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Abstract The paper presents a multi-modal emotion
recognition system exploiting audio and video (i.e.,
facial expression) information. The system first
processes both sources of information individually to
produce corresponding matching scores and then
combines the computed matching scores to obtain a
classification decision. For the video part of the system,
a novel approach to emotion recognition, relying on
image-set matching, is developed. The proposed
approach avoids the need for detecting and tracking
specific facial landmarks throughout the given video
sequence, which represents a common source of error in
video-based emotion recognition systems, and,
therefore, adds robustness to the video processing
chain. The audio part of the system, on the other hand,
relies on utterance-specific Gaussian Mixture Models
(GMMs) adapted from a Universal Background Model
(UBM) via the maximum a posteriori probability (MAP)
estimation. It improves upon the standard UBM-MAP
procedure by exploiting gender information when
building the utterance-specific GMMs, thus ensuring
enhanced emotion recognition performance. Both the
uni-modal parts as well as the combined system are
assessed on the challenging
eNTERFACE'05 corpus with highly encouraging results.
The developed system represents a feasible solution to

multi-modal
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emotion recognition that can easily be integrated into
various systems, such as humanoid robots, smart
surveillance systems and alike.

Keywords Emotion Recognition, Video Processing,
Speech Processing, Canonical Correlations, GMM-UBM

1. Introduction

Augmenting humanoid robotic systems with emotion
recognition capabilities has recently attracted a lot of
attention from both, the speech and computer vision
communities. This increased attention resulted in a
plethora of methods that can be found in the literature
and pertain to the field of emotion recognition.

In this paper we build upon our work presented in [1, 2]
and present a novel multi-modal emotion recognition
system exploiting video (i.e., facial expression) and audio
information. The proposed system processes each source
of information separately and then combines the results
and the matching score level. Both the video- and audio-
processing parts of the system are implemented using
novel approaches that improve upon existing methods
from the literature.
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Existing video-based emotion recognition techniques, for
example, are typically grouped into [3]:

- feature-based techniques that detect and track specific
facial features, such as the corners of the mouth or
eyebrows, and use the obtained information to
conduct emotion recognition, and

- region-based approaches, where facial motion is first
measured on certain regions of the face, such as the eye or
mouth region, and then exploited for emotion recognition.

Both types of methods require the detection and tracking of
specific facial landmarks throughout the entire length of the
image- or video-sequence and are, due to the difficulty of
this task, also prone to error [1]. In this paper, we take a
fundamentally different approach and develop a novel
method for emotion recognition from video data that
adopts matching of image sets [4, 5]. With the proposed
approach, no tracking of individual facial landmarks is
needed. Instead, the procedure relies solely on the facial
region as a whole, which can be robustly and efficiently
extracted from video data using existing face detection
techniques, as for example, the Viola-Jones face detector [6].

Similarly as for the video modality, numerous techniques
for audio-based emotion recognition can also be found in
the literature. Here, the techniques differ mainly in terms
of the modeling approach used to represent the given
audio features. Schuller et al. [7] classify the existing
techniques into two classes:

e frame-level modeling techniques, which build statistical
models of feature vectors extracted from overlapping
frames of a given utterance, and

o supra-segmental modeling techniques, where a number
of statistical functionals are applied to the frame-
level features of one utterance, yielding a single high-
dimensional feature vector per utterance.

The low level acoustic features for both types of modeling
techniques typically consists of spectral, prosodic and
voice quality features [7, 8]. Although, the final
recognition performance for both types of modeling
techniques depends heavily on the classification method
adopted, it was shown by various group evaluations that
both types of modeling techniques are capable of yielding
state of-the-art recognition results for the task of emotion
recognition from audio data [9, 10].

The contribution of this paper with respect to audio-based
emotion recognition stems from an improved approach to
frame-level modeling, which relies on Gaussian Mixture
Models (GMMs). While in the commonly used approach a
single Universal Background Model (UBM) is built first
from the extracted acoustic feature vectors and then
adapted by Maximum A Posteriori (MAP) adaptation, the
possibility of decoupling emotion specific information
from other paralinguistic cues, which exist in the UBM-
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MAP derived GMMs, is examined in this paper. We show
that by exploiting gender information, we consistently

improve upon the recognition performance of the standard
UBM-MAP technique.

