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Abstract

This paper presents the summary report on the DeepFake
Game Competition on Visual Realism Assessment (DFGC-
VRA). Deep-learning based face-swap videos, also known
as deepfakes, are becoming more and more realistic and
deceiving. The malicious usage of these face-swap videos
has caused wide concerns. There is a ongoing deepfake
game between its creators and detectors, with the human in
the loop. The research community has been focusing on
the automatic detection of these fake videos, but the as-
sessment of their visual realism, as perceived by human
eyes, is still an unexplored dimension. Visual realism as-
sessment, or VRA, is essential for assessing the potential
impact that may be brought by a specific face-swap video,
and it is also useful as a quality metric to compare differ-
ent face-swap methods. This is the third edition of DFGC
competitions, which focuses on the new visual realism as-
sessment topic, different from previous ones that compete
creators versus detectors. With this competition, we con-
duct a comprehensive study of the SOTA performance on
the new task. We also release our MindSpore codes to fur-
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ther facilitate research in this field (https://github.
com/bomb2peng/DFGC-VRA-benckmark).

1. Introduction

The word “deepfake” arises around the end of 2017 from
a group of Reddit users named “deepfakes” who share deep-
fakes they created involving celebrities’ faces swapped onto
the bodies of actresses in pornographic videos. The fake
facial images and videos created by deep-learning models
are called deepfakes for short, which can also include face
reenactment, facial attribute editing, and completely gener-
ated faces. Recently, with the new wave of AI-generated
contents, or AIGC, which are created by large-scale pre-
trained text-to-image generation models, deepfakes can also
be seen as a special case of AIGC. Broad concerns about
the negative usages of deepfake and AIGC call for the re-
search on automatic detection of these contents. And there
has been a lot of works focusing on the detection topic.

As deepfakes are ultimately received and consumed by
human viewers, the perceptual quality or visual realism of
deepfakes plays an important role in determining their po-



tential social impacts. We note that VRA is basically the
same as the quality assessment of deepfake videos, but fo-
cusing on the visual realism aspect instead of image sharp-
ness or lossy compression. Apart from evaluating poten-
tial social impacts, the deepfake VRA task can also provide
meaningful quality evaluation metrics for generated images
and generative models [10, 29]. Compared to the objective
side of deepfake detection, the deepfake VRA is the subjec-
tive side of the coin, but it is a quite under-explored problem
compared with deepfake detection and still demands more
research attentions.

With the hope to draw more attention to the deepfake
VRA task, we organize this new DFGC-VRA competi-
tion after our previous DFGC-2021 [23] and DFGC-2022
[25] competitions. The current competition is related to its
precedents in that it uses the deepfake video dataset col-
lected from the last year, but it has different topics from
the previous DFGC’s. Our previous competitions focus on
deepfake detection, deepfake creation, and their adversar-
ial game, while this competition put more stress on the new
visual realism assessment problem. Although without the
cash prize as provided in our previous competitions, the
current event still draws relatively wide attentions from the
community. In total, we received 54 registration applica-
tions, we approved 28 of them that comply with our policy,
and 15 teams submitted to our leaderboard. In this paper, we
summarize the DFGC-VRA competition: its related previ-
ous work, the competition dataset, evaluation metrics, com-
petition procedure, and overall results. Top solutions are
also reported and discussed to show effective methods for
this new task.

We summarize the contributions of this work as follows:

• The DFGC-VRA is the first competition that focuses
on the visual realism assessment task for face-swap
deepfake videos.

• We summarize the top solutions used in this competi-
tion and compare their technical traits.

• We open-source our re-implementation of top solu-
tions using the MindSpore framework that can be used
as a benchmark for future deepfake VRA work.

2. Related Work
Deepfake Detection
Deepfake detection aims at distinguishing whether a

face image/video is deepfake or real. With the release-
ment of recent benchmarks and large datasets [14, 36, 16],
deepfake detection models have obtained better perfor-
mances, by employing self-supervised data augmentations
[27], stronger Transformer models [34], audio-visual multi-
modalities [33] etc.. However, they still struggle in gener-
alizing to detecting unseen deepfake methods, and the lack

of explainability also hinders their real-world usage [24] in
law enforcement or court of law.

