To acquire one image (or better said, a single frame) of the projected light pattern, the camera first
captures a series of images of the target scene (we refer to these images as sub-frames). Every time an
image (sub-frame) is taken, the laser projector is turned either on or off depending on the current value
of the pseudo-random binary control/modulation sequence c ∈ {0, 1} that is cyclically shifted in the
FPGA modulation register [31]. If the control/modulation sequence takes a value of c = 1, the laser
projector is turned on, and the captured sub-frame contains a snapshot of the illuminated target scene.
Similarly, when the control/modulation sequence takes a value of c = 0, the laser projector is turned
off, and the captured sub-frame contains a snapshot of the scene without the structured light pattern
(see Figure 2b). Based on these sub-frames, the final image of the projected pattern is generated as a
normalized superposition of all sub-frames captured during one cycle of the control sequence.

As illustrated in Figure 2b, all sub-frames captured during the on state of the laser are added to
the superposition, and all sub-frames captured during the off state are subtracted. This demodulation
procedure is implemented in FPGA and removes most information about the appearance of the
target scene from the generated image/frame, thus significantly emphasizing the projected pattern.
A thresholding step is ultimately applied to the demodulated image to remove all remaining
(scene-related) artifacts and to produce the final binary image of the projected pattern needed for the
light plane labeling.
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(a) Hardware setup
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(b) Illustration of the acquisition procedure

Figure 2. The acquisition procedure. (a) Visual appearance of the hardware setup of the ATRIS
sensor. The left side of the image shows the casing of the sensor and the right side the arrangement
of the camera (above) and the laser projector (below) in the casing. (b) Illustration of the modulated
acquisition procedure.

The acquisition procedure presented exhibits several desirable characteristics that are also
experimentally validated in Section 6.1 (for a formal theoretical argumentation of the characteristics,
the reader is referred to [31]):

• Noise suppression: The modulated acquisition procedure is robust for various types of noise.
If information related to the visual appearance of the target scene is treated as “background
noise,” then the procedure presented obviously removes the background noise as long as the
control/modulation sequence employed in the FPGA register is balanced (a balanced modulation
sequence is defined as a sequence with an equal number of zero- and one-valued bits). Because
demodulation is a pixel-wise operation, the acquisition procedure presented also suppresses
sensor noise (typically assumed to be Gaussian) caused, for instance, by poor illumination or high
temperatures, where a simple pair-wise sub-frame subtraction would not suffice.

• Operation under exposure to incident sunlight: Even if the illumination of the target scene by
incident sunlight is relatively strong, the modulation sequence is capable of raising the level
of “signal” pixels sufficiently to recover a good-quality image of the projected pattern. This
characteristic is related to the noise suppression property discussed above, because incident sunlight
behaves very much like background noise under the assumption that the intensity level of the
sunlight is reasonably stable.

• Mutual interference compensation: With the modulated acquisition procedure, it is possible to
compensate for the mutual interference typically encountered when two or more similar sensors
operate on the same target scene. This can be done by constructing the control/modulation
sequences based on cyclic orthogonal (Walsh–Hadamard) codes, in which the cross-correlation
properties of the modulation codes are exploited to compensate the mutual interference (see [31] for
more information). Similar concepts are used in other areas, as well; for example, for synchronized
CDMA (code division multiple access) systems [36] or sensor networks [37], for which mutual
interference also represents a major problem.

It should be noted that in the current implementation of the ATRIS sensor, a diffractive optical
element (DOE) mounted in front of the laser is used to split the laser beam and produce a structured
light pattern comprising 11 parallel light planes (see Figure 3a). For the modulation sequence, a 16-bit
long modulation sequence is used, which results in a stable pattern acquisition rate of 30 fps given a
camera frame rate of 480 fps (i.e., 480 fps/16 = 30 fps).
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(a) Original structured light pattern (b) Sample target scene (c) Image of deformed pattern

Figure 3. The correspondence problem: (a) an illustrative image of the structured light pattern produced
by the ATRIS sensor, without distortions; (b) an example of a target scene illuminated by the light
pattern; (c) an example of the spatial distortion map captured with the sensor. To be able to reconstruct
a depth image of the target scene, each pixel comprising the light pattern in (c) needs to be assigned a
label corresponding to one of the light planes in the pattern shown in (a).

4. Light-Plane Labeling

The modulated acquisition procedure presented in the previous section results in a binary image
(or frame) of the projected pattern that forms the basis for depth image reconstruction. As pointed
out in Section 2, the depth image is computed based on the geometrical properties of the acquisition
setup and the distortions of the structured light pattern caused by projecting the light pattern onto
the target scene [33]. Although the geometrical properties of the acquisition setup are commonly
known in advance, the pattern distortions need to be quantified before a depth image can be
constructed. Typically, this is achieved by establishing the correspondence between all parts of
the original structured light pattern (Figure 3a) and all parts of the captured distortion map (Figure 3c).
Because solving this correspondence problem (illustrated in Figure 3) is crucial for the success of
the depth-image-construction step, an efficient procedure based on probabilistic graphical models
(PGMs) was developed for the ATRIS sensor. A detailed description of the procedure is given below in
this section.

4.1. Problem Statement

The binary distortion map captured with the ATRIS acquisition setup contains a large number
of binary regions. The 11 light planes that constitute the structured light pattern are usually not
detected as large connected binary regions in the captured image, but in the form of shorter, potentially
discontinuous line fragments (we refer to any connected binary region (using eight-adjacency) in the
image as a line fragment), as shown in Figure 4. In addition, small binary regions not corresponding to
any of the projected light planes can also appear in the captured image due to the presence of noise.