We assess both proposed uni-modal approaches using the
eNTERFACE'05 [11] database, which is one of the few
freely available databases containing multi-modal
recordings of various types of emotions. Additionally, we
study the applicability of several fusion schemes to
further improve upon the results obtained with the
individual modalities. Our results show that both uni-
modal approaches as well as the proposed combined
system compare favorably with state-of-the-art
techniques from the literature [9, 12, 13, 14].

The rest of the paper is structured as follows. In Section 2
we elaborate on the proposed multi-modal emotion
recognition system and describe in detail the video and
audio processing parts of the system as well as the fusion
schemes used to combine both parts into a coherent
system. In Section 3 we present the experimental
database, on which our system was evaluated, and the
main findings of the paper. We conclude the paper with
some final comments in Section 4.

2. System description
2.1 Overview

The multi-modal emotion recognition system introduced
in this paper consists of an audio and a video sub-system.
Figure 1 presents the basic structure of the system. Each
subsystem first processes its corresponding input and
then produces a matching score. The two scores are then
fused at the matching-score level to allow for a reliable
classification decision.

The video sub-system comprises:

e a face detection module that detects the facial region
throughout the given video sequence,

e a subspace creation module, which constructs a
subspace from the extracted facial images to encode
the emotional state, and

e a matching module that compares the subspace

the video sequence to the

prototypical subspaces of the emotional classes using
canonical correlations.

constructed from

Similarly, the audio sub-system comprises:

e a feature extraction and modeling module that calculates
the feature vectors from each sample recording and
creates a probabilistic model from the computed
feature vectors and

e g matching module, which produces the scores, based
on the support vector models of each class.
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Figure 1. Block diagram of the multi-modal emotion recognition system

Figure 2. Sample facial regions extracted from a video sequence
depicting the emotion “anger”.

A detailed description of all system parts is presented in
remainder of the paper.

2.2 The video sub-system

This section introduces our approach to emotion
recognition from video data. It presents all the procedural
steps that need to be taken to achieve reliable emotion
recognition using holistic (appearance-based) techniques
applied to image sets.

Face detection

The first procedural step required for building an
emotion recognition system based on video data is the
extraction of the region of interest from each frame of a
given video sequence.

As our video sub-system relies on facial expression
analysis, we adopt the established Viola-Jones face
detector [6] for this purpose and employ it to detect
the boundaries of facial regions in each frame of the
currently processed video. Once the entire video
sequence is processed, we resize the detected regions
to a fixed size of 64x64 pixels and finally
photometrically normalize them wusing histogram
equalization. The result of the described procedure is a
set of facial images as shown in Figure 2.

Note here that no geometric alignment of the facial
regions based on specific landmarks is performed, which
significantly increases the robustness of our approach
when compared to existing methods from the literature,
as no  (error-prone) facial-landmark-localization
procedure is needed [1, 2].

www.intechopen.com

Figure 3. The estimated identity specific part of the images in the
video sequence (left), channel images (right)

Subspace creation

The extracted and normalized facial regions constructed
with the procedure presented in the previous section form
the foundation for the second step of our video sub-system,
namely, the creation of a subspace that relates to the
emotional state expressed in the given video sequence.

To facilitate the theoretical derivation of our subspace
creation procedure let us consider a set of facial images
Xy ={x; €R% fori =1,2,..,n,} extracted from a given
video sequence v. Here, x; represents the i-th d-
dimensional facial image (in vector form) from the
sequence v and n, denotes the total number of frames
constituting v. When building a subspace from the facial
images in y,, we assume that each image x; can be
decomposed into a constant, identity-specific part X; and
a variable part c; (often referred to as the channel part)
caused by non-identity
illumination, pose and/or facial expression. Thus, we can
write:

related factors, such as

X =52i+ci. (1)

Since we presume that illumination changes are
satisfactorily compensated for with our histogram
equalization procedure (and the exclusion of the first
three basis vectors of the created subspace), the
remaining variability must inevitably be linked to pose
and facial expression changes, which are reasonable
indicators of the emotional state of the subject shown in
the given video sequence. Clearly, if we were able to
estimate the variable part of each image in y,, we could
estimate an emotion-specific subspace that could serve as
the basis for recognition.