To promote the progress of deepfake detection meth-
ods for real-world applications, many competitions are pro-
posed. Some well-known ones include the DeepFake De-
tection Challenge (DFDC) [6] in 2020, the ForgeryNet
Challenge [12] in 2021, and the OpenMFC series [11] from
2020 to 2022. Different from these competitions, where
datasets are all pre-constructed by only the organizers, our
DeepFake Game Competition (DFGC) series [23, 25] draws
challenging deepfake data from all the participants that act
as counterpart players to the detection side. Hence, its
datasets tend to be more diverse and hard to be detected,
which better mimic the real-world scenario.

Through the testing of deepfake detection competitions,
several effective techniques for improving the detection per-
formance are noted. Some data augmentation skills like re-
gional erasing [1, 35] and blending [2, 27] are helpful for
improving generalization ability. Ensemble of multiple ad-
vanced high-capacity models improves the stability of de-
tection performance [3]. Although deepfake detection is a
different task from deepfake realism assessment, we have
found both through this competition and our previous study
[28] that they are closely related, in that powerful detection
models are also helpful for predicting visual realism.

Image and Video Quality Assessment
Image and video quality assessment, i.e., IQA and VQA,

are classical research topics in image processing and mul-
timedia community. They aim at automatically assess-
ing the visual quality of images and videos when they go
through some degradation processes, typically lossy com-
pressions and network streaming. We only introduce some
no-reference (NR) IQA/VQA methods here as they are the
most related to our setting. Many classical IQA meth-
ods are based on the Natural Scene Statistics (NSS) model
and design hand-crafted features, e.g., BRISQUE [22] and
FRIQUEE [9]. Classical VQA also includes statistical fea-
tures of the motion information, e.g., TL-VQM [15]. Deep-
learning based IQA/VQA methods become popular with
the end-to-end feature learning ability. RankIQA [19] em-
ploys the Siamese network and ranking loss to train on
pairs of images and address the problem of limited size
of datasets. FastVQA [31] proposes Grid Mini-patch Sam-
pling (GMS) and Fragment Attention Network (FANet) to
reduce the computational cost that hinders end-to-end VQA
model training.

Traditional IQA/VQA works mainly focus on natural
scene images and videos, but there is very little work on
the quality assessment of the new form of generated media,
e.g., GAN images and deepfake videos. GAN models are
commonly evaluated using the Frechet Inception Distance
(FID) metric, which measures the distance between real and
fake image feature distributions. However, FID cannot indi-



cate the visual quality of each individual image. GIQA [10]
addresses this problem by proposing several models for pre-
dicting the quality of individual GAN images, with the best
model being a Gaussian Mixture Model. The work [29] pro-
poses generalized visual quality assessment for face images
generated by various GANs, employing meta-learning and
pair-wise ranking on pseudo quality scores to mitigate over-
fitting. Based on another pseudo score guided learning-
based model in GIQA [10], the work [36] uses a Q-Net
trained on GAN face images to do quality assessment and
quality control in deepfake dataset construction. However,
this method is designed and trained on GAN face images,
which may not be suitable for assessing the face-swap im-
ages and videos.

User studies on deepfake visual realism and human per-
formance on deepfake detection are carried out in recent
works [16, 24], across different datasets. These evaluations
all use no-reference settings. Notably, our DFGC-2022 [25]
conducted user study on the competition dataset with some
kind of reference to help making the quality annotations
more precise. This is because the dataset has multiple deep-
fake videos for the same source-target pair, which are cre-
ated by the participants using different face-swap methods.
Our raters evaluate these corresponding deepfake videos in
a sequence, and hence comparisons between high and low
qualities can be established more informatively. In our pri-
mary deepfake VRA work [28], we find that the visual re-
alism assessment task is closely related to the deepfake de-
tection task, in that the features of pretrained deepfake de-
tection models are very useful in predicting visual realism.
The method in this previous work also acts as the baseline
in this competition.