Pixel segments Line fragments

Figure 4. Visual illustration of some terminology used in this paper. Connected binary regions (using
eight-adjacency) are referred to as line fragments. Smaller parts of the line fragments of fixed width are
referred to as pixel segments.



Sensors 2016, 16, 1740 6 of 24

The structured light pattern used in the ATRIS sensor consists of 11 parallel light planes. Solving
the correspondence problem, therefore, amounts to finding the correct light plane label for each of the
connected binary regions in the captured binary distortion map [33]. Although this labeling problem
could be approached for each non-zero pixel individually, we group the non-zero pixels into pixel
segments (i.e., parts of the line fragments with a fixed width; see Figure 4) and try to assign each pixel
segment one of the light plane labels to reduce the computational burden of the labeling procedure.

The illustrated labeling problem can be formally defined as follows: assume that the detected
light pattern is represented in the form of the binary distortion map I, that the scene points illuminated
by the projected pattern are encoded with a pixel value of one and that all other pixels are encoded
with a value of zero. Furthermore, assume that the non-zero pixels that form the line fragments are
grouped into pixel segments of fixed width (i.e., spanning a predefined number of image columns).
Let us now denote the set of all pixel segments in the distortion map I as P = {p1, p2, . . . , pN},
where pi stands for the i-th pixel segment (for i = 1, 2, ..., N) and N represents the number of all
pixel segments in I. Moreover, let us denote the set of indices of the light planes constituting our
pattern as L = {1, 2, . . . , M}, where M stands for the number of light planes in the structured light
pattern (M = 11 in our case), and Index 1 represents the light plane that is closest to the bottom of
I. The correspondence (or labeling) problem can then be defined as the mapping ψ that assigns each
pixel segment from P an index (or label) from L:

ψ : pi → L, for i = 1, 2, ..., N. (1)

4.2. Labeling with Graphical Models

We follow the ideas presented in [32,33] and formulate the correspondence problem as an inference
problem over probabilistic graphical models (PGMs). The formalism associated with PGMs allows
us to break down complex problems into (smaller) simpler parts that can easily be modeled. For the
labeling problem in the ATRIS sensor, these simpler parts correspond to geometrical relationships
between pixel segments and their relative positions in a series of consecutive frames (captured by our
ATRIS sensor).

Graphical models G are defined by a set of vertices V and a set of edges E connecting the vertices;
that is, G = (V , E). To represent the labeling problem in the form of a graphical model, the pixel
segments in the detected pattern are represented as vertices v ∈ V , and the dependencies between
the pixel segments are represented as edges e ∈ E of the graph. Each pixel segment (and in turn
each vertex) is associated with a discrete random variable X from X t = {Xt

1, Xt
2, ..., Xt

N}, where the
set of all N random variables X t is defined by the binary distortion map I taken at time instance
t. Similarly, each edge is associated with a factor that models the functional relationship between
the vertices (random variables) connected by the edge. Solving the labeling problem defined in
Equation (1) amounts to finding the most likely value (from L) for each random variable in X t given
the dependencies (and relationships) between the pixel segments.

The PGM-modeling procedure used for the ATRIS sensor is illustrated in Figure 5. Here, the left
side of Figure 5 depicts two sample frames, each containing two line fragments and a total of four pixel
segments. The two frames are assumed to have been captured at two consecutive time instances, t− 1
and t, and the color-coded pixel segments are assumed to be reasonably well aligned in the vertical
(y axis), horizontal (x axis) and “temporal” (t axis) directions. The right side of Figure 5 shows the
corresponding PGM constructed based on the two frames. As can be seen, the state (or value) of each
random variable (i.e., each pixel segment) depends on the state of its horizontal, vertical and temporal
neighbors. The dependencies between the neighboring pixel segments are defined by so-called factors
(illustrated by squares), which model the relationships/dependencies between random variables and
are for the case of horizontal, vertical and temporal neighbors denoted as φh, φv and φt, respectively.
So-called unary factors are also used in our modeling procedure to construct the graph. These factors
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act only on a single variable (vertex) at a time and, in our case, encode the prior knowledge about the
structure of the projected pattern [33]. They are denoted as φp in Figure 5.

y
x

t

frame t−1

frame t

(a) Sample frames (distortion maps)

X t−1
1

X t−1
2

X t−1
3

X t−1
4

X t
1

X t
2

X t
3

X t
4

φp

φh

φv

φt

(b) Constructed PGM

Figure 5. Illustration of the probabilistic graphical model (PGM)-based modeling procedure:
(a) simplified distortion map; (b) corresponding PGM.

With the illustrated modeling approach, the joint probability distribution of the PGM used in the
ATRIS sensor can be written as a factor product:

p(X t−1,X t) =
1
Z

t

∏
t′=t−1
(i,j)∈Eh

φh(Xt′
i , Xt′

j )
t

∏
t′=t−1
(i,j)∈Ev

φv(Xt′
i , Xt′

j ) ∏
(i,j)∈Et

φt(Xt−1
i , Xt

j)
t,N

∏
t′=t−1

i=1

φp(Xt′
i ), (2)

where Z denotes the partitioning function and the sets Eh, Ev and Et correspond to subsets of all edges
E , over which the horizontal, vertical and temporal factors are defined, respectively. In the above
equation, N can in general also take different values at different time instances. The joint distribution is
defined only for the case of two consecutive frames (from time instances t and t− 1), but the extension
to a longer sequence is trivial [33].

Inference over the constructed model can be conducted using various inference algorithms
(e.g., [38] or [39]), where the goal is to find the most likely value (label) for each random variable in
the constructed graph. A detailed description of the inference algorithm used for the ATRIS sensor is
given in Section 4.2.3.