Let us assume that the variable part of the images c;, for
i=1,2,...,n,, represents a random variable drawn from
the standardized normal distribution N(0,1). The video-
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Figure 4. Some examples of the computed subspace basis for the
video sequence shown in Figure 2

sequence-conditional mean p, then serves as the
(variation-free) estimate of the constant identity-specific
part of the images x; of v, as shown by the following
expression:
1 NN N 1w, o

Hy = Tl_v (Z?:rxi + Z?=1 ci) = n_VZ?=1xi' (2)
Considering this observation, we can conclude that
removing the sequence-specific mean u, from all images
in y, results in a new set C, that encodes only the variable
part of the video sequence, i.e.:

C,={c;=x;—p,;fori =1,2,..,n,}. 3)

An example of the estimated identity-specific part as well
as some channel images (computed based on the
sequence shown in Figure 2) are presented in Figure 3.
Note how fairly well the sequence-specific mean captures
the identity of the subject shown in the video sequence,
while the channel images capture the variability caused
by pose and facial expression changes.

To capture the information contained in this set into a
subspace useful for emotion recognition, we first
compute a scatter matrix X from all images in C,. If we
arrange the image in C, into the matrix € € R¥*™, where
C = [c1,¢;, ..., €y ], then the scatter matrix £ € R%*?, can
be computed as

z=cC, (4)

where T denotes the transpose operator.

Finally, the subspace encoding the variable part of the
facial images (i.e., the maximum variance directions [15])
is  characterized by the leading
(corresponding to non-zero eigen-values) of the following
eigen-problem:

eigenvectors

ZWL' = liwi,i = 1, 2, ey d’ < n,. (5)

It should be noted that for classification purposes we
discard the first three computed eigenvectors, as these
usually correlate heavily with illumination changes.
Thus, for a given video sequence v we construct a
subspace W, of the following form:

W, = {w;; fori =4,5,...,d <n,} (6)

Some examples of the subspace basis (in image form)
corresponding to the video sequence in Figure 2 are
shown in Figure 4.
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Constructing the templates

To be able to compare the subspaces computed from
individual video sequences, we require some prototypical
subspaces that serve as templates for our emotional
classes. To construct these templates, we follow a similar
approach as the one presented in the previous section and
compute a subspace for each emotional-class featured in
the training data.

Assume that our training data comprises p sets of facial
images extracted from p different video sequences, i.e.,
Xvir Xvyr wor X, Furthermore, assume that these sets
correspond to N  emotional-classes with  the
corresponding class labels w;, w,, ..., wy. The prototypical
subspaces (or templates) W, (for i =1, 2, .., N) are then
constructed by a simple eigen-decomposition of the
emotion-specific scatter matrices X, , i.e.:

Zu, = Co,Cly 7)

where C,, denotes the matrix containing the variable part
of all image sets x,,; € w; (forj € 1,2, ..., p).

The described procedure results in N subspaces W, , W,,,, ...,
W,,, that serve as templates for our N emotional classes.

Subspace matching

Consider two d’-dimensional linear subspaces W, and W,,.
Within the proposed video-based emotion recognition
framework we measure the similarity of the two
subspaces using canonical correlations, which represent
cosines of principal angles 0 < 6, <6, <...<6; < (1/2)
and are defined as [4]:

_ T
cosb; = maxy, ew, MaXy,, ew, Wy,Wa, (8)

subject to wiw,, = wyw,, =1, wyw, = wiw, =0,
for i # j [4], where the vectors w,, and w,,, represent the
i-th basis vectors of the subspaces W, and W,,

respectively.

The canonical correlations can be computed via Singular
Value Decomposition (SVD) of the correlation matrix of
the two subspaces. Let W), and W, stand for the matrices
containing in their columns the orthonormal basis vectors
of the subspaces W, and W,. Then the SVD of the
correlation matrix canbe computed as follows [4]:

WEWw = QvuAQuy, )

where A stands for the diagonal matrix of canonical
correlations, i.e., A = diag(cos6,,cosb,,...,cos0;) and
Q,w, Q. represent orthogonal matrices.