3. Dataset
This competition uses the dataset from our last year com-

petition DFGC-2022 [25], which was created using various
face-swap methods and has diversified degrees of visual re-
alism. More specifically, it contains face-swap videos for
20 pairs of subjects (IDs), and the total number of deep-
fake creation methods is 35. Each video is about 5 sec-
onds in duration and has 1920x1080 resolution. Based on
this dataset, 1,400 deepfake videos have been annotated
with Mean Opinion Scores (MOS) on the visual realism,
and they are obtained by averaging the ratings of 5 human
raters. During the annotation, each human rater views the
full-length video and then gives a score in 5 scales: 1 (very
bad) to 5 (very good). As detailed in the related work, the
annotation process has some kind of reference and hence
more accurate. More details on the dataset are in [25, 28].

In the competition protocol, we divide the 1,400 anno-
tated videos into the train set, test-1 set (ID-disjoint with
the train set), test-2 set (method-disjoint), and test-3 set
(ID&method-disjoint), as illustrated in Fig. 1. The sets

Figure 1: Competition protocol for dataset splits.

contain 700, 300, 280, and 120 video samples, respectively.
Participants have access to both videos and groundtruth
MOSs of the train set, while the test sets are provided with-
out the groundtruth MOSs. The participants are required to
train their VRA models using the provided train set, obtain
the predicted MOSs on the test sets, and submit their pre-
diction results to the competition platform 1 for automatic
performance evaluation and ranking. We require checking
codes after the submission phase to validate the results.

4. Metrics
We use two metrics from the image and video quality

assessment literature: Pearson Linear Correlation Coeffi-
cient (PLCC) and Spearman’s Rank-order Correlation Co-
efficient (SRCC) to evaluate the prediction linearity and
monotonicity with respect to the groundtruth. Since the two
metrics are both in the range of [-1, 1], higher the better, we
average them to obtain the overall performance metric. The
performances on the three test sets are equally weighted and
averaged. In summary, the score for a submission is calcu-
lated with Equation (1):

s = (plcc1+srcc1+plcc2+srcc2+plcc3+srcc3)/6 (1)

where plcc1 represents the PLCC score on the test-1 set and
so on for the other variables.

5. Competition Procedure
The competition procedure can be separated into three

phases: registration, submission, and checking. During reg-
istration, each team need to first register an account on the
Codalab platform and then send an email to the organizers
with their institutional email containing information of their
members, affiliation, and adviser. Only after we manually
checked the registration information, can the team be ac-
cepted into this competition. By registering to this compe-
tition, the team member are bounded by the terms for using
the dataset and also by the competition rules.

During the submission phase, which lasts for one and
a half months (Mar. 1-Apr. 15), each team can make up

1https://codalab.lisn.upsaclay.fr/competitions/
10754#learn_the_details



Table 1: Overview of competition results. LB stands for leaderboard results obtained by re-running the inference code and the
teams’ model checkpoints, and RP stands for reproduced results by re-running the training/fine-tuning codes by organizers.

Team LB RP Backbone Pre-train Fine-tune Loss Inference

OPDAI 0.8851 0.8825 Swin-transformer DFDC Det DFGC-22 Norm-in-norm,
KL divergence 3 frames score fusion

HUST 0.8564 0.8474 ConvNeXt, LSTM ImageNet
DFGC-22

& extra data
MAE, rank,

PLCC
20 frames score fusion,

5 models ensemble

UNILJ 0.8545 0.8501 ConvNeXt, Eva
Deepfake Det,

ImageNet DFGC-22 RMSE 10 clips score fusion,
2 models ensemble

USTC 0.8360 0.8116 ResNet152
self-collected

face-swap data DFGC-22 rank 8 frames score fusion

INT&NUST 0.8257 0.8146
ResNext-Transformer

hybrid ImageNet DFGC-22 PLCC,
MSE

4 frames score fusion,
2 streams fusion

Baseline [28] 0.5470 0.5470
ConvNeXt &

Swin-transformer Deepfake Det
SVR on

DFGC-22 MSE regression on
video feature

to one submission to the competition platform and see im-
mediate feed-backs from the leaderboard. The participants
run their inference methods to obtain the predictions on the
three test sets, which are saved to txt files and then sub-
mitted for evaluation. No private sharing between different
teams is allowed. One team using multiple submission ac-
counts is not allowed. Participants should not hand-label the
released testing data for submission or training. However,
they are permitted to use extra datasets for training.

