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Abstract This paper focuses on the use of Gaussian Mix-
ture models (GMM) for 3D face verification. A special in-
terest is taken in practical aspects of 3D face verification
systems, where all steps of the verification procedure
need to be automated and no meta-data, such as pre-
annotated eye/nose/mouth positions, is available to the
system. In such settings the performance of the verifica-
tion system correlates heavily with the performance of
the employed alignment (i.e., geometric normalization)
procedure. We show that popular holistic as well as local
recognition techniques, such as principal component
analysis (PCA), or Scale-invariant feature transform
(SIFT)-based methods considerably deteriorate in their
performance when an “imperfect” geometric normaliza-
tion procedure is used to align the 3D face scans and that
in these situations GMMs should be preferred. Moreover,
several possibilities to improve the performance and ro-
bustness of the classical GMM framework are presented
and evaluated: i) explicit inclusion of spatial information,
during the GMM construction procedure, i) implicit in-
clusion of spatial information during the GMM construc-
tion procedure and iii) on-line evaluation and possible re-
jection of local feature vectors based on their likelihood.
We successfully demonstrate the feasibility of the pro-
posed modifications on the Face Recognition Grand Chal-
lenge data set.
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1. Introduction

Face recognition (FR) technology exhibits some attractive
properties such as high user
intrusiveness of the acquisition procedure and commer-

acceptance, non-

cial potential in a diverse range of applications in both the
private as well as the public sector. On the down side, the
distinctiveness of faces is relatively low when compared
to other biometric modalities, such as fingerprints or
irises [1, 2]. The majority of existing FR systems are
among others susceptible to partial occlusions of the fa-
cial area, pose, illumination and expression variations,
time delay (signs of ageing), makeup, etc.,, which com-
monly negatively affect recognition performance. To im-
prove the accuracy and robustness of FR systems in the
presence of different sources of image variability, several
solutions are proposed in the literature. One of these solu-
tions relies on different capture techniques to replace (or
augment) the still-image recognition procedure with rec-
ognition techniques based on video data, infrared images
or 3D images. The last option, i.e., recognition from 3D
face data, also represents the main focus of this paper.
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As stated in [3, 4], 3D data (without texture information)
is inherently invariant to external illumination variations
and makes it easier to account for differences in pose
among different face scans. However, 3D FR systems are
not resistant to all deficiencies of their 2D counterparts, as
occlusion and expression problems still persist.

Recently, systems based on local feature vectors and gen-
erative statistical models, such as GMMs demonstrated
their effectiveness for 3D face recognition [5, 6]. These
systems typically obtain local features on a block-by-
block basis. Low-order Discrete Cosine Transform (DCT)
coefficients [7] are then extracted from each block and
utilized to form local feature vectors. GMM-based sys-
tems treat data (i.e., feature vectors) as independently and
identically distributed (i.i.d.) observations and, hence,
present facial data in the form of a number of orderless
blocks. This characteristic is reflected in good robustness
to imperfect face alignment, pose changes, occlusions and
expression variations.! On the other hand, the spatial rela-
tionships between the local feature vectors are lost, since
correlations among adjacent observations are discarded.
This loss of information on the spatial structure of the
face data often results in degraded recognition perform-
ance.

In this paper we build upon the classical GMM frame-
work [8] and try to improve it by considering the spatial
structure of the face during construction of the user spe-
cific GMMs and relying only on the most probable fea-
ture vectors. Specifically, we assess the following four
possibilities for augmenting the GMM framework: i) in-
troduction of delta features, which encode the spatial re-
lationships between local feature vectors of neighbouring
blocks, ii) embedding explicit positional information into
the local feature vectors, iii) constructing sub-image
GMMs, and iv) rejecting the least probable feature vec-
tors. Our experiments on version two of the Face Recog-
nition Grand Challenge (FRGCv2) data base show that all
four proposed modifications contribute to an improved
recognition performance when compared to the classical
GMM framework. Comparative experiments with global
and local techniques such as PCA or SIFT-based methods
suggest that in practical 3D face recognition systems,
where all steps of the recognition procedure need to be
automated, GMMs exhibit the most stable and robust per-
formance even if extremely simple procedures are used to
localize the faces and the alignment step is skipped.