As we have emphasized above, the canonical correlations
measure the similarity between two subspaces. The first
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canonical correlation accounts for the similarity of the
closest two basis vectors of the two subspaces, while the
remaining ones carry information about the proximity of
the basis vectors in other dimensions [4, 5]. For
classification purposes we wuse only the first (the
maximum) canonical correlation and define the similarity
between two subspaces as §(W,,W,,) = cos 8;. Thus, we
formulate the classification problem as follows:

(W, W, ) = max{L (W, W, ) » W, € wy. (10)

The above expression postulates that in case the similarity
between the subspaces W, and W, is the highest among
the similarities to all N subspaces, then the subspace W,,,
is assigned to the k-th class.

2.3 The audio sub-system

The audio part of our emotion recognition system builds
on the traditional UBM-MAP technique of representing
acoustic feature vectors. In this section we elaborate on
our approach and describe the entire procedure of
emotion recognition based on audio data.

Acoustic features

The acoustic feature vectors used in our experiments
comprise of the standard set of 1-12 Mel-frequency
Cepstral Coefficients (MFCC) plus energy. The MFCC
features are first smoothed with a moving average filter
of length 3 and then normalized using Cepstral Mean
Normalization (CMN). In order to include temporal
information as well, the first order delta coefficients are
also generated and added to the feature vector. Thus, the
final length ofthe feature vector equals 26. The described
procedure is implemented using the open SMILE feature
extractor [16].

GMM-UBM modeling

The frame-level features presented in the previous section
are used to construct Gaussian mixture models (GMMs),
which represent generative statistical models capable of
characterizing arbitrary data distributions [17, 18].

Formally, a GMM is defined as a linear combination of
several Gaussian  probability — density
functions (PDFs), i.e.,

multivariate

p(x|d) = XL, wip; (%), (11)

where w; denotes the weight associated with the i-th
Gaussian PDF p;(x):

_ 1 L) I ()
Pi(x)—W 2*H o, (12)

In the above equations p; denotes the mean vector of the
i-th Gaussian PDF, X; denotes the covariance matrix of
the i-th Gaussian PDF, d stands for the dimensionality of
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the PDF and A = {u;, X;, w;} (for i =1, 2, ..., M), represents
the set of GMM parameters. Note that a M-component
GMM is fully characterized by the values of its
parameters A.

The concept of universal background models (UBM) was
first introduced for the problem of speaker verification
[18]. In general, a UBM represents a Gaussian mixture
model, which is trained on some generic training data
(usually all available training samples). The parameters of
the UBM, i.e., Aygy, are estimated based on the maximum
likelihood (ML) criterion via the expectation-
maximization (EM) algorithm [19]. The model is typically
initialized using either k-means clustering or the Linde-
Buzo-Gray algorithm.

Once the UBM is computed, the maximum a posteriori
(MAP) estimation criterion (as described in [19]) is used
to adapt the UBM to an utterance-specific GMM. The
means of the utterance-specific GMM represent a new
feature vector. While the GMM for a given test utterance
could also be calculated directly from the set of feature
vectors extracted from the utterance, adapting the UBM
to the data in the given utterance has three important
advantages:

e it ensures that the ordering of the GMM parameters
in A is the same as in the UBM for each computed
GMM;

e it compensates for the insufficient amount of data in
the given utterance; and

e it incorporates domain specific knowledge into the
computed GMM.

When computing a GMM from the UBM, the first step is
to determine the probabilistic alignment of a particular
sample Pr(i|x;) against all M UBM components as
follows:
wipi (X))
Jeawip ()

Pr(ilx;) = (13)
where p;(x;) again denotes the Gaussian probability
density function of the feature vector x; for the i-th
component of the GMM, j denotes the feature vector index
with j=1,2, .., N, N stands for the total number of feature
vectors extracted from the given image, and w; represents
the weight associated with the i-th GMM component.

In the second step, the sufficient statistics for updating
the mean feature vectors are computed. In general, the
MAP estimation procedure updates the means, variances
and weights of the GMM, but commonly the focus is only
on updating the GMM's means. The statistics required for
the MAP adaptation are:

n = Xiog Pr(ilx,), (14)
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and
1 .
Ei ()C) = n_zztrzl Pr(l | xt) xr, (15)

where n; and E; stand for the null and first order
sufficient statistics.