4.2.1. Graph Construction

Unlike the toy example in Figure 5, where all line fragments are more or less parallel and the
pixel segments are near perfectly aligned in all directions, building a PGM from real sensory data is a
more complex task. Because no specific topology (e.g., nodes arranged in a grid) is present in the light
pattern that is projected onto the target scene with the ATRIS sensor, it is necessary to formulate criteria
for identifying vertical, horizontal and temporal neighbors. Based on these criteria, dependencies
(i.e., factors) between neighboring pixel segments can be defined, and inference over the constructed
graph can be conducted.

For the ATRIS graph construction procedure, horizontal neighbors are defined as connected
pixel segments (here, eight-adjacency is used [40] to probe for the connectivity). On the left side of
Figure 6, where four pixel segments (labeled a, b, c and d) are presented, only segment pairs a-b
and d-b represent horizontal neighbors, whereas the segment pair b-c does not, because b and c are
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not connected. The main motivation for introducing horizontal neighbors in the PGM construction
procedure is to “encourage” horizontally-connected pixel segments to take the same label.

a
a

a
b

b b

c

c

c
d

d

de f

t

t

t −1

Figure 6. Defining the neighbors: horizontal neighbors (left image), valid neighbors are a-b, d-b;
vertical neighbors (middle image), valid neighbors are a-e, b-e, b-d, b-f, c-f, d-f; (right image) temporal
neighbors, valid neighbors are a-c.

Vertical neighbors in the ATRIS sensor are defined as pairs of pixel segments that are not connected,
but share at least one pixel at the same x-coordinate (and different y-coordinates). In the middle image
of Figure 6, pixel-segment pairs a-e, b-e, b-d, b-f, c-f and d-f represent vertical neighbors according to
this definition. Note that a pixel segment can easily have several vertical neighbors. Vertical neighbors
are needed in the PGM to ensure that the detected light planes tend to be labeled consecutively.
Due to this fact, vertical dependencies between pixel segments are extremely important for the
modeling procedure.

Finally, temporal neighbors are defined as pixel segments belonging to detected patterns recorded
at two consecutive time instances, t− 1 and t, that share at least one non-zero pixel at the same spatial
coordinates. This definition requires no tracking of the pixel segments over time and is extremely
simple to implement. On the right side of Figure 6, only pixel segments a and c represent temporal
neighbors, whereas all other segment pairs do not. Temporal neighbors are included in the graphical
model to exploit additional temporal information when labeling the light planes of the projected
pattern. As shown in the experimental section, the addition of temporal neighbors contributes to the
accuracy of the labeling procedure.

The definitions presented define the topology of the PGM (i.e., vertices and edges) constructed
from the given input image I. However, to be able to conduct inference on the graph, factors between
pairs of neighboring vertices (or on a single vertex) that model the dependencies between the random
variables associated with the vertices need to be defined, as well. The procedure for defining the
factors used in this paper is described in the next section.

4.2.2. Factor Definition

Factors represent functions of random variables. Typically, factors model the dependencies
(relationships, constraints) between neighboring vertices and, hence, represent functions of two
random variables. Alternatively, they relate only to a single vertex and act as functions of a single
random variable. In the modeling procedure used for the ATRIS sensor, factors are used to model the
relationships between horizontally-, vertically- and temporally-neighboring pixel segments, and unary
factors are added to include knowledge about the structure of the projected light pattern.

Horizontal factors φh describe the relationship between horizontally-neighboring pixel segments
and return a fitness score with respect to the labels assigned to the neighboring segments. The factor
returns a score of one when both pixel segments are assigned the same label and some small score fc if
they are assigned different labels. This definition reflects the structure of the projected pattern and
encourages horizontal neighbors to take the same light plane label [33]. The fitness score returned by
the horizontal factor is defined as:

φh(Xt
i = k, Xt

j = k′) =

{
1, k = k′,
fc, else

, (3)
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where k, k′ ∈ L and fc (0 < fc < 1) denotes the fraction-cost parameter that penalizes horizontal
neighbors that are labeled differently.

Vertical factors φv are assigned between random variables identified as vertical neighbors.
The factor returns a high fitness score when the two vertically-neighboring pixel segments are
labeled in an ascending manner and a fitness score of zero otherwise. This definition encourages the
vertical neighbors to take consecutive light plane labels and prevents the assignment of labels in a
non-ascending order. The relationship between vertically-neighboring segments in the ATRIS sensor is
modeled as follows:

φv(Xt
i = k, Xt

j = k′) =

{
f (k− k′), k > k′

0, else
, (4)

where k, k′ ∈ L and f denotes a linear function of the difference of two labels. The function f decreases
monotonically with the label difference:

f (δ) =

{
g(1− (δ− 1)h), δ 6= 0
oc, else

. (5)

The parameter h defines the slope of the linear part of the function f ; oc (overlap cost) stands
for a parameter that penalizes vertical neighbors with the same variable value; and the function g(.)
represents a function that truncates all negative values to zero.