The paper is structured as follows. Section 2 summarizes
related work on 3D FR. In Section 3 we introduce the
classical GMM framework and present the basic charac-
teristics of the reference system used in the experiments.
In Section4 we elaborate on the modifications of the

1 The probabilistic nature of GMMs makes it extremely easy to
handle missing or corrupt data and to introduce hierarchical
classification/modelling approaches.
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GMM framework and assess them in 3D face recognition
experiments in Section 5. We conclude the paper with
some final comments in Section 6.

2. Related work

A broad survey on 3D FR methods can be found in [9, 10],
while the most recent ones are described in [11, 12, 13,
14]. This section focuses on prior work related to our pa-
per. We divide the 3D FR methods into two categories:
holistic or appearance-based methods and local or fea-
ture-based methods.

2.1 Holistic methods

Holistic approaches typically transform the whole face
region into one high-dimensional feature vector. To re-
duce its dimensionality and the consequent computa-
tional burden, the high-dimensional feature vector is
usually mapped to a low-dimensional space where rec-
ognition is ultimately performed. Many holistic methods
use PCA for the dimensionality reduction of 3D data [15,
16, 17, 18], while recently a variant of PCA, called Gappy
PCA [19], was introduced to handle missing data values
(occluded faces). Other popular dimensionality reduction
techniques include Linear Discriminant Analysis
(LDA) [20] and Independent Component Analysis
(ICA) [15]. An indispensable step required by all holistic
approaches is facial pose and scale normalization, which
needs to align the facial data as well as possible. Gener-
ally, the Iterative Closest Point (ICP) algorithm [21] is
used to perform this step. However, the ICP algorithm is
computationally expensive and does not always converge
to a global maximum; moreover, a coarse alignment pro-
cedure is required before using the ICP algorithm.

2.2 Local methods

Local approaches typically extract a number of local fea-
ture vectors from different facial areas, so each feature
vector describes only a small part of the face. These vec-
tors are then compared independently for recognition
purposes. Data variations due to various influential fac-
tors either affect the local feature vectors to a lesser extent
than the global representation of the face data or affect
only some of the feature vectors. These facts make the lo-
cal techniques more robust to data variations and conse-
quently a popular choice when implementing FR sys-
tems.

The process of local-feature extraction can typically be di-
vided into two parts. In the first part, interest points on
the face are detected. In the second part, the interest
points are used as locations at which local-feature vectors
are calculated.

Interest points can be detected as extrema in the scale-
space, resulting in scale-invariant features. This approach
of interest-point detection is used in the popular SIFT
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method, which was applied to 3D face images in [22, 23,

24]. Interest points can also be detected:

e on the basis of the local curvedness analysis [25, 26];

e through alignment of faces with a face model, in
which interest point locations are marked a priori [27];

e by the elastic bunch graph matching method
(EBGM) [28] as nodes of the elastic graph;

e as nodes of a rectangular grid covering the facial re-
gion [5, 12, 29].

The latter approach is equivalent to detecting local fea-
tures on a block basis, where the feature vectors are ex-
tracted by the sliding-block technique.

For the description of the local surface around the interest

points, the latter approach uses:

o differential geometry descriptors (mean curvature,
Gaussian curvature, shape index) [12],

e point signatures [30],

e Gabor filters [28],

e coefficients of DCT [5, 29],

e orientation histograms [22].

