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Figure 1. High-level idea behind the proposed DifFIQA face image quality assessment (FIQA) approach. The quality of face images
corresponds to a considerable degree to the stability of the respective representations in the embedding space of a given face recogni-
tion (FR) model. DifFIQA utilizes a diffusion framework to explore the embedding stability through image perturbations caused by the
noising and denoising processes. The intuition behind this approach is that the forward (noising) Fd and backward (denoising) Bd dif-
fusion processes lead to larger embedding perturbations for lower-quality images (xl) compared to facial images of higher quality (xh).
By analyzing the impact of both the forward and backward processes on the representation of a given image, DifFIQA is able to infer the
corresponding quality and/or generate (FR model specific) quality rankings, as shown on the right. The figure is best viewed electronically.

Abstract
Modern face recognition (FR) models excel in con-

strained scenarios, but often suffer from decreased perfor-
mance when deployed in unconstrained (real-world) en-
vironments due to uncertainties surrounding the quality
of the captured facial data. Face image quality assess-
ment (FIQA) techniques aim to mitigate these performance
degradations by providing FR models with sample-quality
predictions that can be used to reject low-quality samples
and reduce false match errors. However, despite steady im-
provements, ensuring reliable quality estimates across fa-
cial images with diverse characteristics remains challeng-
ing. In this paper, we present a powerful new FIQA ap-
proach, named DifFIQA, which relies on denoising diffu-
sion probabilistic models (DDPM) and ensures highly com-
petitive results. The main idea behind the approach is to uti-
lize the forward and backward processes of DDPMs to per-
turb facial images and quantify the impact of these pertur-
bations on the corresponding image embeddings for quality
prediction. Because the diffusion-based perturbations are
computationally expensive, we also distill the knowledge
encoded in DifFIQA into a regression-based quality pre-
dictor, called DifFIQA(R), that balances performance and
execution time. We evaluate both models in comprehensive
experiments on 7 diverse datasets, with 4 target FR mod-
els and against 10 state-of-the-art FIQA techniques with
highly encouraging results. The source code is available
from: https://github.com/LSIbabnikz/DifFIQA.

1. Introduction

State-of-the-art face recognition (FR) models achieve
near-perfect results on various benchmarks with high-
quality facial images, but still struggle in real-world situ-
ations, where the quality of the input samples is frequently
unknown [1, 13, 41]. For instance, surveillance, a common
application of FR, often involves lower quality samples due
to unconstrained and covert capture conditions. In such
cases, assessing the quality of the face-image samples is
crucial. Low-quality samples can mislead the FR models
and cause catastrophic false-match errors, leading to pri-
vacy breaches or even monetary loss. By determining the
quality of input samples and rejecting or requesting recap-
ture of those below a given quality threshold, the stability,
and performance of FR models can typically be improved.

Face Image Quality Assessment (FIQA) methods pro-
vide FR methods with a quality estimate for each given face
sample. In this context, the term quality can refer to ei-
ther the character, fidelity, or utility of the sample, as de-
fined by ISO/IEC 29794-1 [21]. Similarly to most FIQA re-
search, we focus on the biometric utility of the facial sam-
ples, rather than the visual quality (character and fidelity)
as perceived by humans [35]. Such image characteristics
are commonly evaluated by general-purpose Image Qual-
ity Assessment (IQA) techniques. Biometric utility encom-
passes several unknown aspects of the given face sample,
including its visual quality, face-specific information, and



the relative biases inherent to the targeted FR model. It
can be interpreted as the usefulness (or fitness) of the sam-
ple for the recognition task. Several types of FIQA tech-
niques have been proposed over the years. The largest
group focuses on training regression models from calcu-
lated pseudo reference quality labels [7, 17, 32, 43], with
differences between methods in how they calculate the la-
bels. Other approaches include (unsupervised) analytical
methods [3, 28, 39] that use reference-free approaches for
quality prediction, and model-based solutions [5,30,38] that
combine the face recognition and quality assessment tasks.
While modern FIQA techniques have demonstrated impres-
sive performance, providing reliable quality predictions for
diverse facial characteristics is still a challenging task.

In this paper, we introduce a novel FIQA technique,
called DifFIQA (Diffusion-based Face Image Quality Ass-
essment), that leverages the image-generation versatil-
ity of modern Denoising Diffusion Probabilistic Models
(DDPMs) for face quality assessment and generalizes well
across a wide variety of datasets and FR models. As shown
in Figure 1, DifFIQA is based on the following two insights:

• Perturbation robustness: Images of higher-quality
have stable representations in the embedding space of
the given FR model and are less effected by noise per-
turbations introduced by the forward diffusion process.

• Reconstruction quality: High-quality samples are
easier to reconstruct from partially corrupted (noisy)
data with incomplete identity information and exhibit
less disparity between the embeddings of the input and
denoised samples than low-quality images.

