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Abstract. We introduce a novel strategy for obstacle avoidance in aqua-
tic settings, using anomaly detection for quick deployment of autonomous
water vehicles in limited geographic areas. The unmanned surface vehi-
cle (USV) is initially manually navigated to collect training data. The
learning phase involves three steps: learning imaging modality specifics,
learning the obstacle-free environment using collected data, and setting
obstacle detector sensitivity with images containing water obstacles. This
approach, which we call cascaded datasets, works with different image
modalities and environments without extensive marine-specific data. Re-
sults are demonstrated with LWIR and RGB images from river missions.

Keywords: unmanned vehicles · USV · obstacle avoidance · anomaly
detection

1 Introduction

Obstacle detection is crucial for autonomous vehicles. Unmanned robotic surface
vehicles (USVs) can use various sensors, like RGB cameras [37], sometimes in
stereo depth configuration [32], RADAR [35], LIDAR [23, 41], and SONAR [20].
Cameras are appealing for their cost and superficial similarity to human per-
ception, but require substantial image processing, which falls in the domain of
computer vision.

Cameras’ main drawback is their sensitivity to environmental variations.
However, lately data-driven algorithms and deep neural networks (DNN) im-
proved obstacle detection in marine environments [5, 29, 33], but require exten-
sive annotations [46].

We propose semi-supervised learning for water obstacle detection, specifically
anomaly detection in a one-class learning setting [42, 3, 39]. This approach trains
on normal data and detects anomalies as non-conforming samples. Many, (but
not all) USVs are expected to operate in limited geographical domains, allowing
one-class learning and anomaly detection.
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Fig. 1. Left: Obstacle avoidance through anomaly detection has three learnable com-
ponents [(1), (2), (3)]. This approach allows separate learning using datasets without
marine environments (1), obstacles (2), and with minimal detailed obstacle annotations
(3). Right: Obstacle detection examples using one-class learning anomaly detector CS-
Flow [39]: in the right-upper image correctly detects a bridge, while in the right-lower
image detects a floating dock and a riverbank house.

Our contributions include: i) a novel strategy for water obstacle detection
with limited annotated data, ii) a new approach to training with limited marine
data, iii) evaluation of recent SOTA anomaly detection algorithms in realistic
USV scenarios, and iv) comparison of a fully-supervised SOTA segmentation
algorithm [6] with our approach.

2 Related work

We review works using image data and computer vision for water obstacle detec-
tion, followed by literature on semi-supervised learning for anomaly detection,
which avoids laborious annotation.

2.1 Detection of water obstacles

Detecting water obstacles under varying weather conditions is challenging. Early
research used hand-crafted methods [49, 22], while SOTA approaches leverage
deep learning for more discriminative models. Many works [28, 31, 51] propose
CNNs for vessel detection and classification. However, these don’t generalize well
and fail to recognize arbitrary objects.

Recent algorithms use neural networks for semantic segmentation. Cane et
al. [10] and Bovcon et al. [7] applied segmentation models to marine data, while
Kim et al. [26], Zhan et al. [55], and Steccanella et al. [43] proposed adapted seg-
mentation architectures. The SOTA method [6] estimates water horizon location,
fusing inertial information with RGB data. A time-efficient model is presented
in [52]. Segmentation-based models require massive annotated data, posing a
limitation, especially for less popular image modalities [33].
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2.2 Anomaly detection in one–class learning setting

Anomaly detection in industrial applications motivated one-class learning algo-
rithms, trained using only normal data samples [40, 42, 1]. Reconstruction-based
deep learning models use auto-encoder architectures, improved by pretext learn-
ing objectives [15, 34, 54, 19, 2, 21, 45].

Recent one-class anomaly detectors utilize pre-trained classification networks
like VGG16, ResNet, and EfficientNet as backbone models. Defard et al. [13]
proposed modeling pre-extracted features using a multivariate Gaussian distri-
bution. Others pursued shallow approaches [38, 11], knowledge distillation [30,
4, 47], or invertible neural networks [39, 18, 53] to construct flexible probability
distributions of non-anomalous data.

2.3 Multi-modal data

Autonomous navigation needs multi-modal data to perform well in diverse condi-
tions, but the research into this problem is not as advanced as in RGB modality.
Nirgudkar and Robinette [33] use LWIR modality. Datasets like nuScenes [9],
Cityscapes [12], KITTI [16], and Waymo Open Dataset [50] include multiple
RGB, depth cameras, lidar, and GPS. Pedestrian detection datasets like LLVIP
[24] and CVC-14 [17] use LWIR and RGB cameras for better low-light perfor-
mance. Wang et al. [48] propose a method for anomaly detection in hyperspectral
satellite images.