So far the presented adaptation procedure is identical to
the Expectation step when using the ML criterion in the
EM algorithm. The difference to the ML-based procedure
is shown in the Maximization step, where the update rule
becomes:

i = a"E(x) + (1 — a™ps, (16)

as postulated by the MAP criterion.

The adaptation parameter @], which controls the balance
between the old values of the means and the new
estimate is computed as:
m_ M
= n+7’ 17)
where 7 is the relevance factor, which is the same for all
components of the GMM. The value of the relevance

factor is chosen experimentally and usually falls in the
interval between 8 and 16.

After sufficient iterations of the described procedure, the
algorithm stops, if the change in the component means is
sufficiently small or a predefined number of iterations is
reached. The size of this final GMM vector equals the
dimension of the original feature vector multiplied by the
number of components of the GMM and, thus, increases
with the increase of GMM components, i.e., M.

The result of the described procedure is a UBM model
and a separate super-vector (comprised of the mean
vectors of the M GMM components) for each available
utterance. The super-vector of means is taken as a feature
representing the utterance and typically Support Vector
Machines (SVM) are used for classification.

UBM-MAP derived super-vectors for emotion recognition

As already emphasized in the previous section, the use of
Universal Background Models (UBM) in combination
with the maximum a posteriori (MAP) adaptation
criterion was initially introduced to the field of speaker
recognition by Reynolds et. al [19], but has since been
successfully applied for the recognition of other
paralinguistic information in speech as well [10, 20].

Clearly, if the information not related to the task at hand
(in our case emotion recognition) could be excluded from
the recognition procedure, it would improve the
performance of the recognition task. Due to the limited
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amount of data (per speaker) available in most corpora
commonly used in the field of emotion recognition, there
is not enough statistical information for decoupling the
speaker-specific information. We, therefore, take a
different approach and exploit the possibility of
excluding gender-specific information. As we show in
Section 3, MAP derived models reliably distinguish
between genders, empowering the system to take this
information into account when making predictions about
the emotional class of test utterances.

The illustrated procedure can be more thoroughly
described as follows. During training, a single UBM is
build using all of the available training data. This UBM
is then adapted via the MAP criterion to produce two
gender-specific UBMs. Note that in practice only the
mean vectors of all Gaussian mixtures are adapted,
while the covariance matrices and weights of the initial
UBM are left unchanged. Once the two gender-specific
UBMs are computed, the training utterances are
partitioned into two disjoint sets in accordance with
their gender labels (which for the training data are
known in advance).

Next, a super-vector comprised of the mean vector of the
estimated Gaussian mixtures is constructed for each
training utterance by transforming the appropriate
gender-specific UBM via the MAP rule. Using this
procedure, we arrive at two sets of super-vectors, one for
males and one for females, with each super-vector
corresponding to a given emotional class.

In the final stage of the training procedure, a pairwise
SVM classification scheme is trained based on the
constructed super-vectors to discriminate between the
different emotional-classes.

While the gender labels of the training utterances are
known in advance, this is not the case for the test
utterances. Hence, to be able to exploit gender-specific
information for the emotion recognition task, the gender of
the speaker a given test utterance belongs to has to be
determined first. This can be done efficiently by a
likelihood comparison against the male and female UBMs.
Once the gender is known, a super-vector is constructed
for the given test utterance by MAP adaptation of the
predicted gender's UBM and concatenation of the means of
the Gaussian mixtures. The resulting super-vector is
ultimately classified into an emotional-class using the
trained SVM classification scheme.

2.4 Information fusion

To combine the information from the two sub-systems
presented in Sections 2.2 and 2.3 we assess two fusion
schemes in this paper. The first is a weighted sum-rule,
while the second is a weighted product-rule [21].

www.intechopen.com
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Figure 5. Sample frames extracted from video sequences of a random subject from the eNTERFACE’05 database depicting (from top to
bottom): anger, disgust, fear, happiness, sadness and surprise. Note that the presented frames are not sampled in equal intervals from
the video sequences and that they are processed by the face detection module of our system.

Assume that for a given test recording and a given
emotional class our video sub-system has produced a
matching score §, and, similarly, that our audio sub-
system has produced a matching score of §, for the same
recording and the same emotional class. Then the
weighted sum-rule generates a new matching score &g,
based on the following expression:

Ssum =98, + (1 —9)4,, (18)

where 9 € [0,1] is a weighting factor that needs to be set
based on some training/development data.