Based on these observations, DifFIQA analyzes the embed-
ding stability of the input image by perturbing it through the
forward as well as backward diffusion process and infers a
quality score from the result. To avoid the computationally
expensive backward process and speed up computation, we
also distill the DifFIQA approach into a regression-based
model, termed DifFIQA(R). We evaluate both techniques
through extensive experiments over multiple datasets and
FR models, and show that both techniques lead to highly
competitive results when compared to the state-of-the-art.

2. Related Work
In this section, we briefly review existing FIQA solu-

tions, which can conveniently be partitioned into three main
groups: (i) analytical techniques, (ii) regression-based ap-
proaches, and (iii) model-based methods.
Analytical methods. The vast majority of methods from
this group can be viewed as specialized general-purpose
IQA techniques that focus on quality predictions defined
by (i) selected visual characteristics of faces, such as pose,
symmetry or interocular distance, and/or (ii) general vi-
sual image properties, such as sharpness, illumination, or
noise. An early method from this group was presented by

Raghavendra et al. in [33], where a three stage approach
combining pose, and image texture components was pro-
posed. Another method by Lijun et al. [28] combined sev-
eral face-image characteristics, including alignment, occlu-
sion and pose, into a pipeline for quality score calculation.
Several conceptually similar approaches that exploit differ-
ent (explicit) visual cues have been presented in the liter-
ature over the years [12, 14, 23, 31]. However, the perfor-
mance of such methods is typically limited, as they focus
only on the characteristics of the input samples, with no re-
gard to the utilized FR model. Nevertheless, a new group
of analytical methods has recently emerged that incorpo-
rates information from both, the input face sample as well
as the targeted FR system into the quality estimation pro-
cess. An example of such an approach was presented by
Terhörst et al. [39] in the form of the SER-FIQ technique.
SER-FIQ calculates a quality score from the embedding
variations of a given input face sample, caused by using dif-
ferent configurations of dropout layers. Another method,
called FaceQAN by Babnik et al. [3], relies on adversarial
attacks (which are harder to generate for high quality im-
ages) to calculate quality scores. Both of these methods
achieve excellent results, but are also comparably computa-
tionally demanding, due to their reliance on running several
instances of the same sample through the given FR model.

Regression-based methods. FIQA techniques from this
group typically train a (quality) regression model using
some sort of (pseudo) quality labels. Regression-based
methods have received considerable attention over recent
years, with most of the research exploring effective mech-
anisms for generating informative pseudo quality annota-
tions. An early technique from this group, by Best-Rowden
and Jain [4], for example, used human raters to annotate
the (perceived) quality of facial images, and then trained a
quality predictor on the resulting quality labels. Another
technique, named FaceQnet [16, 17], relied on embedding
comparisons with the highest quality image of each individ-
ual to estimate reference quality scores. Here, the highest
quality images of each individual were determined using an
external quality compliance tool and a ResNet-based regres-
sor was then trained on the extracted quality labels. A more
recent approach, called PCNet [43], used a large number
of mated image pairs (i.e., a pair of distinct images of the
same individual), to train a CNN-based regression model,
where the quality labels were defined by the embedding
similarity of the mated pairs. The SDD-FIQA approach,
by Ou et al. [32], extended this concept to also include
non-mated (impostor) pairs, (i.e., two unique images of dif-
ferent individuals), where the label for a single image was
computed as the Wasserstein distance between the mated
and non-mated score distributions. LightQNet, by Chen et
al. [7], trained a lightweight model, by employing an iden-
tification quality loss using quality scores computed from
various image comparisons. While regression-based meth-



Figure 2. Overview of DifFIQA. The proposed quality assessment pipeline consists of two main parts: the Diffusion Process and the
Quality-Score Calculation. The diffusion process uses an encoder-decoder UNet model (D), trained using an extended DDPM training
scheme, that helps to generate higher-quality (restored) images. The custom DDPM model is used in the Diffusion Process, which generates
noisy xt and reconstructed x̂ images using the forward and backward diffusion processes, respectively. To capture the effect of facial pose
on the quality estimation procedure, the process is repeated with a horizontally flipped image xf . The Quality Score Calculation part then
produces and compares the embeddings of the original images and the images generated by the diffusion part.

ods in general perform well over a variety of benchmarks
and state-of-the-art FR models, their main weakness is the
lack of specialization. As the optimal quality estimate for a
given input image, is by definition FR model specific [2,21],
regression-based techniques may require retraining towards
the targeted FR model to ensure ideal performance.

