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Žiga Babnik, Peter Peer, Vitomir Štruc
University of Ljubljana, Kongresni trg 12, SI-1000 Ljubljana, Slovenia

{ziga.babnik,vitomir.struc}@fe.uni-lj.si, peter.peer@fri.uni-lj.si

Abstract

In the main part of the paper, we evaluated the proposed
DifFIQA technique in comprehensive experiments across
7 diverse datasets, in comparison to 10 state-of-the-art
(SOTA) competitors, and with 4 different face recognition
models. In this supplementary material, we now show ad-
ditional results using the same setup as in the main part of
the paper that: (1) illustrate the performance of the model
at another discard rate, (2) show the average performance
of the proposed approach across all datasets and FR mod-
els and in comparison to all considered SOTA techniques
for two different discard rates, and (3) provide details on
the runtime complexity of the DifFIQA model. Additionally,
we also discuss the limitation of the proposed FIQA models
and provide information on the reproducibility of the exper-
iments described in the main part of the paper.

1. Additional Results

Comparison to SOTA techniques. In Table 1, we present
additional comparisons to the ten state-of-the-art techniques
already considered in the main part of the paper. However,
here the results are reported for a lower drop rate of 0.2. We
note again that the performance of FIQA techniques is most
relevant at lower drop rates, since this facilitates real-world
applications, as also emphasized in [8].

From the presented results, we observe that the distilled
model, DifFIQA(R) yields the lowest average pAUC scores
(computed over the seven test datasets), when used with the
AdaFace, ArcFace and CosFace models. With the Curricu-
larFace model, DifFIQA(R) is the runner-up with perfor-
mance close to the best performing CR-FIQA technique.
It is worth noting that among the tested methods, four
FIQA techniques performed significantly better than the
rest across the four different FR models, i.e., CR-FIQA [2],
FaceQAN [1] and the two diffusion-based models proposed
in this paper, DifFIQA and DifFIQA(R). However, the dis-
tilled DifFIQA(R) technique is overall the top performer
and fares particularly well on the most challenging datasets

Table 1. Comparison to the state-of-the-art. The table reports
pAUC scores at a discard rate of 0.2 and a FMR of 10−3. Average
results across all datasets are marked pAUC. The best result for
each dataset is shown in bold, the overall best result is colored
green, the second-best blue and the third-best red.

FIQA model Adience CALFW CFP-FP CPLFW IJB-C LFW XQLFW pAUC

FaceQnet [5] 0.969 0.960 0.772 0.935 1.133 0.934 0.969 0.953
SDD-FIQA [7] 0.884 0.911 0.632 0.789 0.854 0.857 0.907 0.833
PFE [9] 0.873 0.917 0.659 0.772 0.918 0.854 0.885 0.840
PCNet [11] 1.003 0.985 0.893 0.926 0.843 0.730 0.999 0.911
MagFace [6] 0.890 0.900 0.632 0.747 0.915 0.735 0.958 0.825
LightQNet [3] 0.890 0.925 0.711 0.784 0.846 0.837 0.836 0.833
SER-FIQ [10] 0.871 0.930 0.563 0.715 0.812 0.982 n/a 0.812
FaceQAN [1] 0.905 0.942 0.474 0.700 0.800 0.721 0.764 0.758
CR-FIQA [2] 0.890 0.887 0.504 0.684 0.796 0.755 0.830 0.764
FaceQgen [4] 0.889 0.967 0.774 0.778 0.877 0.887 0.814 0.855

DifFIQA 0.897 0.932 0.500 0.698 0.813 0.770 0.769 0.768
DifFIQA(R) 0.893 0.913 0.505 0.696 0.796 0.752 0.754 0.758

FIQA model Adience CALFW CFP-FP CPLFW IJB-C LFW XQLFW pAUC

FaceQnet [5] 0.957 0.970 0.761 0.918 1.123 0.934 0.933 0.942
SDD-FIQA [7] 0.841 0.931 0.637 0.829 0.806 0.857 0.874 0.825
PFE [9] 0.823 0.943 0.624 0.833 0.844 0.854 0.746 0.810
PCNet [11] 1.013 0.998 0.910 0.809 0.770 0.697 1.003 0.886
MagFace [6] 0.852 0.925 0.683 0.809 0.867 0.712 0.961 0.830
LightQNet [3] 0.840 0.930 0.706 0.857 0.788 0.814 0.772 0.816
SER-FIQ [10] 0.840 0.934 0.508 0.797 0.732 0.982 n/a 0.798
FaceQAN [1] 0.850 0.957 0.470 0.771 0.731 0.699 0.710 0.741
CR-FIQA [2] 0.861 0.912 0.475 0.791 0.724 0.732 0.764 0.751
FaceQgen [4] 0.857 0.980 0.823 0.834 0.823 0.865 0.786 0.853