Temporal factors φt are assigned between pixel segments identified as temporal neighbors in two
consecutive frames (of distortion maps). Under the assumption of a sufficiently high frame rate, the
spatial location of most pixel segments can be considered constant. Pixel segments originating from
two consecutive frames having approximately the same spatial location should therefore be assigned
the same light plane label. The temporal factors defined for our modeling approach are functions that
assign a fitness score of one if the pixel segments are assigned the same label and a fitness score of zero
if the labels differ; that is [33]:

φt(Xt−1
i = k, Xt

j = k′) =

{
1, k = k′

0, else
, (6)

where k, k′ ∈ L.
Finally, the prior factors φp are assigned to all vertices and operate on a single random variable at a

time. They are used to incorporate prior knowledge about the spatial structure of the projected pattern
into the modeling procedure and in a sense carry information about the most likely range of values a
random variable can take with respect to the vertical position of the pixel-segments and the number of
its vertical neighbors above and below. The prior factors are computed based on the pseudo-procedure
presented in Algorithm 1. Below, we outline the algorithm for a single pixel segment based on the toy
example shown in Figure 7. However, the procedure is identical for all pixel segments.

Assume that our goal is to compute the prior factor for the red pixel segment and that all other
pixel segments in image I are shown in white and gray (Figure 7b). To compute the prior factor, we first
scan over all x-coordinates of the red segment and for each x-coordinate search for (at most M) line
fragments above and below the current x-position of the red segment. We then label the pixel segments
found at the current x-coordinate consecutively from the bottom of the image up and increase the
likelihood of the label assigned to the red-segment by some arbitrary constant q. If we are able to find
M pixel segments at the given x-coordinate, only the likelihood of a single label is increased (shown
by the graph in Figure 7a), whereas the likelihood of several labels is increased if fewer than M pixel
segments were found (shown by the graph in Figure 7c). The procedure aggregates the likelihoods
over all x-coordinates of the red pixel segment and in the final step normalizes the likelihoods to
the unit L1 norm over all light plane labels to produce the final prior factor for the corresponding
random variable.
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Algorithm 1 Calculating prior factors

1: for all pixel-segments (i.e., random variables Xi) in the image I do

2: Init: Initialize p as an M-dimensional vector of all zeros

3: Result: Normalized distribution (prior factor) φp(Xi)

4: for all x-coordinates of the pixel-segment corresponding to Xi do

5: . find (at most) M biggest line fragments in I having a pixel segment at the current x-coordinate

6: . record the position, k, of the pixel-segment (corresponding to Xi) among the found m line fragments
counting from the bottom of image I up

7: if the number of found line fragments m equals M then

8: . increase the k-th element of p by some positive constant q

9: else

10: . increase all elements of p from position k to k + (M−m) by some positive constant q

11: end if

12: end for

13: . normalize the vector p to unit L1 norm; φp(Xi) = p

14: end for
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Figure 7. Computing prior factors: illustration of the procedure with a simple example (shown in (b)).
For each random variable, the prior factor represents a probability distribution over all light-plane labels.
Estimates of the probabilities are obtained by labeling the pixel segments and increasing the likelihood
(shown in (a) and (c)) of the label assigned to the observed pixel segment at each x-coordinate.

4.2.3. Inference

To solve the labeling problem using the constructed PGM, a value needs to be assigned to each
random variable (or vertex) constituting the graph, for which the range of possible values is given by
the set of light plane labels L (see Equation (1)). The assignment is computed based on maximum a
posteriori probability (MAP) estimation:

X̂ t = arg max
X t

p(X t−1,X t), (7)

where p(X t−1,X t) is the joint probability distribution of the PGM defined by Equation (2) and X̂ t is
the most likely configuration of random-variable assignments for the PGM at time instance t.
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MAP estimation can be conducted using different inference techniques; for example, [38,39,41].
In the case of acyclic graphs, an exact solution can be found; on the other hand, with cyclic graphs,
as in our case, the problem is NP hard and only an approximate solution can be computed. Thus, for
the ATRIS sensor, we use loopy-belief propagation for the inference on the PGM as described in [38].

5. Depth Image Reconstruction

In order to reconstruct a depth image of the target scene based on the labeled distortion map,
we use a simple processing approach involving reference frames of the projected pattern taken at
various distances from the camera.

To capture the reference frames, we start by placing a planar surface parallel to the XY plane of
the camera’s coordinate system (see Figure 8a) at some initial distance z1 from the camera. We project
our light pattern onto the surface and capture the first reference frame, R1, corresponding to the
distance z1. We then move the surface by some depth increment ∆z away from the camera and take
another reference frame, R2, at the distance z2 from the camera. We repeat the procedure for the entire
measurement range of our ATRIS sensor and thus generate a set of reference frames that are later used
for depth calculation. The procedure for capturing the reference frames is illustrated in Figure 8a, and
some sample frames are shown in Figure 8b. Here, the fourth and fifth light plane are labeled in each
frame to demonstrate how the position of the detected light planes changes in accordance with the
distance at which the reference frames are recorded.

projector

camera

Z

Y

X

∆z

R3 R2 R1

z1z2z3

(a) Reference frame acquisition procedure

R1 R2 R3

5
4 5

4 5
4

(b) Sample reference frames captured at three distances

Figure 8. Illustration of the reference frame acquisition procedure: (a) the setup; (b) sample reference
frames captured at distances z1, z2 and z3. The reference frames are used to compute the depth value
of each pixel segment in the labeled distortion map.