Model-based methods. The last group of techniques com-
bines face-image quality assessment and face recognition
into a single task. One such technique, PFE by Shi and
Jain [38], learned to predict a pair of vectors from the in-
put image, i.e., a mean and a variance vector. The mean
vector can be thought of as the embedding of the input sam-
ple image, while the variance vector represents the sample’s
variability, and can be used to calculate the sample quality.
The presented method inspired several new (uncertainty-
aware) methods [8, 27, 45], further improving on the per-
formance of PFE. Another notable technique, called Mag-
Face [30], extended the popular ArcFace loss [10] by in-
corporating a magnitude-aware angular margin term, which
dynamically adjusts class boundaries. The embeddings pro-
duced by MagFace encode quality in the magnitude of the
embedding itself, and can hence be easily inferred. A pow-
erful FIQA technique, called the CR-FIQA, was recently
proposed by Boutros et al. in [5]. CR-FIQA calculates the
quality of the input samples as the ratio between the positive
class center and nearest negative class center in a classifica-
tion task setting, and was demonstrated to produce highly
competitive results across various datasets and settings.

Our contribution. The DifFIQA technique, the main con-
tribution of this work, can be seen as an analytical method
that relies on the capabilities of a DDPM in combination
with a chosen FR model. From a conceptual point of view, it
is most closely related to FaceQgen [15], a FIQA technique
that uses a (GAN-based) generator model for synthesizing
high-quality versions of the input samples and the respec-
tive discriminator (that aims to distinguish between genuine
high-quality images and poorly restored ones) for quality
scoring. Unlike FaceQgen, which analyzes the differences

between the original and restored images independently of
the target FR model, DifFIQA utilizes results from the for-
ward (i.e., noising/degradation) as well as backward (de-
noising/restoration) diffusion processes and quantifies the
embedding variability/uncertainty in the embedding space
of a selected FR model for quality estimation. As we show
later in the experimental section, this leads to highly com-
petitive FIQA results when compared to the state-of-the-art.

3. Methodology
The stability of the image representations in the embed-

ding space of a given FR model is highly indicative of the
input-image quality, as demonstrated by the success of var-
ious recent FIQA techniques [3, 39]. One way to explore
this stability is by causing perturbations in the image space
and analyzing the impact of the perturbations in the embed-
ding space of the targeted FR model. This can, for example,
be achieved by using the forward and backward processes
of modern diffusion approaches where: the forward process
adds some amount of noise to the sample, and the backward
process tries to remove the noise, by reconstructing the orig-
inal. Our main contribution, the DifFIQA technique, takes
advantage of the proposed idea, as illustrated in Figure 2,
and employs a custom DDPM model for the generation of
noisy and reconstructed images. The generated images are
then passed through a chosen FR model to explore the im-
pact of the perturbations on the variability of the embedding
corresponding to the input image.

3.1. Preliminaries
To make the paper self-contained, we briefly present the

main concept behind denoising diffusion probabilistic mod-
els (DDPMs), with a focus on their application within our
approach. More information on the theoretical background
and applications of diffusion models can be found in [9].

In general, DDPMs represent a special type of genera-
tive model that learns to model (image) data distributions
through two types of processes: a forward (noising) process



and backward (denoising) process [9,22]. The forward dif-
fusion process Fd iteratively adds noise to the given in-
put image x0, by sampling from a Gaussian distribution
N (0, I). The result of this process is a noisy sample xt,
where t is the number of time steps chosen from the se-
quence {0, 1, . . . , T}. The whole forward process Fd can
be presented as a Markov chain given by

q(xt|xt−1) = N (xt|xt−1

√
1− βt, βtI), (1)

where βt is a variance parameter that defines how much
noise is added to the sample at the time instance t of the
forward process. By making use of the reparameterization
trick [18, 25], any sample xt can be obtained directly from
the input sample x0, i.e.:

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I), (2)

where αt =
∏t

i=0(1− βi).
The backward diffusion process Bd attempts to itera-

tively denoise the generated samples xt, using a deep neural
network model Dθ parameterized by θ, according to

p(xt−1|xt) = N (xt−1;µθ(xt, t), β̃tI), (3)

where t = T, . . . , 0, β̃t =
1−αt−1

1−αt
βt, and

µθ(xt, t) =

√
αt−1βt

1− αt
x0 +

√
αt(1− αt−1)

1− αt
xt. (4)

The network is trained to optimize µθ, by minimizing the
L2 loss

L2 = Et,x0
||Dθ(xt, t)− x0||2, (5)

where Dθ(xt, t) is the reconstructed and x0 the input im-
age. In the remainder of the paper, we drop the subscript
θ and use D to denote the deep neural network, which is
represented by an unconditional UNet model.

3.2. Overview of DifFIQA
Given a face image x, the goal of DifFIQA is to estimate

the quality score qx ∈ R, by exploring the effects of the for-
ward and backward diffusion processes of a custom DDPM
model D on the image representation ex in the embedding
space of a given FR model M . DifFIQA consists of two
main steps, dedicated to: (i) image perturbation and (ii)
quality-score calculation. The image perturbation step uses
the forward diffusion process Fd to create a noisy sample xt

from the input image x and the backward process Bd to gen-
erate the restored (denoised) image x̂. In the quality-score
calculation step, the representations ex, ext

, ex̂ correspond-
ing to the input x, noisy xt and restored image x̂, are calcu-
lated using the FR model M and then analyzed for dispari-
ties to infer the final quality score qx of the input sample x.
To also capture pose-related quality information, DifFIQA
repeats the entire process using a horizontally flipped ver-
sion xf of the input image x, as also illustrated in Figure 2.