3. Framework

This section describes the basic characteristics of the 3D
face recognition system used in the experimental section
in conjunction with the classical GMM framework. First,
data representation and its role in the recognition process
are discussed. Next, the basics of DCT-based feature ex-
traction in the GMM framework are reviewed and finally,
the procedure of constructing user-specific GMMs and
classifying them into client or impostor classes is pre-
sented. A schematic representation of the employed
GMM framework can be seen in Figure 1.

3.1 Data representation

There are several alternatives for representing facial data.
Next to range images, a popular approach to represent 3D
facial data is to consider differential geometry-based de-
scriptors, such as curvature descriptors or surface normals.
Curvature related descriptors are interesting due to their
rotational invariance, which makes them a frequently used
tool when segmenting 3D surfaces [31]. Surface normals
are also suitable for the representation of facial data. Here,

original image

pre-processed
image

divide image
on overlaping
parts

Figure 1. Conceptual diagram of the GMM framework
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a surface normal is computed at each vertex of the facial
surface and the x,y and z coordinates of the normals are
used for data representation. Finally, one can also select
angle values between surface normals and the average fa-
cial normal to represent the range image data.

Our preliminary experiments with different feature ex-
traction and classification techniques have shown that
angle values are best suited for 3D face data representa-
tion as they exhibit the highest level of robustness to dif-
ferent sources of data variability and among the above
listed representations ensure the best recognition per-
formance [32]. The experiments presented in Section 5
are, therefore, conducted on range images represented
with relative angle values.

3.2 Feature extraction

Once a face representation is chosen, a set of feature vec-
tors needs to be extracted from the computed data repre-
sentation and fed to the GMM construction procedure. A
popular tool for this task is DCT, which has proven to be
suitable for block-based feature extraction from both, 2D
images [33, 34] as well as 3D range images [5]. While sev-
eral variants of DCT-based feature extraction techniques
were presented in the literature (see for example [5, 34],
all of them have the same initial stage consisting of ana-
lysing facial data block-by-block, with a configurable
amount of overlap between neighbouring blocks. In this
paper we use the most common variant of DCT-based
feature extraction, where each individual image block is
decomposed in terms of 2D DCT basis functions and the
feature vector X belonging to the currently analysed
block is formed by considering the first ¢ DCT coeffi-
cients, i.e, x=[c,],, where ¢, is the i-th DCT coefficient.

3.3 Gaussian Mixture Models

GMMs are defined as a superposition of K Gaussian
densities. They are used for modelling distributions of
feature vectors and, therefore, serve as means for con-
structing user templates in biometric recognition systems.
Parameters describing a GMM are mixing coefficients
{7, )%, mean vectors {u,}r, and covariance matrices
{Z,}F, . Given a set of feature vectors {x,}",, a GMM is

constructed by determining its parameters
Xips Xjgs o Xip ‘0 Py
le’ XZZ’ s XZD '
GMM
X X X

NI» AN23 *o*

feture-vector-distribution
modeling with GMM

treat each part extract feature vector
independently from all N parts
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A={m, L}, based on the maximization of the fol-
lowing log-likelihood:

log p(X|A) = log> m N (x, |n,.E,), 1)

n=l1 k=1

where N is a Gaussian density function. Maximum
likelihood (ML) solutions for the model parameters are
found via the expectation-maximization (EM) algo-
rithm [35] with k-means or Linde-Buso-Gray initializa-
tion.

When building user-specific GMMs, there is usually not
enough data available to estimate the parameters of the
GMM reliably. Therefore, a universal background
model (UBM) is typically constructed first and then
adapted with user-specific data. A UBM is itself a GMM
representing generic, person independent feature char-
acteristics. The parameters of the UBM are estimated via
the ML paradigm (1) on all available training data. Once
the UBM is built, user-specific GMM are computed via
maximum a posteriori (MAP) adaptation. It has been
observed that it is preferable to adapt only the means of
the UBM. Therefore, the means for each user are
adapted by iteratively evaluating the following expres-
sion [36]:

EM

n=1-om +ap”, ()

where p, is the new mean of the k -th Gaussian, p, is
the mean from the previous step (initialized by the
UBM) and p}" is the re-estimated mean from the M-
step of the EM algorithm. The parameter « balances the
influence of the EM's new statistics and the prior mean

W
3.4 Classification

Biometric verification systems based on statistical mod-
els typically use likelihood ratio based hypothesis test-
ing to discriminate between legitimate users (or clients)
and illegitimate users (or impostor). However, recent re-
search suggest that better recognition results can be
achieved by relying on support vector machines (SVM)
[37, 38] for the classification task. Thus, we select SVMs
as our classifiers and use them in all of our experiments.
To be able to use SVMs for classification, the mean vec-
tors of the user-specific GMMs are concatenated into
equally sized supervectors and eventually used as in-
puts to the SVM classifier. During the enrolment stage,
given a pool of supervectors from all training images
and the client's supervector, the SVM training procedure
constructs a decision hyperplane between the client's
supervector and the training supervectors. At test time,
the claimant's supervector is first derived by MAP adap-
tation and probability estimates are computed respec-
tive to the decision hyperplane learnt during the enrol-
ment stage.
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Figure 2. Conceptual diagram of DCT delta features extraction
4. GMM framework modifications

In this section we present four possibilities of how to im-
prove upon the classical GMM framework. The first three
focus on considering the spatial structure of the face dur-
ing the construction of the GMMs, while the last focuses
on selecting only relevant features for modelling.

4.1 Using delta features

The first possibility for introducing spatial information
into the classical GMM framework is to use delta coeffi-
cients (see Figure 2) and adding them to the commonly
adopted DCT feature vectors [5, 34]. This modality will be
referred to as GMMdel in the remainder of the paper.

Delta coefficients describe the dynamics between DCT
coefficients of neighbouring image blocks and, therefore,
introduce spatial dependencies into the feature vectors.
When delta features are added to the feature vectors, each
vector is implicitly linked to its (spatially) neighbouring
feature vectors, resulting in a chain of dependencies.
Consider two d -dimensional DCT feature vectors ex-
tracted from two (vertically or horizontally) neighbouring
blocks of x;, ie, x,_, =[c!"]", and x,, =[c/"].,. The
J -th delta coefficients can then be defined as follows:

_ ) G
Ac;=c¢;"—cj . ®)

In case the feature vectors x_, =[c!"]7, and

X, =[c}""]_, are extracted from vertically neighbouring
blocks we obtain vertical delta coefficients and, similarly,
if they are extracted from horizontally neighbouring
blocks we obtain horizontal delta coefficients. It should be
noted that delta coefficients are regularly used when
building GMMs (see for example [34, 5]) and do not rep-
resent a novelty introduced in this paper. They are re-
viewed and assessed in this paper as they help to encode

the spatial structure of the face into the GMM.
4.2 Constructing sub-image GMMs

The second possibility for considering the spatial struc-
ture of a face and, hence, for improving upon the classical
GMM framework is by dividing the depth image into
several (partially overlapping) sub-images and construct-
ing a separate GMM for each sub-image [39] (see Figure
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Figure 3. Schematic presentation of the GMMsub approach

3). With this procedure, which will be denoted as
GMMsub in the remainder, spatial constraints are en-
forced on the Gaussian mixtures, as each constructed
GMM accounts only for a local region of the face.

In a similar manner as presented in Section 3.3, the sub-
image GMMs are constructed, by first building a UBM for
each sub-image from all available training data and
adapting the UBM through MAP adaptation. The su-
pervector, representing the input to our SVM classifier, is
ultimately formed by a simple concatenation of the mean
vectors of the computed sub-image GMMs.