Let us denote the distances at which the reference frames, Rs, were captured with:

zs = z0 + s · ∆z, for s = 1, . . . , S, (8)

where z0 denotes some minimum distance from the camera and the measurement range of the sensor
lies between z1 and zS. The depth increment ∆z defines the depth resolution of the ATRIS sensor
and may be selected arbitrarily. Each reference frame, Rs, contains at most M line fragments f (s)i (for

i = 1, . . . , m ≤ M) with associated light plane labels k(s)i ∈ L.
Consider a non-zero pixel (note that depth calculation is conducted for each pixel separately

and not for the entire pixel segment at once) from the distortion map I located at image coordinates
p = [xpix, ypix]

T and associated with some light plane label k ∈ L assigned during the labeling
procedure. To compute the [x, y, z]T position of the pixel (in camera coordinates), we first find the
reference frame, Rŝ, that contains the line fragment (at the same x-coordinate, i.e., xpix) with the same
label as the given non-zero pixel and is closest in terms of its y coordinate; that is:

ŝ = arg min
s
|y

f (s)i
− ypix|, subject to k = k(s)i , (9)
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where y
f (s)i

stands for the y-coordinate of the i-th line fragment in the reference frame Rs. We then

assign the distance, at which the frame Rŝ was taken, as the z-coordinate of the given pixel with respect
to the camera’s coordinate system:

z = z0 + ŝ · ∆z. (10)

The x and y coordinates of the pixel (in camera coordinates) are computed using the hardware’s
intrinsic parameters, which can be estimated with standard techniques [42]. The procedure presented
is applied to all non-zero pixels of the spatial distortion map I and results in a sparse depth map,
which is interpolated during the last processing step to fill in the missing values.

6. Experiments

This section describes the experiments conducted to demonstrate the merits of the developed
sensor and to evaluate its performance on experimental data using quantitative performance metrics.
We start the section by presenting experiments related to the characteristics of the sensor and the
proposed acquisition procedure, proceed by providing results on the performance of the proposed
light plane labeling technique and conclude the section with some examples of 3D reconstructions of
scenes generated with our ATRIS sensor.

6.1. Characteristics of the Acquisition Procedure

One of the main merits of our pattern acquisition procedure is the fact that it is possible to deploy
several depth sensors exploiting our procedure in the same environment. In fact, we demonstrated
in [31] that it is possible to completely compensate for the mutual interference usually encountered
when deploying several identical depth sensors in the same environment by constructing the
modulation sequence of our acquisition procedure based on cyclic orthogonal (Walsh–Hadamard)
codes. (A detailed discussion on the construction of the modulation sequence is beyond the scope of
this paper. The reader is referred to [31] for detailed coverage of this topic.) An illustrative example
of this characteristic is presented in Figure 9 on a simple indoor toy scene. Here, the images in the
upper row correspond to our ATRIS sensor, and the images in the lower row correspond to images
captured with the first generation Kinect sensor, which also exploits structured light [6]. The image in
the upper left corner presents a sample scene with two of our sensors directed at it; the second image
shows a demodulated image with non-cyclic orthogonal codes; and the last image in the upper right
shows the demodulated image based on cyclic orthogonal codes. Note how the projected pattern can
be recovered despite the presence of more than one active sensor operating on the same scene. In the
lower row, the left most image depicts the acquisition setup using a pair of Kinect sensors. The middle
image shows the depth map acquired when only one sensor is active, and the third image in the lower
row demonstrates the effect of two Kinects capturing depth images of the same target scene. In the
latter case, white areas appear in the image where depth information cannot be computed. This effect
demonstrates the effect of the mutual interference of the two Kinects and is not present with the ATRIS
sensor. As a consequence of the interaction of the Kinects’ light patterns, the shape of the objects
comprising the scene is distorted, and part of the depth information is missing.

Another important aspect of the developed pattern acquisition procedure is its robustness to
ambient illumination and the presence of incident sunlight. To demonstrate this characteristic, we
again provide a few (qualitative) illustrative examples. We first present sample results for a simple
indoor scene imaged in three distinct illumination conditions: (i) under ambient lighting with no
additional illumination directed at it (first row of Figure 10), (ii) under ambient lighting and with
the room lights turned on (second row of Figure 10) and (iii) under ambient lighting, with room
lights turned on and with a flashlight directed at the scene (third row of Figure 10). The first and
third columns of Figure 10 show gray-scale images of the scene with the ATRIS prototype and Kinect
sensor (taken at the same time instance), respectively, and the second and fourth columns show the
corresponding distortion maps (for ATRIS) and depth images (for Kinect). Our acquisition procedure
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produces stable results with minor differences in the intensities of the distortion maps, but information
is missing from the depth images generated by Kinect when the imaging conditions become more
challenging. Note that missing information corresponds to white areas in the depth images.

Figure 9. An illustrative example of the behavior of the developed acquisition procedure when two
identical sensors are directed at the same scene and a comparison with a commercial sensor. Upper row:
a sample scene illuminated with two ATRIS sensors (left); the demodulated images with non-cyclic
orthogonal codes (middle); the demodulated images with cyclic orthogonal codes (right). Lower row:
acquisition setup with two Kinect (v1) sensors (left); captured depth image when one sensor is active
(middle); captured depth image when both sensors are active (right). Observe how the ATRIS sensor
is able to compensate for the mutual interference, to recover a spatial distortion map and is unaffected
by the pattern projected by the second ATRIS sensor.

Figure 10. Qualitative examples of the performance of the developed acquisition procedure under
various ambient lighting conditions. The first column shows a sample scene in different illumination
conditions (from top to bottom): no additional illumination (top), with room lights on (middle) and
with room lights on and a flashlight directed at the scene (bottom). The second column of images shows
the distortion maps captured with the ATRIS sensor for the different illumination conditions. The third
column depicts the same scene captured at the same time instance as the images in the first column,
but with the Kinect sensor (v1). The last column presents the corresponding depth images generated
by the Kinect sensor. Here, white areas indicate that no depth information could be computed.
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In our next experiment, we deploy our sensor outdoors and again provide comparative results
with the first-generation Kinect sensor that uses the same imaging technology (i.e., active structured
light) as our ATRIS sensor. The results of this experiment are shown in Figure 11. Here, the first column
shows images of our scene with the projection pattern barely visible due to the incident sunlight; the
second column shows images of the acquired distortion maps; and the third column shows images
taken with the Kinect sensor. The upper row of images was taken under moderate incident sunlight,
and the lower row of images was taken under relatively stronger sunlight. Note that the Kinect sensor
is unable to acquire a complete depth map of the observed scene due to deployment outdoors (white
areas in the output image of the Kinect sensor indicate that no data are available for that area), but our
acquisition procedure produces stable (though noisy) distortion maps that can be used with our light
plane labeling procedure. Although there are obvious differences in the number of pixels in which
the two sensors interact with the scene, it is clear from the images presented that the ATRIS sensor is
capable of operating outdoors in a robust manner.