Figure 3. Presentation of the extended DDPM learning scheme.
Given a training sample x and a time step t, the proposed approach
generates a time step dependent degraded image x′

t, by combining
the original with a degraded image using the function Y . The im-
age x′

t is then used to generate a noisy sample xt using the stan-
dard forward diffusion approach Fd. A UNet (D) is then trained
to reconstruct the input sample in the backward process Bd.

3.3. Extended DDPM Training

To train the DDPM model D (i.e., a UNet [34]) needed
by DifFIQA, we extend the standard training process of dif-
fusion models to incorporate time dependent image degra-
dations, as illustrated in Figure 3. These additional (time-
dependent) degradations allow the model to learn to grad-
ually reverse these degradations and, in turn, to construct
higher quality images during the backward process. For-
mally, given an input face image x0 = x, the training pro-
cedure first constructs a degraded image x′ = d(x), where
d(·) is some degradation function. A time step t ∈ [0, T ]
is then selected for the given sample, from which a time-
dependent degraded image is computed as follows:

x′
t = Y (x0, x

′, t) = (1− α̈t)x0 + α̈tx
′ (6)

where α̈t is calculated as sin( t
T · π

2 ). The degraded image
x′
t is then used to produce the noisy sample xt using (2).

Here, α̈t is a time-dependent variable that monotonically
increases on the interval t ∈ [0, T ], such that α̈t=0 = 0 and
α̈t=T = 1. In other words, at time step 0 only the non-
degraded image is considered, while at time step T only the
degraded image is considered. To implement the degrada-
tion function d(·), we use part of the BSRGAN [44] frame-
work that creates a random sequence of image mappings
that imitate real-life degradations.

Diffusion models are commonly trained on the full range
of time steps [1, T ] and learn to generate images from pure
noise. However, such a setting is not relevant in the context
of quality assessments, as the generated (denoised) images
have to exhibit a sufficient correspondence with the input
samples x. The easiest solution to this issue is to limit the
number of time steps, on which the model is trained t ∈
[1, T ′], where T ′ < T , and, in turn, ensure that the noisy
image is properly conditioned on the input x. The extended
training procedure then minimizes (5) until convergence.

3.4. Generating Noisy and Reconstructed Images

To estimate the quality of a given face image x, DifFIQA
makes use of the forward and backward diffusion processes
of the trained DDPM. Because head pose is an important
factor of face quality, which the underlying DDPM can not



Table 1. Summary of the characteristics of the experimental
datasets. We evaluate DifFIQA across seven diverse datasets with
different quality factors and of different size.

Dataset #Images #IDs #Comparisons Main Quality Factors†‡

Mated Non-mated Pose O-E B-R-N Sc

Adience [11] 19,370 2,284 20,000 20,000 M M L M
CALFW [47] 12,174 4,025 3,000 3,000 M M L M
CFP-FP [37] 7,000 500 3,500 3,500 H L L M
CPLFW [46] 11,652 3,930 3,000 3,000 H L M M
IJB-C [29] 23,124†† 3,531 19,557 15,638,932 H H H Lr
LFW [19] 13,233 5,749 3,000 3,000 L L L M
XQLFW [26] 13,233 5,749 3,000 3,000 L L H M
†O-E - Occlusion, Expression; B-R-N - Blur, Resolution, Noise; Sc - Scale.
‡L - Low; M - Medium; H - High; Lr - Large; Values estimated subjectively by the authors.
†† number of templates, each containing several images

explicitly account for, we extend our methodology, by first
constructing a horizontally flipped image xf that we utilize
alongside the original image x in the quality-score calcula-
tion step, similarly to [3]. The main intuition behind this
approach is to exploit the symmetry of human faces, where
large deviations from frontal pose induce large disparities
between the embeddings of the original and flipped images
that can be quantified during quality estimation. Thus, for
a pair of input face images (x, xf ) and a given time step t,
we construct a pair of noisy (xt, x

f
t ) and restored images

(x̂, x̂f ) and use the generated data for quality estimation.