4.3 Embedding positional information

The third possibility for introducing spatial information
into the classical GMM framework is to embed the coor-
dinates of the image block, from which the DCT feature
vector is extracted, into the local feature vector itself and
to form an augmented feature vector (see Figure 4). This
modality, referred to as GMMext, accounts explicitly for
the spatial position of the processed image blocks and re-
sults in feature vectors with two more elements, i.e.,:

a by, *)

where x,. is the original feature vector and (a,b) are the
coordinates of the upper left corner of the image block

from which the feature vector was extracted.
4.4 Removing least-likely feature vectors

Unlike the improvement possibilities presented above,
the last possibility does not focus on introducing spatial
information into the GMM framework, but instead fo-
cuses on the modelling procedure. When constructing
GMMs based on the maximum likelihood criterion using
either the EM or the MAP approach, all available feature
vectors are generally taken into account. Or formally, all
N feature vectors {x,}\,
when evaluating (1). However, in cases where expression
variations or shape artefacts are present in the (depth)
face images, discarding image blocks belonging to facial

of an image are considered
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Figure 4. Conceptual example of augmented feature vectors

areas that are most affected by such variations may lead
to improved robustness and consequently improved rec-
ognition performance. The idea here is, when computing
the likelihood of the features given a GMM, as in (1), the
feature vectors with the lowest likelihood are likely to be-
long to areas deformed by expression variations, shape
artefacts and the like. Therefore, the removal of these fea-
ture vectors and their exclusion from the GMM construc-
tion procedure can lead to improved robustness.

N
n=l1

Givenaset X ={x,},_, of N local feature vectors extracted
from the given depth image and a GMM with parameters
A={7,1,,Z,},, the following expression needs to be
evaluated for each feature vector from the set X":

P, 1= m N, 1 ). ©)

Based on the value of (5), a portion of feature vectors
from X can be excluded from the GMM construction
procedure. We will refer to this approach as GMMrem in
the remainder of the paper.

5. Experiments
5.1 Data set and experimental protocol

In our experiments, we use the FRGC data set [40]. The
face images in the FRGC data set have frontal view with
minor pose variations and major expression variations.
Images may contain shape artefacts such as deformed ar-
eas because of subjects moving during scanning, nose ab-
sence, holes, small protrusions and impulse noise (see
Figure 5). The FRGC experimental protocol provides a set
of standard verification experiments. The protocol defines
three data sets -the training set, the gallery set and the
probe set. The training set is used to build global face
models. The gallery set contains images with known
identities (intended for enrolment), while the probe set
contains images with unknown identities presented to the
system for recognition. Our experiments use the entire
FRGC data set of 4007 range images belonging to 466 dis-
tinct subjects. We use only one enrolment image per client,
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Figure 5. Sample images with artefacts from the FRGC data set: (a)
deformed image, (b) nose absence, (c) impulse noise around the
eyes

so each image pair from the gallery and probe sets is con-
sidered independently, resulting in more than 16 million
comparisons. Some experiments are also performed on a
subset of the FRGC data (i.e., the FRGC version 1 data),
where approximately 1 million comparisons are made.

5.2 Data preprocessing

Images are initially low-pass filtered to remove spikes.
The holes are filled using linear interpolation and finally
the range data is smoothed with a mean filter. To test the
robustness of the techniques assessed in our experiments
for localization errors, we implement four different face
localization procedures:

o Meta-data localization (MD) — the technique uses the
meta-data distributed with the FRGC data set for face
localization, i.e., manually annotated eyes, nose tip
and mouth coordinates, (see [41]),

o ICP alignment (ICP) — the technique localizes the face
scans by first roughly normalizing the position of the
3D faces based on the available meta-data and then
employing the iterative closest point algorithm for
fine alignment,

o clustering-based background removal (BR) — the tech-
nique first removes the background of the 3D face
scans and then clusters the remaining data into two
clusters (head and body); from the two clusters the
head cluster is easily identified (based on morpho-
logical characteristics) and used without any further
alignment as input to the recognition techniques [26],

o nose-tip alignment (NT) — the technique automatically
detects the nose tip of the 3D faces and then crops the
data using a sphere with radius » =100 similar to [26].