Figure 11. Illustrative example of the behavior of the developed acquisition procedure when deployed
in outdoor environments. The first column shows gray-scale images of the target scene, the second
column shows the distortion maps captured with the ATRIS sensor; and the last column of images
presents the output of the Kinect sensor. The upper row presents images taken under exposure to
moderate sunlight, and the lower row shows images taken under exposure to strong incident sunlight.

For our third and last experiment with the acquisition procedure, we set up another outdoor scene
and compared the performance of our ATRIS sensor with the first and second generation Kinect sensor.
The second generation Kinect (v2) uses time of flight (ToF) technology and requires a full-fledged GPU
supporting DirectX 11 to produce depth maps. Due to the required computing resources and different
technology, Kinect v2 is not a direct competitor to our ATRIS sensor (which runs on a simple FPGA),
but is included in our comparison to demonstrate the performance of a state-of-the-art depth sensor.
The qualitative comparison is presented in Figure 12. Here, the first column of images represents the
outdoor scene and corresponding distortion map captured with the ATRIS sensor; the second column
depicts the scene and the depth image acquired with the first generation Kinect; and the third column
shows the scene and the depth map captured with the second generation Kinect. As can be seen, both
Kinect v2 and our ATRIS sensor produce solid, though noisy, results for all measured pixels, whereas
the first generation Kinect struggles with its performance outdoors.
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Figure 12. Qualitative comparison of the ATRIS sensor and both generations of the Kinect sensor on an
outdoor scene. The first column shows the scene and distortion map from the perspective of the ATRIS
sensor; the second column presents images from the first generation Kinect; and the last column of
images shows the results produced by the second generation Kinect. Note that the second generation
Kinect that uses time of flight technology, and our ATRIS sensor produces good results in all pixels
measured, whereas the first generation Kinect performs less well outdoors.

6.2. Characteristics of the Light-Plane Labeling Technique

The distortion maps (see Figures 9–12) acquired with our ATRIS sensor form the basis for the
light plane labeling procedure presented in Section 4. To evaluate the performance of the proposed
procedure, we construct two datasets of spatial distortion maps.

The first dataset serves as our development set and is used in the experiments for tuning the
open-hyper parameters of the labeling procedure (e.g., the values of oc, fc, h, etc.). In practice, it
is necessary to fix the open-hyper parameters in such a way that the labeling technique exhibits
the best possible performance. We therefore construct the first dataset from 152 images of a simple
indoor scene, which is suitable for our purposes, because images taken indoors contain very little
noise. The indoor scene comprises three objects positioned over a rotating table that change position
backwards, forward, left and right, thus creating different depth discontinuities. The second dataset
used for our experiments is a more realistic dataset of outdoor images. Here, we record 15 images of a
scene containing a moving vehicle and a person passing between the vehicle and our ATRIS sensor.
The images in this dataset contain objects with more complex geometry and are used to evaluate the
performance of the labeling technique with fixed hyper-parameters.

All images from the two datasets are manually annotated to provide the ground truth for our
experiments, in which we measure the accuracy of the labeling procedure using (what we refer to as)
the correct labeling rate (CLR):

CLR =
nc

Na
, (11)

where nc denotes the number of correctly-labeled non-zero pixels and Na stands for the number of all
non-zero pixels (the term “correctly” in this context stands for “being the same as the ground truth”).
The correct labeling rate (CLR), as defined above, measures the fraction of correctly-labeled pixels
among all pixels that have to be labeled. Note that the CLR in all graphs and tables presented below is
computed over all images of the given dataset.

A few sample images from both datasets and color-coded examples of the ground truth are shown
in Figure 13. The upper group of images presents sample images from the (first) indoor dataset, and
the lower group of images presents images from the (second) outdoor dataset. The imaging conditions
outdoors are more challenging than the conditions indoors, which results in a higher level of noise in
the demodulated images of the second dataset (observe the difference between the second and fourth
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row of images on the left). The images on the right side of Figure 13 represent annotated samples from
both datasets.

Figure 13. Sample images from the two datasets used in the experiments. The upper group of images
shows sample images from the indoor dataset, and the lower group of images shows samples from the
outdoor dataset. Both visible-spectrum and demodulated images are shown. The images on the right
show the color-coded ground truth (best viewed in color).

As indicated above, the goal of the first series of experiments is to examine the impact of various
hyper-parameters of the proposed techniques on the labeling accuracy. Towards this end, we first set
the values of all hyper-parameters to a default value, then change a single parameter at a time and
observe how the labeling accuracy changes with respect to the varying parameter. Even though the
hyper-parameters of the proposed labeling technique are generally not mutually independent, we can,
nevertheless, obtain a rough impression of the performance of the proposed method with respect to
the varying parameter. We only make use of the first, the indoor dataset, in this series of experiments.