The checking phase begins after the submission closes,
during which the participants are required to send their
codes and technical reports to the organizers for checking.
Only after we can reproduce the leaderboard results within
a tolerance level, can their results be officially recognized
as valid. We then announce the Top-3 winner teams and
their results. We also invite some participants to collaborate
on this summary paper if their solutions have high scores or
use inspiring methods.

6. Results

Our competition platform received 54 registration re-
quirements, and we approved 28 of them that comply with
our registration policy. Over the submission period, 15
teams submitted at least once to the leaderboard, including
the organizers’ baseline submission. There were 10 teams
who achieved higher scores than the baseline [28] score
0.5470. After the submission is closed, there were 7 teams
that submitted codes and technical reports for checking. We
report the top-5 teams, their results, and methods overview
in Table 1. More details of their solutions are described in
the next section.

As can be seen from Table 1, there are discrepancies be-
tween the reproduced results (RP) and their leaderboard re-
sults (LB) for all teams. Most discrepancies are quite small
and may be due to the randomness and software/hardware
differences between the organizers’ and participants’ ma-

chines. The leaderboard results are all better than the re-
produced results, since the submission procedure tends to
select out the most over-fitted randomness. The relatively
large discrepancy in our reproduced result of the USTC so-
lution is due to the Apex library incompatibility problem on
our machine.

All methods in Table 1 use advanced large models that
have high capacities and are pretrained on ImageNet or
deepfake detection (Det) datasets to mitigate over-fitting.
The models (apart from the baseline) are then fine-tuned on
the DFGC-22 VRA dataset, using either cropped frames or
clips (a group of frames) as inputs. The training losses range
from traditional root of mean squared error (RMSE) loss
to ranking losses proposed in the image quality assessment
literature. For inference, most methods fuse the scores of
multiple frames/clips from a testing video, and some meth-
ods also ensemble multiple models’ results. More details of
these solutions are described in the next section. We note
the large improvements of top solutions over the baseline
in Table 1 and conjecture that fine-tuning the model end-to-
end may play a key role.

7. Top Solutions
As a baseline method, in [28] we propose to employ the

DFGC-2022 first-place deepfake detection model [3] as a
fixed feature extractor and train a Support Vector Regres-
sion model (SVR) to predict the realism score. The method
first extracts per-frame features and calculates their mean
and standard deviation as the video-level feature. The SVR
takes video features as input and predict the MOS scores.
More details can be found in [28]. In the following, we
mainly describe the participants’ solutions.

7.1. OPDAI

The team OPDAI is from the Interac-
tive Entertainment Group of Netease Inc.



The model used is the Swin-transformer v2
(swinv2 large window12to16 192to256 22kft1k)
[20]. It is first pretrained on the DFDC dataset [6] for
deepfake detection, and then finetuned on the competition
training data (DFGC-22). For data pre-processing, each
video is extracted with 10 frames, and face detection and
cropping is conducted. Some data augmentation operations
are used, including random erasing, random horizontal flip,
random color adjustment, random contrast adjustment.