Note that the first two techniques rely on manual annota-
tion while the second two techniques are fully automatic
and require no manual assistance. Examples of localized
faces using the presented techniques are shown in Figure 6.

PeB®
0006
000®

(b) BR

(a) original

()NT (d)MD (e)ICP

Figure 6. Examples of face localization with the presented tech-
niques

5.3 Experimental setup

There are a number of parameters regarding feature ex-
traction, model training and classification that have to be
properly set for optimal operation of the GMM frame-
work. We set the parameters based on a simple optimiza-
tion procedure over a small number of parameter settings
and use the same settings for the proposed GMM modifi-
cations when making comparisons in the remainder of
the paper.

Table 1 presents the verification performance of the classi-
cal GMM framework under different parameter settings.
The parameter values in bold are also used in our follow-
ing experiments. During the analysis of different block
sizes and step sizes between neighbouring blocks, we ob-
serve that using smaller blocks leads to decreased per-
formance, since features computed from small blocks are
less descriptive due to limited surface variability. On the
other hand, bigger block sizes result in a reduced number
of observations per face, leading to a decreased perform-
ance as well. When studying the impact of the feature vec-
tors size, we vary the length of our DCT feature vectors
from 3 to 15. The best performance is achieved with a di-
mensionality of 15 and this value is also employed in our
following comparative assessments, Note that increasing
the number of considered DCT coefficients further does not
have a significant effect on the recognition performance.
The highest number of mixture components we examined
was 512, where the best performance is achieved. In the fol-
lowing experiments, however, we use 256 mixtures to ease
the computational burden.

parameter | parameter setting / verification performance
block size (pixels) 20%x20/92.4%  25%25/93.8% 30%30/95.2% 35%35 / 94.3%
step size (pixels) 3/96.4% 4/952% 5/89.1% 6/80.5%
feature vector length 3/73.1% 6/84.9% 10/90.6% 15/95.2%
number of mixtures 64 /86.7% 128 /90.9% 256 /95.2% 512/95.9%

Table 1. Verification performance (TAR @ 0.1% FAR) of the classical GMM approach under different parameter settings

Int J Adv Robotic Sy, 2012, Vol. 9, 162:2012
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Other parameters that we use in our experiments are set
as follows: EM steps: 15, number of MAP iterations: 3,
relevance factor in MAP adaptation: 16, SVM kernel func-
tion: linear.

5.4 Experiment 1: Robustness to imprecise face localization

In our first series of experiments we assess the perform-
ance of the classical GMM framework. For this initial se-
ries of experiments we use the FRGCv1 data set.

To get an impression of the performance and robustness
of the GMM framework in comparison with other tech-
niques from the literature we implement the popular
principal component analysis (PCA)[42] recognition
technique as an example of holistic recognition methods
and the recently proposed SIFT-based recognition ap-
proach from [12] as an example of local recognition pro-
cedures. We assess the performance of the three imple-
mented techniques in conjunction with all four localiza-
tion methods (described in the previous section) and pre-
sent the results in the form of receiver operating charac-
teristics (ROC) curves and true accept rates (TAR) at the
false accept rate of 0.1%. Figure 7 shows the ROC curves
of the experiments for each assessed method. As ex-
pected, all techniques perform best with the ICP algo-
rithm, which ensures the best alignment of the faces, but
also requires a decent initial alignment and requires the
most time (as shown in Table 2). The MD approach en-

BR NT MD Icp
GMM 95.2% 97.0% 97.1% 97.5%
SIFT 80.9% 94.8% 95.8% 97.9%
PCA 16.5% 34.4% 41.0% 43.9%

Table 2. TAR at 0.1% FAR of the GMM, SIFT and PCA meth-
ods for different localization techniques

| BR
0.11s

NT
0.24s

MD
0.27s

ICP
2.48s

time ’

Table 3. Average running times of the assessed localization
techniques

sures the second best results with all three recognition
techniques, but requires manually annotated landmarks.
Finally, the automatic techniques BR and NT produce the
worst results of all techniques but are, on the other hand,
robust, fast and require no manual assistance.