Figure 14 shows that the fraction cost fc (see Equation (3)) and overlap cost oc (see Equation (5))
have only a little effect on the labeling accuracy (graphs in the top row), whereas the function drop
rate h (see Equation (5)), on the other hand, has a significantly larger impact on the labeling accuracy
(graph in the lower left corner of Figure 14). These results suggest that the parameters fc and oc

can be selected over a wide range of values with no significant performance loss, whereas h needs
to be kept sufficiently small to ensure good performance. The most interesting observation of this
series of experiments, which supports our working hypothesis that temporal information can improve
labeling accuracy, can be made from the graph in the lower right corner of Figure 14. Note how the
accuracy of the labeling procedure improves when two consecutive images from a sequence are used
for constructing the PGM instead of only one. Adding additional images to the sequence further
improves the labeling performance, albeit to a lesser extent. The best labeling accuracy we manage to
achieve on the indoor dataset is a CLR of 0.9755 given a sequence length of five.

Based on the results of this series of experiments, the following parameter values are selected
for the subsequent experiments on the outdoor dataset: oc = 1e−6, fc = 1e−5 and h = 0.1. Note that
it is not our goal to find values of the hyper-parameters that result in the best possible performance
on the indoor dataset because this could lead to over-fitting and poor generalization abilities of the
final labeling approach. We therefore make no further effort to find a better set of parameters for our
technique and run a second series of experiments on the outdoor dataset with the hyper-parameter
values listed above.
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Figure 14. Impact of various hyper-parameters of the proposed technique on the labeling accuracy
(measured in terms of the CLR). The results were generated on the indoor dataset and, except for the
graph in the lower right corner, were computed using a sequence length of one. (a) impact of the
overlap-cost parameter oc, (b) impact of fraction-cost parameter fc, (c) impact of the function drop rate
h, (d) impact of the sequence length.

To gain insight into the characteristics of the proposed labeling approach and examine its behavior
on more challenging data, we run several tests in the second series of experiments. These tests are
conducted on the outdoor dataset and aim at: (i) examining the rationale behind defining the PGMs
using horizontal, vertical and prior factors, (ii) evaluating the importance of temporal information on
more challenging data and (iii) comparing the proposed technique to the existing labeling techniques.

To demonstrate the importance of each of the factors in the PGM, we conduct several tests. During
each test, we remove a single factor and keep the rest. (For example, we remove the horizontal factors
φh, which pull horizontally-neighboring pixel segments towards the same label, and keep only the
vertical, prior and temporal factors. This case is denoted as “no φh”. Other cases follow a similar
notation.) We run the tests two times, first with a single image of the scene (i.e., q = 1) and then with
two consecutive images (i.e., q = 2), to directly demonstrate the importance of the temporal factors,
as well. The results of these tests are shown in Figure 15a. Several observations can be made from the
results presented. First of all, the results indicate that prior factors are the most important component
of the PGM. If the information about the structure of the projected patterns encoded in the prior factors
is removed, the labeling accuracy drops significantly, to a value of CLR = 0.346 (in the case of a single
image), as shown by the graph labeled ”no φp”. Without the prior information, the labeling accuracy
becomes even worse when a second image is added to the sequence; that is, when temporal factors
are introduced. However, when the prior factors are considered during the construction of the PGM,
temporal information always improves the labeling performance. Similarly, both the horizontal and
vertical factors also add to the overall labeling accuracy, as noticeable from the graphs labeled “no φh”,
“no φv” and “all”. Here, “all” stands for the case when all four factor types are considered. All in all,
the results of these tests suggest that all factors are important for the labeling procedure and contribute
to the overall performance of the proposed labeling technique.
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Figure 15. Results obtained on the outdoor dataset: (a) the results illustrate the importance of the
selected structure of the PGM and (b) the impact of the sequence length on the correct labeling
rate (CLR).

The graphs in Figure 15b show how the number of consecutive images used for constructing
the PGM affects the labeling accuracy. As can be seen, the biggest increase in performance is
noticeable when two consecutive images are used during construction of the PGM instead of one.
The performance jump here is in fact a little larger than in the case of the indoor dataset, which can
be attributed to the fact that the acquired distortion maps from the outdoor dataset are noisier, and
hence, using more than one image from a sequence helps reduce the noise and determine the right
labels. Interestingly, using more than two images from a sequence does not increase the performance
further, but keeps it more or less stable. These results suggest that temporal information is useful for
the labeling technique.

Next, we demonstrate the performance of the proposed labeling technique in comparison with
other techniques that can be used for labeling the structured light pattern used in the ATRIS sensor.
The implemented reference techniques are related to other structured light approaches from the
literature that exploit light patterns comprised of parallel stripes (e.g., [43–46]), but, differently from
these techniques, do not rely on coding strategies (in terms of color, intensity, geometry or time; see [18]
for information on existing coding strategies) to solve the correspondence problem. Our comparison
is therefore limited to techniques capable of handling uncoded structured light. Specifically, we
implement the following reference techniques and include them in our comparison presented in
Table 1:

• The naive labeling approach (NLA), which assigns light plane labels to the detected non-zero pixels
in a consecutive manner. The first non-zero pixel at the given x-coordinate (looking from the bottom
of the image up) is assigned the label 1; the second detected non-zero pixel at the given x-coordinate
is assigned the label 2, and so on; until all 11 labels have been assigned.

• The labeling approach based on prior information (PR), which assigns light plane labels to the
detected non-zero pixels by constructing a PGM based on prior factors only. This approach
represents a refined version of the naive labeling technique introduced above.