Similarly, the weighted product-rule
matching score of:

produces a

aprod = 5:,953_19, (19)

where ¥ € [0,1] is again a weighting factor that needs to
be set in advance.

Since two different classification techniques are used for
the video and audio modality, the matching scores &, and
6, need to be normalized to balance their impact.
Towards this end, we use rank normalization on the
matching scores prior to the fusion process [22].

3. Experiments
3.1 Database and experimental protocol

For the experiments presented in the remainder of this
section, we adopt the publicly available eNTERFACE'05
[11] corpus. The corpus contains recordings of 44 subjects
of 14 different nationalities, uttering 5 sentences per each
of the 6 emotional classes. These 6 classes correspond to
the 'big six' archetypal emotions, as proposed by Ekman
in [23]. They are also adopted for the MPEG-4 standard
and represent anger (AN), disgust (DI), fear (FE),
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happiness (HA), sadness (SA) and surprise (SU).Some
frames (after the face detection step) extracted from
video sequences of all six emotional classes of a random
subject from the eNTERFACE’05 database are shown in
Figure 5.

In our experiments 43 subjects are used, subject 6 is
omitted as only one recording exists for each emotion.
Furthermore, only 2 sentences, portraying happiness, can
be found in the database for subject 23. Hence, the total
number of utterances available for our experiments sum
up to 1287. Since we experimented with the exclusion of
gender information from our emotion recognition task,
we annotated all data with gender labels prior to the
experiments.

For a robust estimate of the recognition performance of
the proposed system a 5 fold cross validation protocol is
employed (1030 samples were used for training and 257
for testing). The folds are randomly selected without the
attention to the distribution of speakers. The evaluation
measure for all tests is unweighted (UW) class-wise
recall (averaged over 5 folds), which is the predominant
way of measuring emotion recognition accuracy [9]. We
also report weighted average (WA) recalls of our
experiments, even though these are not as reliable, since
tend to have miss-balanced

emotional databases

emotional classes.

g

UW Recall (%)
8 8

P
50 100 250 500 750 1000

n
»a
i

Figure 6. Video recognition results in the form of average
unweighted recalls for different subspace dimensionalities
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Figure 7. Confusion matrices for all 5 folds of our cross validation procedure generated using the presented video sub-system.

3.2 Results
Assessing the video sub-system

Our first series of experiments aims at assessing the
recognition performance of the proposed video sub-
system. Specifically, we are interested in the recognition
results obtained with respect to the dimensionality of the
linear subspace, which is denoted with d” in Section 2.2.
Hence, we vary the dimensionality of the subspaces from
d' =2 to d =1000 and observe the average unweighted
recall of the experiments (see Figure 6).

Note that with the increase in the dimensionality the
recognition performance steadily improves, of course, at
the expense of computational complexity. Note that the
recognition performance is improved only by a little
when the dimensionality of the subspace is increased
from d' =750 to d' =1000. Thus, we select a
dimensionality of d' = 750 for our subspace and use this
value for our following experiments. Figure 7 shows
more detailed results for this subspace dimensionality, as
confusion matrices for all 5 folds of our cross validation
procedure are presented there.

Assessing the audio sub-system

The second series evaluates the

performance of the audio sub-system. Throughout all

of experiments

presented experiments different numbers of GMM
components were assessed. Generally, the recognition
performance increases with the increase in the number of
Gaussian mixtures, but with a limited amount of data,
one can quickly either over-train the models, or

singularities can occur during covariance calculations.

Number of GMM components
8 16 32 64 128
942 | 963 | 97.1 | 982 | 984

Gender recognition

UW Recall

Table 1. Gender recognition results for the audio sub-system

75
& 70} 1
T oo ]
&
% 80 —&— gender UBM-MAP

551 ‘ ‘ ‘ - 8 ' UBM-MAP

8 16 32 64 128
Number of GMM components

Figure 8. Emotion recognition based on audio data results
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In Section 2.3. we stated that gender-specific UBMs can be
used via likelihood calculations to recognize gender.
Table 1 presents the gender recognition results based on
likelihood calculations against male and female UBMs
with respect to GMM complexity. As expected, the
recognition rate increases with the number of GMM
components. Even with 8 components the results are
above 94%.