The pretraining on the DFDC deepfake detection task
uses the MSE loss. For the finetuning on the competition
VRA task, two losses are used, i.e., the Norm-in-norm loss
[17] for image quality assessment and the KL-divergence
loss. The Norm-in-norm loss uses normalization to speed-
up convergence and to encourage linear predictions with re-
spect to groundtruth scores. Given label Q and prediction
Q̂, the Norm-in-norm loss is defined as:

LNIN (Q, Q̂) =

N∑
i=1

∣∣∣Ŝi − Si

∣∣∣ (2)

Si =
Qi − 1

N

∑N
i=1 Qi

(
∑N

i=1

∣∣∣Qi − 1
N

∑N
i=1 Qi

∣∣∣q) 1
q

(3)

where Ŝi can be calculated similarly with Si in Equation
(3) that are normalized versions of original scores, and the
parameter q is set to 2. The KL-divergence loss is defined
as:

LKLD(Q, Q̂) =

N∑
i=1

Ŵi × log
Ŵi

Wi
(4)

Wi =
exp(Qi)∑N
i=1 exp(Qi)

(5)

where Ŵi can be calculated similarly with Wi in Equation
(5) that are Softmax-normalized versions of original scores.
Finally, the total loss is the sum of the two losses:

L(Q, Q̂) = LNIN (Q, Q̂) + LKLD(Q, Q̂) (6)

The released training dataset is randomly divided into
600 videos for training and 100 videos for validation. In
each training epoch, a random frame from each video is se-
lected for gradient updates. Drop path and data augmenta-
tions are used to alleviate overfitting. Learning rate warm-
up is also used for automatically selecting appropriate learn-
ing rates. The best model on the validation set is used for
submission. For inference, three frames at the 0.25, 0.5, and
0.75 positional points of a video are used for prediction and
then averaged. Test time augmentation based on left-right
flipping is also adopted.

7.2. HUST

Apart from the 700 deepfake videos in the competition
training set, this team also used 2 extra datasets with their
own labeled MOS for training. The extra-1 dataset con-
tains 119 deepfake videos, including 85 videos from the
FaceForensics++ dataset [26] and 34 videos from the Celeb-
DF v2 dataset [18]. The extra-2 dataset contains 90 deep-
fake videos, including 61 from the FaceForensics++ and 29
from the Celeb-DF v2. Each video is extracted with 20
frames and cropped around faces. Data augmentation in-
cludes Resize, HorizontalFlip, ShiftScaleRotate and Ran-
domRotate90 from the Albumentation library.

Five base models are trained for ensemble, which are all
based on the ConvNeXt model [21] pretrained on the Im-
ageNet dataset (convnext tiny 384 in22ft1k). De-
tailed training strategy of these models are shown in Ta-
ble 2. Apart from the Model-4, all models use ImageNet-
pretrained ConvNeXt and fine-tune on the train set and extra
sets, and the video score is obtained by averaging 20 frame
scores. For the Model-4, it uses the fixed Model-2 to ex-
tract frame features and trains a two layer LSTM model on
top of the frame features to predict video scores. For result
submission, the team also used a trick that model ensemble
weights are separately tuned for each of the three test sets.

Table 2: Training strategies of the 5 base models in the
HUST solution. “Train” means the competition train set.

ID Backbone Training Data BatchSize Iters Pre-trained

1 ConvNeXt
80% Train
+ Extra-1 32 3000 ImageNet

2 ConvNeXt
80% Train
+ Extra-1 32 5500 ImageNet

3 ConvNeXt
100% Train
+ Extra-1
+ Extra-2

32 9000 ImageNet

4
LSTM +

ConvNeXt

100% Train
+ Extra-1
+ Extra-2

32 540 Model-2

5 ConvNeXt 5-fold Train 48
best of

each fold ImageNet

The training loss is a combination of three terms:

L = LMAE + α · LPLCC + β · Lrank (7)

where α = 0.5 and β = 1. The first part is the Mean Ab-
solute Error (MAE) loss, also known as the L1 loss, which
is not so sensitive to outliers compared to the L2 loss. The
second part is the PLCC loss, since PLCC is one of the com-
petition metric and is also a differentiable function. It is
defined as:

LPLCC = 1− abs(PLCC(Q, Q̂)) (8)

The third part is the pair-wise ranking loss [30, 19], which
pulls the estimated quality difference of two images closer



to the margin. It is defined as:

Lij
rank = max(0,margin− e(Qi, Qj) · (Q̂i − Q̂j)) (9)

margin = |Qi −Qj | (10)

e(Qi, Qj) =

{
1, Qi ≥ Qj

−1, Qi < Qj

(11)