If we look at Figures 7 and 8, and Table 2, where all tech-
niques are compared in one place, we can actually see
that the GMM framework was the least affected by local-
ization and alignment imperfections. This fact is espe-
cially important when recognizing occluded 3D faces,
where face alignment is particularly difficult [43].

Table 3 denotes the average computational times for each
of the assessed localization techniques. Time is reported
for a single core of the 2.67 GHz Intel Xeon processor. All
algorithms are implemented in MATLAB. We need to
stress that the values in Table 3 should be taken with cau-
tion, as processing times depend heavily on the imple-
mentation.

5.5 Experiment 2: Expression variation

Our second series of experiments examines the perform-
ance of the assessed algorithms in the presence of non-
neutral facial expressions. For the experiments, images
are partitioned into two sets depending on whether they
exhibit neutral or non-neutral facial expression (expres-
sion labels provided by the FRGC protocol are used). All
943 images in the training set are classified as neutral,
while in the gallery/probe set 2365 images are neutral and
the remaining 1642 are non-neutral. The results of this se-
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Figure 7. Experiment 1 ROC curves: robustness to imperfect normalization
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Figure 9. Experiment 2 ROC curves: robustness to expression variation

ries of experiments can be seen in Figure 9. The results
clearly show that the GMM framework is the most robust
for expression variations when compared to the SIFT and
PCA approaches.

5.6 Experiment 3: Time lapse between gallery and probe images

The third series of the experiments examines the per-
formance of the assessed algorithms in the presence of a
time lapse between gallery and probe images. Three ROC
curves are generated, proposed by the FRGC versions 2
protocol. ROC I refers to images collected within a semes-
ter, ROCII refers to images collected within the same
year and ROC III refers to images collected between se-
mesters. These experiments are of increasing difficulty.
The results of this series of experiments are presented in
Figure 10. The results show that the GMM approach is
the least affected by the presence of the time gap between
gallery and probe images.

5.7 Experiment 4: GMM modifications

In our final series of recognition experiments we use the
data from FRGC version 2. Here, we evaluate the impact
of the proposed GMM modifications on the face recogni-
tion performance. Note that this series of experiments is
more challenging, as more comparisons are made and
both the probe, as well as the gallery, faces also feature
expression variations. All parameters of the GMM
framework are left as in the first series of experiments ex-

cept for the number of GMM mixtures, which was in-
creased to 512, since it was observed that an increased
recognition performance is achieved with more mixtures.
There are also some additional parameters in the
GMMsub and GMMrem approaches that have to be set.
For the GMMsub approach we examine several different
ways of image partitioning. We chose to divide each im-
age into 3 parts in the vertical and 2 parts in the horizon-
tal direction of the face image, as the best recognition per-
formance was obtained with this arrangement in our pre-
liminary experiments. In the GMMrem approach we have
to set the amount of low-likelihood features to be re-
moved. Our preliminary experiments suggest that reject-
ing more than 10% of feature vectors has no additional
positive effect on our results. Hence, we selected to reject
10% of least likely features.