3.5. Quality-Score Calculation
DifFIQA relies on the assumption that the embeddings

of lower-quality images are more sensitive to image per-
turbations introduced by the forward and backward diffu-
sion processes than higher-quality images. To quantify this
sensitivity, we calculate the average cosine similarity be-
tween the embedding of the input image x and all generated
noisy and restored counterparts. Additionally, since diffu-
sion models rely on the (random) sampling from a normal
distribution, we repeat the whole process n times and aver-
age the results, i.e.,

qx =
1

n|E|

n∑
i=1

∑
ey∈E

eTx ey
∥ex∥ · ∥ey∥

, (7)

where E is a set of generated image embeddings, i.e, E =
{ext

, ex̂, exf , exf
t
, ex̂f }, computed with the FR model M as

ez = M(xz). In the above equation, the operator |·| denotes
the set cardinality and ∥ · ∥ the L2 norm.

3.6. Model Distillation
One of the main shortcomings of DifFIQA (and diffu-

sion models in general) is the high computational complex-
ity compared to other types of FIQA techniques. This com-
plexity stems from the iterative nature of the backward dif-
fusion process, which requires a large number of forward
passes through the generative network. Since our approach
repeats this process n-times, this only exacerbates the prob-
lem and adversely affects the applicability of the technique
in real-world applications. To address this problem, we

distill the knowledge encoded by DifFIQA into a regres-
sion model. Specifically, we select a pretrained CosFace
FR model augmented with a (quality) regression head and
fine-tune it on roughly two million quality labels extracted
from the VGGFace2 [6] dataset using the proposed Dif-
FIQA technique. Here, the labels are normalized to [0, 1]
and then split into train and validation sets for the training
procedure. We refer to the distilled CosFace model as Dif-
FIQA(R) hereafter, and evaluate it together with the original
DifFIQA technique in the following sections.

4. Experiments and Results
4.1. Experimental Setup

Experimental setting. We analyze the performance of Dif-
FIQA in comparison to 10 state-of-the-art FIQA methods:
(i) the analytical FaceQAN [3], SER-FIQ [39], and FaceQ-
gen [15] models, (ii) the regression-based FaceQnet [17],
SDD-FIQA [32], PCNet [43], and LightQnet [7] tech-
niques, and (iii) the model-based MagFace [30], PFE [38],
and CR-FIQA [5] methods. We test all methods on 7 com-
monly used benchmarks with different quality characteris-
tics, as summarized in Table 1, i.e.: Adience [11], Cross-
Age Labeled Faces in the Wild (CALFW) [47], Celebri-
ties in Frontal-Profile in the Wild (CFP-FP) [37], Cross-
Pose Labeled Faces in the Wild (CPLFW) [46], large-scale
IARPA Janus Benchmark C (IJB-C) [29], Labeled Faces in
the Wild (LFW) [19] and the Cross-Quality Labeled Faces
in the Wild (XQLFW) [26]. Because the performance of
FIQA techniques is dependent on the FR model used, we
investigate how well the techniques generalize over 4 state-
of-the-art models, i.e.: AdaFace1 [24], ArcFace2 [10], Cos-
Face2 [42], and CurricularFace3 [20] - all named after their
training losses. All FR models use a ResNet100 back-
bone, and are trained on the WebFace12M1, MS1MV32,
Glint360k2, and CASIA-WebFace3 datasets.
Evaluation methodology. Following standard evaluation
methology [3, 5, 39] and taking recent insights into ac-
count [21, 36], we evaluate the performance of DifFIQA
using non-interpolated Error-versus-Discard Characteristic
(EDC) curves (often also referred to as Error-versus-Reject
Characteristic or ERC curves in the literature) and the con-
sequent pAUC (partial Area Under the Curve) values. The
EDC curves measure the False Non-Match Rate (FNMR),
given a predefined False Match Rate (FMR) (10−3 in our
case), with increasing low-quality image discard (reject)
rates. In other words, EDC curves measure how the perfor-
mance of a given FR model improves when some percent-
age of the lowest quality images is discarded. Since reject-
ing a large percentage of all samples is not feasible/practical
in real-world application scenarios, we are typically most

1https://github.com/mk-minchul/AdaFace
2https://github.com/deepinsight/insightface
3https://github.com/HuangYG123/CurricularFace
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Figure 4. Comparison to the state-of-the-art with (non-interpolated) EDC curves. Results are presented for 7 datasets, 4 FR models and
with 10 recent FIQA competitors. Observe how the distilled model performs comparably to the non-distilled one, especially at low discard
rates. DifFIQA and DifFIQA(R) most convincingly outperform the competitors on the most challenging IJB-C and XQLFW datasets.

interested in the performance at the lower discard rates. For
this reason we report the pAUC values, where only the re-
sults up to a predetermined drop rate threshold are consid-
ered. Furthermore, for easier interpretation and compari-
son of scores over different dataset, we normalize the cal-
culated pAUC values using the FNMR at 0% discard rate,
with lower pAUC values indicating better performance.