3 Extension of anomaly detection to water environment

The presented solution to the obstacle detection problem as shown in Figure 1
is based on a cascade of training datasets.

3.1 Cascaded datasets

Our assumption is that the following non-overlapping image datasets are at our
disposal:

– Modality adaptation dataset: Used for training a deep CNN architecture
using a proxy task (e.g. general object detection on ImageNet). No pixel-wise
annotations needed. Used in stage (1) of our approach, as in Figure 1.

– Environment adaptation dataset: Trains the obstacle detector to the
obstacle-free environment. No data annotations needed. Images must match
the modality of the image acquisition hardware. No pixel-wise annotations
needed. Used in stage (2) of our approach, shown in Figure 1.

– Tuning dataset: Fine-tunes the model’s sensitivity to obstacles using pixel-
wise annotated images. We used 32 image items. The detection threshold T
balances true and false positives. Tuning dataset is part of the stage (3) in
Fig. 1.
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3.2 Tuning process and tuning targets

Anomaly detection algorithms yield prediction maps f(u, v), with higher values
indicating a higher certainty of anomalies. Binarization threshold T determines
the operating point of the whole system and makes the it more or less sensitive
to anomalies.

Evaluation and T tuning metrics depend on the detection model’s function-
ality. While F1-score is widely used for comparing algorithms [8, 25], FNR (the
false negative rate – the probability that the USV runs over an obstacle) and
FPR ction algorithms, FNR (the false negative rate – the probability that the
USV runs over an obstacle) and FPR (the false positive rate – the probabil-
ity that USV is unnecessarily stopped) are more intuitive. Detection goals can
change based on the USV’s location. In our approach, varying threshold T ac-
cording to a function depending on the vehicle’s GPS position could achieve
different mission goals.

4 Experiments

We based our research on the LWIR and RGB image data, that was acquired
using our own USV multi-sensor system [36], attached to a river boat. RGB and
LWIR images were recorded. 1 The image acquisition took place on a stretch of
Ljubljanica river 2, that represents predominantly natural (river,bush) environ-
ment with some urban elements.

4.1 Dataset

Data was gathered in June 2021 and September 2021. In June, only RGB images
were taken under good weather conditions, while in September, both RGB and
LWIR images were collected under cloudy conditions.

Data was organized into three main datasets: LWIRSept, RGBJune, and RG-
BSept, which were further divided into smaller subsets. These three datasets were
then further divided into 5 smaller, non-overlapping subsets, i.e. LWIRSeptem-
berNoObs, RGBJuneNoObs, both consisting of obstacle–free images and LWIRS-
eptObs, RGBJuneObs, RGBSeptObs, containing images with obstacles. Tuning
datasets, LWIRSeptObs32 and RGBJuneObs32, were created using selected im-
ages (see subsection 3.1). An overview of the datasets is presented in Table 1.
Images in some subsets don’t depict the same geographical location; subsets with
obstacles and without obstacles were obtained on different river stretches.

In our experiments, we use LWIRSeptNoObs and RGBJuneNoObs in the
role of an environment adaptation dataset (see subsection 3.1), and LWIRSep-
tObs32, RGBJuneObs32 and RGBSeptObs33 as tuning datasets. and LWIRSep-
1 Stereolabs ZED stereo camera (only the left frame) and Device A-lab SmartIR384L

thermal camera
2 Data was sampled from a section between 46.0402◦N, 14.5125◦E and 46.0234◦N,

14.5079◦E
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Table 1. Structure of our experimental dataset

Subset Images Annotated Obstacles Purpose
LWIRSeptNoObs 3263 No No Environment adaptation
LWIRSeptObs 436 Yes Yes Testing
LWIRSeptObs32 32 Yes Yes Parameter tuning
RGBJuneNoObs 600 No No Environment adaptation
RGBJuneObs 501 Yes Yes Testing
RGBJuneObs32 32 Yes Yes Parameter tuning
RGBSeptObs 521 Yes Yes Testing
RGBSeptObs33 33 Yes Yes Parameter tuning

tObs, RGBJuneObs and RGBSeptObs for the final evaluation of the trained ob-
stacle detection model. In the testing phase of the trained model, RGBJuneObs
was used to evaluate the algorithm under same weather conditions. RGBSeptObs
was on the other hand obtained under very different weather conditions, so this
dataset is used to evaluate the detection accuracy of the model in a much more
challenging scenario. Note, that our acquired data (described in Table 1) does
not provide any modality adaptation datasets. Since such images are not neces-
sarily domain–specific, any publicly available dataset, representing the imaging
modality of interest, can be used in this role. In our experiments ImageNet [14]
was used as a modality adaptation dataset for the obstacle detection in RGB im-
ages, while Teledyne FLIR Thermal Dataset [44] was used for obstacle detection
in LWIR images.