DifFIQA 0.848 0.931 0.493 0.771 0.743 0.759 0.696 0.749
DifFIQA(R) 0.840 0.920 0.484 0.772 0.732 0.752 0.688 0.741

FIQA model Adience CALFW CFP-FP CPLFW IJB-C LFW XQLFW pAUC

FaceQnet [5] 0.941 0.964 0.692 0.914 1.139 0.960 0.990 0.943
SDD-FIQA [7] 0.838 0.932 0.556 0.802 0.806 0.865 0.867 0.810
PFE [9] 0.815 0.937 0.539 0.793 0.848 0.863 0.900 0.814
PCNet [11] 1.000 0.993 0.931 0.938 0.776 0.732 0.971 0.906
MagFace [6] 0.841 0.921 0.624 0.779 0.875 0.736 0.901 0.811
LightQNet [3] 0.827 0.938 0.574 0.815 0.787 0.834 0.857 0.805
SER-FIQ [10] 0.832 0.926 0.493 0.747 0.725 0.986 n/a 0.784
FaceQAN [1] 0.843 0.948 0.453 0.736 0.730 0.713 0.908 0.762
CR-FIQA [2] 0.859 0.908 0.428 0.729 0.734 0.746 0.902 0.758
FaceQgen [4] 0.858 0.972 0.754 0.806 0.824 0.894 0.836 0.849

DifFIQA 0.851 0.919 0.499 0.738 0.738 0.771 0.863 0.768
DifFIQA(R) 0.832 0.922 0.467 0.740 0.723 0.764 0.883 0.762

FIQA model Adience CALFW CFP-FP CPLFW IJB-C LFW XQLFW pAUC

FaceQnet [5] 0.962 0.970 0.761 0.917 1.139 0.934 0.933 0.945
SDD-FIQA [7] 0.873 0.931 0.637 0.832 0.806 0.857 0.874 0.830
PFE [9] 0.856 0.943 0.624 0.837 0.848 0.854 0.746 0.816
PCNet [11] 1.005 0.998 0.910 0.861 0.776 0.697 1.003 0.893
MagFace [6] 0.882 0.925 0.683 0.808 0.875 0.712 0.961 0.835
LightQNet [3] 0.880 0.930 0.706 0.855 0.787 0.814 0.772 0.821
SER-FIQ [10] 0.863 0.934 0.508 0.790 0.725 0.982 n/a 0.800
FaceQAN [1] 0.890 0.957 0.470 0.759 0.741 0.699 0.710 0.747
CR-FIQA [2] 0.884 0.912 0.475 0.778 0.734 0.732 0.764 0.754
FaceQgen [4] 0.880 0.980 0.823 0.821 0.824 0.865 0.786 0.854

DifFIQA 0.881 0.931 0.493 0.758 0.738 0.759 0.696 0.751
DifFIQA(R) 0.870 0.931 0.484 0.758 0.723 0.759 0.696 0.746

†SER-FIQ was used to create XQLFW, so the results here are not reported for a fair comparison.
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considered in the experiments, i.e., IJB-C and XQLFW.



Table 2. Average performance over all seven test datasets and four FR models at a drop rate of 0.2. The results are reported in terms
of average pAUC score at the FMR of 10−3. The proposed DifFIQA(R) approach is overall the best performer. The best result is colored
green, the second-best blue and the third-best red.

FaceQnet [5] SDD-FIQA [7] PFE [9] PCNet [11] MagFace [6] LightQNet [3] SER-FIQ [10] FaceQAN [1] CR-FIQA [2] FaceQgen [4] DifFIQA DifFIQA(R)

0.9458 0.8244 0.8197 0.8989 0.8253 0.8183 0.7985 0.7519 0.7567 0.8527 0.7591 0.7518

Table 3. Average performance over all seven test datasets and four FR models at a drop rate of 0.3. The results are reported in terms
of average pAUC score at the FMR of 10−3. The proposed DifFIQA(R) approach is overall the best performer. The best result is colored
green, the second-best blue and the third-best red.

FaceQnet [5] SDD-FIQA [7] PFE [9] PCNet [11] MagFace [6] LightQNet [3] SER-FIQ [10] FaceQAN [1] CR-FIQA [2] FaceQgen [4] DifFIQA DifFIQA(R)

0.9315 0.7483 0.7497 0.8691 0.7635 0.7412 0.7292 0.6847 0.6800 0.7954 0.6822 0.6768

Table 4. Detailed analysis of the runtime performance of DifFIQA in ms. The reported results were computed over the entire XQLFW
dataset and for each component of the model separately. For DifFIQA the times are presented separately for the initialization ti, the forward
process tf , the backward process tb, embedding of the images tfr , and the quality calculation tq steps. The symbol Σ denotes the overall
runtime.