Implementation Details. During training of the DDPM,
the maximum number of forward steps is set to T = 1000,

yet the underlying model is trained only using up to T ′ =
100 forward diffusion steps. The value of T ′ does not de-
fine the number of time steps t taken at inference time, it
only sets the possible upper bound. This process ensures
that images produced by the forward process are only par-
tially noisy, so the backward process is properly conditioned
on the input image and learns to restore it during training.
To account for the randomness introduced by the forward
process, we repeat the diffusion process n = 10 times and
average the results over all iterations, when computing the



final quality score. The utilized UNet model (D) consists
of four downsampling and upsampling modules, each de-
creasing (increasing) the dimensions of the representations
by a factor of two. Training is done using the Adam opti-
mizer, with a learning rate of 8.0e−5 in combination with
an Exponential Moving Average (EMA) model, with a de-
cay rate of 0.995. The presented hyperparameters were de-
termined through preliminary experiments on hold-out data
to ensure a reasonable trade-off between training speed and
reproducible performance. All experiments were conducted
on a desktop PC with an Intel i9-10900KF CPU, 64 GB of
RAM and an Nvidia 3090 GPU.

4.2. Comparison with the State-of-the-Art
In this section, we compare DifFIQA and the distilled

version, DifFIQA(R), with ten state-of-the-art competitors
and analyze: (i) the performance characteristics of the
tested techniques, and (ii) their runtime complexity.
Performance analysis. In Figure 4, we show the (non-
interpolated) EDC curves for all tested FR models and
datasets, and report the corresponding pAUC scores in Ta-
ble 2. Following the suggestions in [21,36], we chose a dis-
card rate of 0.3, when calculating the pAUC values, but also
report additional results in the supplementary material. The
experiments are split into the Cross- and Same-Model sce-
narios. In the Cross-Model scenario the model used to
produce the quality score and the model used for evaluation
differ, while in the Same-Model scenario the used mod-
els are the same. We observe that the proposed diffusion-
based FIQA techniques result in highly competitive per-
formance across all datasets and FR models. The distilled
DifFIQA(R) model, for example, leads to the lowest aver-
age pAUC score with the ArcFace and CosFace FR mod-
els, and is the runner-up with the AdaFace and Curricular-
Face models with pAUC scores comparable to the top per-
former CR-FIQA4. Several interesting findings can be made
from the reported results, e.g.: (i) While the performance of
DifFIQA and DifFIQA(R) is in general close, the distilled
version has a slight edge over the original, which suggests
that the distillation process infuses some additional infor-
mation into the FIQA procedure through the FR-based re-
gression model; (ii) The proposed FIQA models are partic-
ularly competitive on the difficult large-scale IJB-C dataset,
where the DifFIQA(R) approach consistently outperforms
all competing baseline models. A similar observation can
also be made for the XQLFW dataset, where the diffusion-
based models are again the top performers, which speaks of
the effectiveness of diffusion-based quality estimation.
Runtime complexity. In Table 3, we compare the runtime
complexity of the evaluated FIQA techniques (in ms). To
ensure a fair comparison, we utilize (i) the same experimen-
tal hardware for all methods (described in Section 4.1), (ii)

4In the supplementary material we show that with a discard rate of
0.2, DifFIQA(R) is the top performer with 3 of the 4 FR models.

Table 2. Comparison to the state-of-the-art. The table reports
pAUC scores at a discard rate of 0.3 and a FMR of 10−3. Average
results across all datasets are marked pAUC. The best result for
each dataset is shown in bold, the overall best result is colored
green, the second best blue and the third best red.

FIQA model Adience CALFW CFP-FP CPLFW IJB-C LFW XQLFW pAUC

FaceQnet [17] 0.963 0.938 0.717 0.887 1.256 0.884 0.977 0.946
SDD-FIQA [32] 0.839 0.871 0.500 0.688 0.782 0.825 0.842 0.764
PFE [38] 0.833 0.890 0.566 0.681 0.868 0.771 0.798 0.772
PCNet [43] 1.005 0.979 0.862 0.898 0.788 0.661 0.987 0.883
MagFace [30] 0.860 0.866 0.524 0.664 0.883 0.666 0.913 0.768
LightQNet [7] 0.847 0.894 0.641 0.684 0.797 0.777 0.704 0.763
SER-FIQ† [40] 0.807 0.892 0.475 0.626 0.762 0.935 n/a 0.749
FaceQAN [3] 0.890 0.919 0.383 0.619 0.756 0.656 0.654 0.697
CR-FIQA [5] 0.844 0.851 0.391 0.588 0.750 0.707 0.684 0.688
FaceQgen [15] 0.858 0.970 0.718 0.694 0.853 0.834 0.736 0.809

DifFIQA (ours) 0.864 0.900 0.416 0.608 0.761 0.719 0.627 0.699
DifFIQA(R) (ours) 0.865 0.895 0.412 0.601 0.731 0.708 0.610 0.689