4.2 Evaluation

Our evaluation protocol is based on several assumptions, that are realistic for
USV environments and commonly used in such scenarios. We consider the per-
formance of the algorithm in the upper part of the image entirely irrelevant,
as this part of the image contains the sky, and possibly the distant shore [27].
The demarcation line between the upper and bottom part of the image can be
inferred from the inertial sensor in the vehicle, which has been shown to help
with image segmentation in marine environment before [6]. Due to the slow dy-
namic of the vessel used for image acquisition (imperceptible pitch and roll), we
evaluate our algorithms using a fixed horizontal line, as shown in Figure 2.

Fig. 2. Left: Simplified water edge annotation, straight line. Right: precise polygon-
based annotation of the water edge. The former could be easily inferred from USV’s
inertial sensor, as proposed by [6]. Our method is evaluated using both kinds of
annotations.
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In the testing phase, only the part of the image below the water edge is used
for the quantitative evaluation of the trained model. Interesting structures, such
as bridges and riverbank houses, appearing above the water edge are evaluated
only qualitatively. Two such examples are presented in the Figure 1. To exclude
all detections on the riverbank, we perform additional evaluation, using more
detailed polygon annotations.

We evaluated two different recent anomaly detection algorithms, i.e. PaDiM
[13] and CS-Flow [39]. PaDiM was tested on both, LWIR and RGB images,
whereas CS-Flow was evaluated only on RGB images.

4.3 Training

The modality adaptation stage for the RGB images was skipped in the pub-
licly available models of PaDiM and CS-Flow, since they both use a backbone
classification CNN, pre–trained on RGB images. The modality adaptation was
thus performed only for LWIR images. We trained feature extraction CNN from
scratch, using the Teledyne FLIR Thermal Dataset for Algorithm Training [44]
in object detection task as a proxy.

For the environment adaptation stage, PaDiM was trained on RGBJuneNo-
Obs and LWIRSeptNoObs subsets, to adapt it to the target river environment for
both (RGB and LWIR) camera modalities, respectively, resulting in two different
models, one for each imaging modality. CS-Flow was trained on RGBJuneNoObs
only, to adapt it to target river environment in the RGB images.

Finally, in the tuning stage, thresholds T were obtained using MODS evalu-
ation scheme [8] on RGBJuneObs32 for RGB models, and LWIRSeptObs32 for
the PaDiM model, which is adapted to LWIR images. Final threshold values
were selected based on the highest F1 score.

Comparison to state–of–the–art To provide a comparison of our method
with the fully–supervised SOTA segmentation algorithms, we used the publicly
available version of WaSR [6], pre–trained on RGB images. The algorithm was
used as an out–of–the–box method, without any modifications. Since [33] shows
that WaSR does not work on LWIR images without retraining, we did not use
it on LWIR.

5 Results

Each evaluation was performed twice, using first the straight line as annotation
of water boundary, and then for the second time, using a more accurate polygon
to delimit the water area where the evaluation is performed, as shown in Figure 2.

5.1 Testing in similar weather conditions

Both RGB models, PaDiM and CS-Flow, were tested on the RGBJuneObs sub-
set, while LWIR PaDiM was tested on LWIRSeptObs. Obtained results are re-
ported in Tables 2 and 3.

5.2 Testing in significantly different weather conditions

Both RGB adapted algorithms, were then also evaluated on RGBSeptObs, where
the weather conditions differ significantly from the RGBJuneNoObs training
dataset (see subsesction 4.1 for more deatails). As expected, these results are
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Table 2. PaDiM results on water edge annotated as polygon.

Environment adaptation Tuning Testing TP FP FN F1
LWIRSeptNoObs LWIRSeptObs32 LWIRSeptObs 496 286 399 59.2%
RGBJunNoObs RGBJunObs32 RGBJunObs 614 270 272 69.4%
RGBJunNoObs RGBJunObs32 RGBSeptObs* 38 40 1529 4.6%
* denotes different weather conditions

Table 3. PaDiM results on water edge annotated with fixed horizontal line.