7.3. UNILJ

For complete details about this method, we refer to
this team’s new work [7], and we only describe the
overview of the solution here. Two models are trained
and ensembled in this method, which are the ConvNeXt
model [21] (convnext xlarge 384 in22ft1k) and
a scaled-up Vision Transformer, i.e., the Eva model [8]
eva large patch14 336.in22k ft in22k in1k.
The ConvNeXt model is initialized with the last year’s
DFGC-2022 competition first-place deepfake detection
model weights [4], which was trained on a collection of
9 deepfake datasets. The Eva model is initialized with its
pretrained weights in the timm library.

In data pre-processing, faces are detected and cropped
for every frame in the video. Considering the temporal na-
ture of videos, 5 consecutive frames from a randomly se-
lected starting point is selected as a clip and input to the
model. Each frame separately goes through the model to
obtain 5 feature vectors. The mean and standard devia-
tion of these extracted features are then concatenated and
fed to several fully connected layers to output the predicted
MOS. Here, the usage of mean and standard deviation of
frame features to represent a clip is similar to the baseline
method [28]. The training loss for both models is the Root
of Mean Squared Error (RMSE) loss. The AdamW opti-
mizer is used, the initial learning rate is 2e-5 and reduced
on plateau. The provided training set is randomly divided
to train (70%), validation (10%) and test (20%) sets for pa-
rameter tuning, and the final model is then trained again on
the whole training set with early stopping.

For inference, the ensemble weights for the ConvNeXt
and the Eva model are 0.75 and 0.25, respectively. The
video prediction of each model is the average of predictions
for 10 clips randomly selected from the testing video.

7.4. USTC

To mitigate over-fitting on the provided training set,
the ResNet152 backbone model is firstly pretrained on
a self-collected face-swap dataset for the quality ranking
task. The self-collected dataset is augmented from the
CelebA-HQ dataset using face swap methods such as Sim-
Swap, FaceShifter, InfoSwap, and MegaFS. The pseudo-
groundtruth of quality labels is obtained based on the simi-
larity of face-swap images to the target images in terms of
pose, expression, etc., where higher quality face-swap im-
ages are deemed to have higher similarity in these aspects.

Pairs of images are then fed into the Siamese network, and
the same ranking loss as in Equation (9) is employed.

The team tried to use as much data as possible for train-
ing and incorporated the released test videos into the train-
ing procedure. Also the test set labels are hidden, this may
be thought of as a leak in our competition design. The last-
round trained model is used to predict the realism scores
on the test videos, and they are then used as the pseudo-
groundtruth labels for the next round training. The training
loss for fine-tuning on the competition dataset is similar to
that used in pretraining, except that an extra inaccuracy term
is added to the margin in consideration of the inaccurate test
set pseudo-label. More formally, Equation (10) is adapted
to the following:

margin = |Qi −Qj |+ k ·Minacc (12)

where k = 0, 1, 2 is the number of images in the pair that
come from the test set. The inaccuracy term Minacc is esti-
mated as the maximum prediction error on the train set. For
final inference of video scores, this method uses the average
image scores of 8 frames extracted from the video. For the

Figure 2: Model structure of the INT&NUST team.

training of the model on the competition dataset, PLCC loss
and MSE loss are used.

L = w1 × LPLCC + w2 × LMSE (13)

where the weights w1 and w2 are set to 1 and 0.001, respec-
tively. The LION optimizer is used for optimization, and
learning rate warm up is also used.

7.5. INT&NUST

The model structure of this method is shown in Fig. 2.
The input data is a clip that includes cropped faces from 4
random frames of a video. The feature extraction module,
which is the ResNext-101 model [32] pretrained on Ima-
geNet, extracts feature maps for each frame. The frame fea-
ture map is then input to a dual-stream both designed for
score prediction (FC-1 and FC-2), the frame score is then
obtained by regression on the two stream scores (FC-3),
and the final clip score is obtained by taking the mean over
frames (Mean). The first Coa-block stream is adapted from
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Figure 3: Analysis of ensemble strategies of different number of frames/clips (left) and different models (right).

the self-attention module of the CoAtNet [5], which com-
bines CNNs and Transformers. The second Dilate-block
stream is from the Dilateformer [13], where the Sliding
Window Dilated Attention (SWDA) is used to achieve lo-
cality and sparsity, improving the Vision Transformers. The
number of blocks in the two streams is n = 2 and m = [4, 2]
which means 4 dilate blocks + 2 normal transformer blocks.