• The reference approach from Ulusoy et al. (RUL) [32], which also exploits probabilistic graphical
models, but relies only on spatial information to assign light plane labels to the detected non-zero
pixels in the distortion map.
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Table 1. Quantitative comparison with other labeling techniques (higher is better; 1 indicates a perfect
score). NLA, naive labeling approach; PR, prior information approach; RUL, reference approach from
Ulusoy et al.

Method
Outdoor Dataset (Noisy)

NLA PR RUL Ours

CLR 0.888 0.912 0.950 0.989

Note that even the naive labeling approach results in a relatively high labeling accuracy with a
CLR of 0.888. This approach is expected to work well in simple conditions, where there is no noise
in the detected distortion maps and no large depth discontinuities are present in the scene. All other
techniques improve the performance of the NLA technique with the proposed approach resulting in a
CLR of 0.989.

All in all, the results of our experimental assessments suggest that exploiting spatio-temporal
information for determining light plane labels in our ATRIS sensor is a feasible approach that results
in state-of-the-art performance. The PGM approach is capable of assigning the correct label to most
pixel segments of the detected light pattern even if large depth discontinuities are present in the scene
observed. To visually demonstrate the efficacy of our approach, a few illustrative results of the labeling
procedure are presented in Figure 16. Here, the first row depicts sample images from the outdoor
dataset; the second row shows the color-coded ground truth; and the third row shows the color-coded
results of the labeling procedure. Note how most of the assigned labels correspond to the ground truth,
while there are, of course, a few errors, as well (right side of the image: the errors are marked with
arrows). These errors typically introduce artifacts in the reconstructed depth images, but can easily be
removed through simple post-processing of the depth images if they are not too frequent.

Figure 16. Visual examples of the results of the proposed light plane labeling procedure. The
first row shows sample images from the outdoor dataset; the second row shows the (color-coded)
manually-annotated ground truth; and the third row shows color-coded results of the labeling
procedure. The images on the right side show an example of a labeling error, which is highlighted by
arrows (best viewed in color).

6.3. Constructing Depth Maps: 3D Reconstruction

Once the light plane labels have been assigned to all parts of the detected light pattern, depth
images of the observed scene can be reconstructed using the procedure presented in Section 5.
To demonstrate the result of this process for our ATRIS sensor, we again present a couple of illustrative
examples. The first example, which is shown in Figure 17, shows a number of stones with relatively
simple geometry. The stones were placed on a street outdoors, and an image was captured using
a commercial camera (upper left corner of Figure 17), as well as our sensor. Note that, despite the
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exposure to relatively strong incident sunlight, the sensor was able to capture an image with the
projected pattern clearly visible (lower left corner of Figure 17) and reconstruct the depth images quite
well (right side of Figure 17).

Figure 17. A visual example of the 3D reconstruction capabilities of the developed sensor. The image
in the upper left corner shows a (visible light) image of the observed scene captured under strong
incident sunlight; the image in the lower left corner shows the image of the detected light pattern; and
the image on the right shows the reconstructed depth image from various angles.

The second example in Figure 18 shows a gray-scale image of a hand captured with a commercial
camera (upper left corner of Figure 18), the labeled spatial distortion map generated by our ATRIS
sensor (lower left corner of Figure 18) and the 3D reconstruction from various viewing angles (right
side of Figure 18). Note that, despite the more challenging geometry of the hand (compared to the
stones in the first example), our ATRIS sensor successfully captures all parts of the hand and recovers a
good-quality depth image. The results show that usable depth images can be obtained with our sensor
in difficult imaging conditions, as well as with relatively complex geometry of the target scene. This
makes the sensor applicable in outdoor applications that require reliable depth information regardless
of the external imaging conditions.

Figure 18. A visual example of the 3D reconstruction capabilities of the developed sensor. The image
in the upper left corner shows a (visible light) image of the observed scene (i.e., a hand); the image in
the lower left corner shows the labeled distortion map; and the image on the right shows the depth
image from our ATRIS sensor from various viewing angles.
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7. Conclusions and Future Work

We have presented and experimentally demonstrated the merits of a novel sensor for depth
image acquisition. The sensor presented is based on the recently-introduced concept of modulated
pattern projection [31], which ensures that the procedure of detecting the projected light pattern is
robust with respect to various factors, such as background noise, background illumination or the
mutual inference of similar systems operating on the same scene. The procedure for determining the
correspondence between the projected and detected light patterns, which forms the basis for depth
image reconstruction, is implemented with an approach based on probabilistic graphical models and,
in addition to spatial information, also exploits temporal information when solving the correspondence
problem. As demonstrated in the experimental section, the proposed procedure performs well even
when large depth discontinuities are present in the scene. The experimental results also show that the
sensor presented is capable of acquiring stable distortion maps when competing commercial systems
struggle with their performance.

As part of our future work, we plan to further improve the sensor presented. One of the main
drawbacks of the current implementation is the structure of the projected light pattern, which affects
the resolution and quality of the acquired depth image. To address this issue, we intend to explore
structured light patterns that can be used with the PGM-based labeling procedure presented. The goal
here is to devise a pattern that ensures an even better quality of the captured depth images compared
to what is possible with the current sensor. A possible way to achieve this is by using more lines in the
light pattern or combining the existing pattern with line scanning techniques capable of generating
dense depth maps.

The current implementation of the ATRIS sensor is suitable for outdoor applications, such
as collision avoidance or autonomous navigation, where approximate depth maps need to be
acquired as reliably as possible and the resolution of the depth maps is not of major concern.
Another application domain for our ATRIS sensor is computer vision applications exploiting action
recognition [47,48], pose estimation [49,50], facial expression recognition [51,52] or motion analysis
technology [53]. These applications are commonly deployed outdoors and could benefit from robust
depth imaging technology.
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