Environment adaptation Tuning Testing TP FP FN F1
LWIRSeptNoObs LWIRSeptObs32 LWIRSeptObs 692 267 279 71.7%
RGBJunNoObs RGBJunObs32 RGBJunObs 1116 613 565 65.5%
RGBJunNoObs RGBJunObs32 RGBSeptObs* 52 40 2260 4.3%
* denotes different weather conditions

worse than the results obtained under similar weather conditions. Obtained met-
rics values are reported in Tables 2, 3, 4 and 5.

For each of the previously described testing scenarios we report the number
of true positives (TP), true negatives (TN), false positives (FP), and F1-score.
Finally, in Table 6 we provide results of the SOTA segmentation–based algorithm
WaSR, [6], for comparison.

From the results it can be concluded that WaSR still outperforms both
anomaly detection methods in terms of the chosen evaluation metrics. If we
compare these two methods to one another, we can see, that the CS-Flow [39]
outperforms PaDiM [13], where the distribution of data features is modelled
using a strong statistical prior. The difference is especially striking in situation
where the training data is captured in sunny weather, while the testing data is
captured in the rainy weather (Tables 2,3,4,5).

However, this comparison is not entirely fair due to different data that has
gone into training WaSR on RGB images. It needed 1320 accurately pixel-wise
annotated training images [7], and efforts to improve its generalization with
further training with diverse images from all around the world are still ongoing.
This will be difficult to repeat with many other, less widespread modalities, such
as near-infrared (NIR), LWIR (done only on geographically limited area so far),
and especially various multi-spectral cameras.

To complete the insight into the performance of the anomaly detection meth-
ods on our data, we present visual evaluation on two images, containing above-
water obstacles, as shown in Figure 1. As can be seen, these particular examples
show, that the methods successfully recognize any objects, that were not part
of domain adaptation subset, as an anomaly, which is the key advantage of the
one–class learning approach.

Table 4. CS-Flow results on water edge annotated as polygon.

Environment adaptation Tuning Testing TP FP FN F1
RGBJunNoObs RGBJunObs32 RGBJunObs 875 1438 11 54.7%
RGBJunNoObs RGBJunObs32 RGBSeptObs* 1013 1069 554 55.5%
* denotes different weather conditions
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Table 5. CS-Flow results on water edge annotated with fixed horizontal line.

Environment adaptation Tuning Testing TP FP FN F1
RGBJunNoObs RGBJunObs32 RGBJunObs 1433 924 248 71.0%
RGBJunNoObs RGBJunObs32 RGBSeptObs* 1627 861 685 67.8%
* denotes different weather conditions

Fig. 3. Comparison of obstacle detection using anomaly detection by PaDiM (left) and
WaSR (right) in the same river scene. PaDiM performs better in detecting obstacles
not fully surrounded by water, like the paddleman. WaSR’s misclassification can cause
issues for tracking or motion prediction

6 Discussion and conclusion

To summarize, an important advantage of our cascaded training approach is the
ability to split the training into three different phases, where each of them can be
served with easily obtainable dataset. In limited geographical domains, common
for many USV tasks, we simplify obstacle detection by modeling the obstacle-free
environment, redefining obstacle detection as detection of non-permanent scene
items. Our strategy is viable if environment adaptation datasets accurately repre-
sent operating conditions. Anomaly detection algorithms require varied training
data, but such images can be obtained semi-automatically without labels. Mod-
els can be retrained with new data to maintain performance, unlike supervised
segmentation models needing precise annotations.

Visual examination shows that performance of some methods might be af-
fected by overshoots in true positive detections (as seen in Figure 2). Further
development in anomaly detection methods and more detailed anomaly maps
(requiring more powerful hardware) can address this issue, localizing inconsis-
tencies more precisely.

Different nature of detected obstacles. Our framework uses anomaly
detection for obstacle detection, which is of a different nature than discriminative
methods like WaSR [6]. Riverbank features aren’t considered obstacles; USVs

Table 6. WaSR results for both types of water edge annotation.

Fixed line water edge Polygon water edge
Testing TP FP FN F1 TP FP FN F1
RGBJunObs 1679 179 2 94.9% 884 0 2 99.9%
RGBSeptObs 2185 352 127 90.1% 1433 1381 134 65.4%
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need accurate GPS/DGPS and updated maps to avoid them. This approach,
however, offers segmentation between riverbank and obstacle (unlike WaSR, as
in Figure 3), crucial for further analysis. A failure mode occurs when visually
similar obstacles appear in unusual places (tree in the middle of the river), and
this has to be handled by other sensors (e.g. inexpensive, one beam LIDAR).
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