First, we perform the all vs. all experiment, where every
image from FRGC ver. 2 is compared to all the remaining
images, resulting in 16052042 comparisons. The results of
this series of experiments are presented in Figure 11. We
can see that all the proposed GMM modifications result
in improved performance when compared to the non-
modified GMM framework. All presented modifications
can also be combined into a single system (denoted as
GMMdel/sub/ext/rem for later convenience), which holds
the properties of all the included modifications and out-
performs all individual modifications assessed here.
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Figure 10. Experiment 3 ROC curves: time lapse between gallery and probe images
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Figure 11. ROC curves of the GMM modifications (FRGC ver. 2,
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To explore the robustness to imprecise face localization
we assess the performance of each of the GMM modifica-
tions in conjunction with the four localization methods
described in Section 5.2. The results of this series of ex-
periments are presented in Table 4, where we can see that
all the modifications result in improved performance.
Similarly as in Section 5.4, the highest performance is
achieved in conjunction with the ICP face localization,
while the worst results belong to the experiments where
the most imprecise BR localization is employed. We can
also see that the GMMdel technique achieves the highest
performance among all the assessed GMM modifications.
Therefore, we conclude that the GMMdel modality most
efficiently introduces the spatial information into the
GMM framework. On the other hand the least improve-
ment in performance is achieved with the GMMsub tech-
nique.

Next, we explore the robustness of GMM modifications to
expression variations (see Table 6). Once again, we can
see the improved performance of all the GMM modifica-
tions, except for the GMMrem approach in the case of the
neutral vs. neutral data set. This behaviour is expected
since neutral images do not contain many low-likelihood-
feature vectors, generally belonging to the areas with ex-
pression variations. The GMM modifications perform less
well when matching the gallery and probe images across
different facial expressions, however the drop in per-
formance is relatively low when compared to the SIFT or
PCA approaches (see Section 5.5).

BR NT MD ICP
GMM 87.0% 885% 88.7% 89.1%
GMMsub 87.4% 88.6% 89.1% 90.8%
GMMrem 88.9% 90.3% 90.6%  91.4%
GMMext 87.5% 89.9% 90.7% 91.8%
GMMdel 90.8% 91.2% 91.7% 92.7%
GMMdel/sub/ext/rem| 91.0% 92.5% 92.9% 93.5%

Table 4. Robustness of the GMM modifications to imprecise lo-
calization (TAR @ 0.1% FAR, FRGC ver. 2, all vs. all data set)

www.intechopen.com

non-neut.
neut. vs. neut. vs. s,
neut. non-neut.

non-neut.
GMM 98.8% 90.2% 83.8%
GMMsub 99.2% 91.4% 85.3%
GMMrem 98.7% 93.5% 87.1%
GMMext 99.1% 92.8% 86.2%
GMMdel 99.2% 93.6% 87.1%
GMMdel/sub/ext/rem| 99.6% 94.0% 87.7%

Table 6. Robustness of the GMM modifications to expression
variations (TAR @ 0.1% FAR, FRGC ver. 2, ICP localization)

ROCI ROCII ROC III
GMM 90.1% 89.4% 88.9%
GMMsub 91.7% 91.0% 90.5%
GMMrem 92.3% 91.7% 91.3%
GMMext 92.8% 92.0% 91.6%
GMMdel 93.6% 92.9% 92.5%
GMMdel/sub/ext/rem| 94.4% 93.8% 93.4%

Table 5. Robustness of the GMM modifications in the presence
of time lapse (TAR @ 0.1% FAR, FRGC ver. 2, ICP localization)

In the last set of experiments in this series we explore the
robustness of the GMM modifications in the presence of a
time delay between gallery and probe images. The results
can be seen in Table 5. It can be deduced that all the
GMM modifications contribute to an increased perform-
ance, while a slight decrease of the performance is noticed
when the average time gap between gallery and probe
images increases.

6. Conclusion

In this work the robustness of GMM-based 3D face verifi-
cation systems in the presence of different sources of im-
age variability is examined. The paper also discusses sev-
eral different modifications of the classical GMM frame-
work to improve its verification performance. We have
evaluated how the assessed methods cope with imprecise
face localization and facial appearance variations due to
changes in expression. Using the FRGC database, we
have shown that the performance of the GMM frame-
work is significantly better than that of SIFT-based or
PCA-based techniques and that the proposed modifica-
tions further improve its performance and robustness.
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