While for the gender recognition task, a simple likelihood
comparison is sufficient to obtain “good” recognition
results, the emotion recognition experiments require the
use of more advanced approaches. Thus, following the
gender detection step, an utterance specific vector of
means is produced based on the MAP criterion and the
UBM of the predicted gender. This super-vector is finally
subjected to our SVM classification scheme.

As shown in Figure 9, the proposed gender-specific
UBM-MAP method outperforms the standard UBM-MAP
approach, except in the case of 8 GMM components
where higher gender detection errors cause a slight
decrease in emotion recognition performance. With the
increase of the number of GMM components the emotion
recognition performance increases for both systems, but
since the gender predictions become more accurate, the
efficiency of our procedure becomes more evident.

Similar as for the video sub-system, we also present
detailed results of our experiments with the audio sub-
system in the form of confusion matrices for all 5 folds of
our cross validation procedure. The matrices are
presented in Figure 9.

Audio-Video Fusion

Our third series of experiments assessed the performance
of the combined multi-modal system with different
fusion techniques. In order to train the fusion parameters
(i.e., the weighting factors ¥), the test samples are
randomly split into two parts. The first half is used for the
estimation of the fusion parameters, and the second half
for evaluation. The scores, produced during classification
from both modalities, are combined in order to give the
final prediction for each test utterance. The results of the
weighted sum and weighted product fusion are
presented in the lower part of Table 2.
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Figure 9. Confusion matrices for all 5 folds of our cross validation procedure generated using the presented audio sub-system

System description Emotion
recognition
Description #feat | UW | WA
MFCCs & HMMs [14] 13 55.9 /
S | MFCC & GMMs [7] 13 67.1 67.0
g Supra-segmental modeling [7] 56 725 | 724
< | UBM-MAP (ours) 13 | 69.6 | 69.7
Gender UBM-MAP (ours) 13 725 | 723
SAMMI framework [12, 24] 28.0 /
%OJ Video sub-system [13] 37.0 /
< | LBPs+HMMs [14] 37.7 /
Canonical correlations (ours) 528 | 52.2
Audio Video HMM [14] 56.3 /
g SAMMI framework [12, 24] 67.0 /
g Async. feature fusion [13] 71.0 /
| Sum rule fusion (ours) 759 | 757
Product rule fusion (ours) 775 | 77.2

Table 2. Comparison of emotion recognition results (in %)

The differences between the weighted sum-rule and
weighted product-rule are minor, with the highest UW
recall of 77.5% achieved by the weighted product-rule
fusion procedure.

Comparison with the state-of-the-art

Last but not least, we compared the performance of both
developed sub-systems as well as the multi-modal
emotion recognition system as a whole to results
published in the literature. The results of this comparison
are shown in Table 2.

Since there is no strictly defined protocol for the
eNTERFACE'05 corpus, different experimental setups
were used with the cited results, thus, a strict comparison
is not possible. Note, however that our experimental
protocol was as least as challenging as any from the cited
sources. It is evident that our results at least match the
highest reported results from the literature. Furthermore,
our results are obtained without incorporating any
prosodic or voice quality features, which could further
improve the results.

4. Conclusion

In the paper we presented a multi-modal emotion
recognition system. Both, audio and video sub-systems
were implemented using novel approaches. For the audio
sub-system we have shown that the standard UBM-MAP
procedure can be further improved by incorporating
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gender-specific information. For the video sub-system we
presented an approach to emotion recognition based on
image-set matching. Both sub-systems were evaluated
individually, resulting in competitive performance, when
compared to the state-of-the-art
literature. The fusion of both sub-systems resulted in an
additional the recognition
performance when compared to the results obtained with
the uni-modal systems. Moreover, the achieved average
unweighted recall of 77.5% on the eNTERFACE'05 corpus
also compares favorably with other techniques from the
literature.

results from the

increase in emotion

For our future work with respect to multi-modal emotion
recognition we plan to evaluate other possibilities to
exclude non-emotion related information from the audio
signals. For the video sub-system we plan to assess
different, possibly non-linear, options for image-set
matching, such as kernel canonical correlation analysis
[25, 26] or related techniques.
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