8. More Analysis on Results

As many approaches use either multiple input
frames/clips for score fusion or use multiple models
in ensemble,we conduct an analysis of ensemble strategies
in inference. It includes the fusion of different number
of frames/clips and the ensemble of different models in
each solution. The comparison results can be seen in
Fig. 3. For the analysis of different frames/clips, under
each number of frames, five runs of randomly selected
frames are obtained and averaged. The results indicate
that relatively lower-performing models benefit more from
using larger numbers of frames for ensemble, e.g., the
INT&NUST method and the USTC method. Relatively
higher-performing models do not have obvious gains from
using more frames.

For the analysis of different models, the teams HUST,
UNILJ, and INT&NUST employ multiple models, and the
former two teams obtain higher scores with the model en-
semble, although the improvements are marginal, while the
INT&NUST team does not obtain improvements from the
ensemble. We test two ensemble strategies for the HUST
models, where the “mean” ensemble is the normal way of
directly taking the mean of the five models and the “HUST”
ensemble is using their original trick of separately tuning
weights for each of the three test sets. The “HUST” ensem-
ble achieves a higher score compared to the “mean” ensem-
ble, but it is tuned particularly on these test sets and not a

common practice.
We also analyze the results on each separate test sets as

they have different disjoints with the train set, as shown in
Fig. 1. We first calculate the average score of all teams’
leader-board results, and they are 0.5533, 0.7585, 0.6200
for the Test-1, Test-2, and Test-3 sets, respectively. The
raw data for this can be found on the competition results
page 2. We also calculate the average from only the top-5
teams’ results, and they are 0.7857, 0.9214, 0.8547, respec-
tively. The relative orders obtained by these two ways are
the same, i.e., the Test-1 set is the most hard to predict, fol-
lowed by the Test-3 set, and the Test-2 set is the most easy
one. This shows that, for our competition data protocol, the
VRA of unseen faces is more challenging than that of un-
seen creation methods. Comparing the results on Test-1 and
Test-3, which are both unseen-ID test sets, it shows that the
influence of unseen creation methods is not significant.

9. Conclusions
In this paper, we present the summary report of our

DFGC-VRA competition, which is the first competition on
the visual realism assessment of face-swap deepfake videos.
It draws wide attentions from the deepfake detection re-
search community. We received 15 valid submissions from
research teams across the world, among which 10 submis-
sions surpassed our provided baseline approach.

The top five solutions are discussed in detail in this paper.
They typically use recent large deep-learning models like
vision transformers and ConvNeXt pretrained on deepfake
detection dataset or ImageNet. The pretrained models are
then finetuned on the competition training set using frames
or clips as input, employing effective losses borrowed from
the image and video quality assessment literature. Their im-

2https://codalab.lisn.upsaclay.fr/competitions/
10754#results and click “Test”.



provements over the baseline points to the effectiveness of
end-to-end finetuning. The video prediction scores are then
obtained by fusing the scores of multiple frames or clips
and some also train multiple models in ensemble. Further
analyses show that these ensemble strategies have some im-
provements on some result but are not always effective for
all solutions. We are also working on re-implementing these
methods using a common framework, and it can be used as
a common benchmark and starting point for future research.

There are remaining work to be done in the future, which
includes more extensive analysis of the effective compo-
nent in existing VRA methods, validation of the methods
on larger and more diverse deepfake datasets, and exploring
the application of VRA on evaluating and improving the
quality of generated videos. More research efforts on the
deepfake VRA task are needed, and the quality assessment
of new AIGC contents are also in the scope of future work.
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