FIQA model Adience CALFW CFP-FP CPLFW IJB-C LFW XQLFW pAUC

FaceQnet [17] 0.943 0.955 0.693 0.878 1.224 0.884 0.899 0.925
SDD-FIQA [32] 0.783 0.901 0.491 0.734 0.720 0.808 0.774 0.744
PFE [38] 0.774 0.932 0.524 0.738 0.783 0.779 0.641 0.739
PCNet [43] 1.022 1.006 0.868 0.783 0.706 0.623 1.004 0.859
MagFace [30] 0.812 0.902 0.549 0.717 0.824 0.635 0.943 0.769
LightQNet [7] 0.789 0.913 0.612 0.752 0.721 0.745 0.621 0.736
SER-FIQ† [39] 0.767 0.903 0.416 0.656 0.671 0.935 n/a 0.724
FaceQAN [3] 0.824 0.941 0.373 0.677 0.673 0.624 0.581 0.670
CR-FIQA [5] 0.808 0.891 0.358 0.689 0.664 0.675 0.642 0.675
FaceQgen [15] 0.817 0.985 0.784 0.701 0.785 0.802 0.653 0.789

DifFIQA (ours) 0.805 0.900 0.399 0.647 0.675 0.695 0.546 0.667
DifFIQA(R) (ours) 0.801 0.898 0.389 0.646 0.655 0.708 0.554 0.665

FIQA model Adience CALFW CFP-FP CPLFW IJB-C LFW XQLFW pAUC

FaceQnet [17] 0.921 0.947 0.601 0.867 1.248 0.908 0.984 0.925
SDD-FIQA [32] 0.776 0.900 0.409 0.696 0.721 0.821 0.817 0.734
PFE [38] 0.759 0.923 0.415 0.691 0.784 0.785 0.835 0.742
PCNet [43] 1.004 0.996 0.887 0.899 0.710 0.656 0.938 0.870
MagFace [30] 0.793 0.892 0.477 0.689 0.821 0.661 0.862 0.742
LightQNet [7] 0.769 0.910 0.462 0.704 0.713 0.767 0.739 0.723
SER-FIQ† [39] 0.750 0.883 0.389 0.625 0.661 0.942 n/a 0.708
FaceQAN [3] 0.811 0.931 0.343 0.637 0.669 0.644 0.835 0.696
CR-FIQA [5] 0.797 0.877 0.318 0.615 0.664 0.693 0.789 0.679
FaceQgen [15] 0.815 0.974 0.662 0.698 0.783 0.845 0.750 0.790

DifFIQA (ours) 0.806 0.884 0.384 0.624 0.672 0.711 0.736 0.688
DifFIQA(R) (ours) 0.788 0.892 0.358 0.622 0.644 0.724 0.768 0.685

CosFace - pAUC@FMR=10−3(↓)

FIQA model Adience CALFW CFP-FP CPLFW IJB-C LFW XQLFW pAUC

FaceQnet [17] 0.952 0.955 0.693 0.879 1.248 0.884 0.899 0.930
SDD-FIQA [32] 0.825 0.901 0.491 0.735 0.721 0.808 0.774 0.751
PFE [38] 0.813 0.932 0.524 0.748 0.784 0.779 0.641 0.746
PCNet [43] 1.009 1.006 0.868 0.835 0.710 0.623 1.004 0.865
MagFace [30] 0.852 0.902 0.549 0.724 0.821 0.635 0.943 0.775
LightQNet [7] 0.835 0.913 0.612 0.753 0.713 0.745 0.621 0.742
SER-FIQ† [39] 0.793 0.903 0.416 0.711 0.661 0.935 n/a 0.736
FaceQAN [3] 0.871 0.941 0.373 0.667 0.675 0.624 0.581 0.676
CR-FIQA [5] 0.835 0.891 0.358 0.681 0.664 0.675 0.642 0.678
FaceQgen [15] 0.847 0.985 0.784 0.702 0.783 0.802 0.653 0.794

DifFIQA (ours) 0.841 0.900 0.399 0.669 0.672 0.695 0.546 0.675
DifFIQA(R) (ours) 0.838 0.900 0.389 0.669 0.644 0.695 0.546 0.669

†SER-FIQ was used to create XQLFW, so the results here are not reported for a fair comparison.
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use the official code, released by the authors for all tech-
niques, and (iii) compute average runtimes and standard
deviations over the entire XQLFW dataset. As can be seen,
the original approach, DifFIQA, despite being highly com-
petitive in terms of performance, is among the most com-
putationally demanding due to the use of the complex dif-
fusion processes. With around 1s on average per image,
the runtime complexity of the model is even significantly
higher than that of the FaceQAN or SER-FIQ techniques
that require multiple passes through their networks to esti-
mate quality and which are already among the slower FIQA
models. However, the distillation process, allows to reduce
the runtime by roughly three orders of magnitude (or by
99, 9%), making the distilled DifFIQA(R) comparable to
the faster models evaluated in this experiment.