Model component runtime ti tf tb tfr tq Σ

Runtime in ms (µ± σ) 0.166± 0.006 0.192± 0.010 842.041± 9.068 66.224± 0.689 166.335± 1.750 1074.627± 11.458

Overall performance. To further illustrate the performance
of the proposed DifFIQA and DifFIQA(R) techniques, we
present in Tables 2 and 3 the average pAUC scores for two
discard rates (0.2 and 0.3), computed over the seven test
datasets and all four considered FR models. The reported
results again support the findings already made above, i.e.,
FaceQAN, CR-FIQA, and our proposed techniques signif-
icantly outperform all other FIQA techniques, while Dif-
FIQA(R) performs overall the best.

Runtime complexity. In the main part of the paper, we an-
alyzed and tested all considered techniques from a runtime-
performance perspective. Here, we explore the runtime
complexity of DifFIQA in more detail to get better insight
into the computationally most demanding steps of the ap-
proach. The whole method includes five steps: the ini-
tialization step (i), which creates all the necessary image
copies and converts them into tensors, the forward diffusion
step (f), the backward diffusion step (b), the image embed-
ding step (fr), and the quality score calculation step (q). As
can be seen from the reported results in Table 4, DifFIQA
takes 1074ms on average to estimate the quality of a single
face image. Recall, that the distilled approach requires only
around 1ms for the same task. By far the most demand-
ing part of the quality estimation procedure is the backward
diffusion process, which iteratively denoises the given im-
ages, with an average time of a little more than 840ms. Even
though we use only 5 iterations, we create for a single image
10 noisy copies of the original and the flipped version. All
of these images are then passed through the denoising net-
work, which accounts for the high time complexity of the
backward process. The generation of image embeddings
also requires some time, i.e., 66ms, as the step encapsulates
the collection of all starting, noisy and reconstructed images
into a single tensor as well as the forward pass through the

FR model. In total, the image embedding steps need to pro-
duce embeddings for 60 images, all constructed from the
given input sample. The score computation also takes close
to 170ms, because it includes the calculation of five sepa-
rate cosine similarities for all image copies, calculation of
the average value over all copies and the data transfer from
VRAM to RAM.

2. Limitations
The proposed DDPM-based DifFIQA technique ensure

highly competitive FIQA performance, but also has some
limitations. One obvious limitation is the computational
complexity that affects the model’s runtime performance,
as emphasized throughout the paper. While this can be
addressed through a distillation procedure, the distillation
process removes the relation between the (noising and de-
noising) tasks and image quality, and consequently impacts
the interpretability of the results. From a conceptual point
of view, the nosing and denoising steps probe the quality
of the facial images by (in a sense) first obscuring impor-
tant facial features and then measuring the ability to restore
the obscured features through denoising. Such restoration-
based solutions may depend, to a significant degree, on the
restoration model utilized, which in our case is a CNN-
based UNet that implements the denoising diffusion. While
such models are known to be able to capture local image
characteristics very well, they may be less capable in cap-
turing key global image properties, and we plan to explore
transformer-based models in our future work to further im-
prove on this limitation.

3. Reproduciblity
We would like to note that all of our experiments are

fully reproducible. Most of the models used for the imple-



mentation and testing of DifFIQA and DifFIQA(R) are pub-
licly available from the official repositories, while all others
can be obtained by request from the authors, i.e.:

• AdaFace:
https://github.com/mk-minchul/AdaFace

• ArcFace:
https://github.com/deepinsight/insightface

• CosFace:
https://github.com/deepinsight/insightface

• CurricularFace:
https://github.com/HuangYG123/CurricularFace

• FaceQnet:
https://github.com/javier-hernandezo/FaceQnet

• SDD-FIQA:
https://github.com/Tencent/TFace/tree/quality

• PFE:
https://github.com/seasonSH/Probabilistic-

Face-Embeddings

• PCNet:
Requested from authors

• MagFace:
https://github.com/IrvingMeng/MagFace

• LightQNet:
https://github.com/KaenChan/lightqnet

• SER-FIQ:
https://github.com/pterhoer/FaceImageQuality

• FaceQAN:
https://github.com/LSIbabnikz/FaceQAN

• FaceQgen:
https://github.com/javier-hernandezo/FaceQgen

• CR-FIQA:
https://github.com/fdbtrs/CR-FIQA

• Diffusion models:
https : / / github . com / lucidrains / denoising -

diffusion-pytorch

Additionally the source code for DifFIQA, including
all training and testing scripts, model design and learned
weights, is available from: https://github.com/

LSIbabnikz/DifFIQA.
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