Table 3. Runtime complexity. The reported results (in ms) were computed over the XQLFW dataset and the same experimental hardware.
Note how the destillation process leads to a speed-up of more than three orders of magnitude from DifFIQA to DifFIQA(R).

FIQA model FaceQnet [17] SDD-FIQA [32] PFE [38] PCNet [43] MagFace [30] LightQNet [7] SER-FIQ [39] FaceQAN [3] CR-FIQA [5] FaceQgen [15] Ours

DifFIQA DifFIQA(R)

Runtime (µ± σ) 42.11± 2.14 0.62± 0.36 42.69± 12.26 17.06± 0.34 1.08± 0.36 18.54± 18.68 112.93± 33.81 334.13± 118.79 0.15± 0.37 42.11± 2.05 1074.62± 11.45 1.24± 0.36

Table 4. Results of the ablation study. The results are reported in
terms of pAUC (↓) at a FMR of 10−3 and a discard rate of 0.3.

Model variant LFW CPLFW CALFW XQLFW pAUC

(A1): w/o Image Flipping 0.702 0.727 0.888 0.535 0.713
(A2): w/o Forward Pass 0.730 0.684 0.897 0.531 0.710
(A3): DifFIQA (t = 20) 0.657 0.694 0.945 0.628 0.731

DifFIQA (complete) 0.695 0.669 0.900 0.546 0.702
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Figure 5. Quality-score distributions. DifFIQA and DifFIQA(R)
produce very consistent distributions over all seven test datasets.

4.3. Ablation Study

We perform several ablation studies to explore the im-
pact of the main components of DifFIQA. Specifically, we
are interested in: (A1) the impact of the flipping proce-
dure, utilized to capture pose-related quality factors, (A2)
the contribution of the forward pass (i.e., the noising step
of the diffusion), and (A3) the impact of the number of for-
ward diffusion steps t, where a larger number corresponds
to higher amounts of noise in the image xt produced by the
forward process. Because the ablations are only relevant for
the (non-distilled) approach, we experiment solely with the
DifFIQA technique and report results using the CosFace FR
model and four datasets that feature a broad range of quality
characteritics, i.e., LFW, CPLFW, CALFW and XQLFW.

From the results in Table 4, we observe that the exclusion
of the flipping operation significantly degrades performance
on the cross-pose (CPLFW) dataset, while contributing to
minor improvements on CALFW and XQLFW. However,
given that pose is considered one of the main factors still ad-
versely affecting modern FR models, the flipping operation
still helps with the performance across all the test datasets
(see average A1 results). When removing the forward pass
(in A2), we again see considerable performance drops on
LFW and CPLFW, leading to lower average pAUC scores.
This suggest that both (forward and backward) processes
are important for good results across different datasets. Fi-
nally, we see that lesser amounts of noise and stronger con-
ditioning on the input images leads to better results as evi-
denced by the A3 results with our model with 20 timesteps,
instead of the 5 utilized in the complete DifFIQA approach.

Figure 6. Illustration of the quality scores produced by the pro-
posed FIQA techniques. The scores on the top shows results for
DifFIQA and the scores at the bottom for DifFIQA(R). While the
concrete scores differ, both models generate similar rankings.

4.4. Qualitative Evaluation

While the proposed DifFIQA approach has a sound the-
oretical basis that links the forward and backward diffu-
sion processes to face-image quality, the distilled variant
abstracts this relation away and approaches the FIQA task
from a pure learning perspective. To get better insight into
the characteristics of both models, we investigate in this sec-
tion their behavior in a qualitative manner.
Quality-score distributions. In Figure 5, we compare the
quality-score distributions, generated by DifFIQA and Dif-
FIQA(R) on all seven test datasets. As can be seen, the
two models produce very similar distributions, with a slight
preference of DifFIQA(R) towards higher quality scores.
Visual analysis. In Figure 6, we show sample images from
XQLFW and the corresponding quality scores, generated
by DifFIQA and DifFIQA(R). Note that both approaches
produce a similar ranking but differ in the concrete quality
score assigned to a given image. Interestingly, some blurry
images with low (human-perceived) visual quality receive
relatively high quality scores, as they feature frontal faces
that may still be useful for recognition purposes. Additional
qualitative results that illustrate the capabilties of the Dif-
FIQA model are also shown on the right part of Figure 1.

5. Conclusion
We have presented a novel FIQA approach, called Dif-

FIQA, that uses denoising diffusion probabilistic models
as the basis for quality estimation. Through comprehen-
sive experiments on multiple datasets we showed that the
proposed model yields highly competitive results, when
benchmarked against current state-of-the-art techniques and
that the runtime performance can be reduced significantly
if the model is distilled into a quality predictor through a
regression-based procedure. Going forward, we plan to in-
vestigate extensions to our model, including transformer-
based UNet alternatives and latent diffusion processes.
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