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Abstract

This paper presents the summary of the Sclera Segmenta-
tion and Joint Recognition Benchmarking Competition (SS-
RBC 2023) held in conjunction with IEEE International
Joint Conference on Biometrics (IJCB 2023). Different from
the previous editions of the competition, SSRBC 2023 not
only explored the performance of the latest and most ad-
vanced sclera segmentation models, but also studied the im-
pact of segmentation quality on recognition performance.
Five groups took part in SSRBC 2023 and submitted a to-
tal of six segmentation models and one recognition tech-
nique for scoring. The submitted solutions included a wide
variety of conceptually diverse deep-learning models and
were rigorously tested on three publicly available datasets,
i.e., MASD, SBVPI and MOBIUS. Most of the segmentation
models achieved encouraging segmentation and recognition
performance. Most importantly, we observed that better
segmentation results always translate into better verifica-
tion performance.

1. Introduction

The human sclera (i.e., the white portion of the eye) rep-
resents an emerging biometric modality that contains a rich
vascular structure that can be exploited for automatic iden-
tity inference. While ocular biometric traits, such as the iris,
are already utilized on mobile devices in various authenti-
cation schemes, recent literature is increasingly looking at
alternative ocular traits that can complement these schemes
and ensure higher levels of security, spoof resistance and
better overall recognition results. Among such traits, the
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Figure 1. The (a) captured image of the eye, along with the (b)
manually segmented mask, are used to train segmentation models
that can generate masks like (c). The mask is then superimposed
on the image to finally attain the sclera images, which are used to
train and test recognition models.

sclera is particularly appealing due to its desirable charac-
teristics [1–3] such as (i) the uniqueness of the vasculature
and its stability over time, (ii) the robustness with respect to
certain eye conditions and presence of accessories (astigma-
tism, cataracts, lenses), which negatively affect retina- and
iris-based recognition systems, (iii) the difficulty of forg-
ing the vascular patterns, which makes sclera biometrics
(partially) resilient to presentation attacks and spoofing, and
(iv) the possibility of using cost-effective off-the-shelf cam-
eras, for data acquisition in the visible spectrum unlike the
iris or retina, which typically require specialized capturing
hardware. These characteristics have fueled recent research
on exploring sclera as a biometric, including techniques for
recognition [3–9], segmentation models [2, 10, 11], presen-
tation attacks detection approaches [2, 3, 6], adaptability of
the trait [12, 13], information fusion with the iris [14, 15]
and synthetic sclera generation models [16].

Despite this plethora of work, comprehensive studies in-
vestigating the characteristics of sclera segmentation and
recognition models jointly and their impact on the overall
recognition performance in biometric systems relying on
the vasculature of the sclera are still underrepresented in
the literature. The aim of the sclera segmentation task is to
locate the sclera region in the eye image as precisely as pos-



sible and, consequently, to facilitate accurate recognition.
Thus, the segmentation step is expected to considerably im-
pact all downstream tasks, including the feature extraction
and similarity computation steps. As illustrated in Figure 1,
the segmentation process needs to effectively identify all
pixels in the image that belong to the sclera, exclude back-
ground areas and ocular components that could interfere
with the recognition stage, and do so reliably even if the
images exhibit challenging characteristics, such as blur, ex-
treme gazes or are captured in unconstrained (mobile) set-
tings and under varying illumination conditions. Given the
challenges faced by the segmentation models, it is critical
to understand what kind of performance degradation can be
expected for the recognition tasks due to issues with the seg-
mentation results.

To get detailed insight into these issues, the Sclera
Segmentation and Recognition Benchmarking Competition
(SSRBC 2023) was organized as part of the International
Joint Conference on Biometrics (IJCB 2023). The compe-
tition focused on a joint evaluation of sclera segmentation
and recognition models, both of which are key components
of sclera-based recognition systems. It is quite obvious that
improper segmentation will adversely impact the feature ex-
traction and recognition performance, but the extent of this
impact is not clear based on the insights currently available
in the open literature. Hence, SSRBC 2023 was organized
around three main datasets. The Multi-angle sclera dataset
(MASD) was used for training, and the Mobile Ocular
Biometrics in Unconstrained Settings (MOBIUS) and the
Sclera Blood Vessels, Periocular, and Iris (SBVPI) datasets
for testing. The experimental setup used for the benchmark-
ing competition allowed us to explore a number of research
questions, such as: How do the segmentation models per-
form in cross-dataset (and cross-sensor) settings? What dif-
ferences can be expected in performance due to different
model architectures? How are segmentation errors propa-
gated to the recognition stage? To answer these question 6
segmentation models were contributed to the competition
from 5 different research groups and analyzed for their per-
formance. The joint effort of all participants resulted in the
following contributions that are presented in this paper:

• A rigorous analysis of several contemporary sclera
segmentation and recognition models using images
captured in challenging mobile scenarios.

• A detailed analysis of the sensitivity of sclera recogni-
tion models on errors in the segmentation process.

2. Related Work

SSRBC 2023 is the eighth edition in the series of compe-
titions focused on problems in sclera biometrics, initiated in
2015 as part of BTAS 2015. This series of competitions had
a considerable impact on the state of technology in sclera

biometrics over the last decade attracted a good amount of
interest from the community.

The first and third iterations of SSRBC aimed at
benchmarking segmentation models and introduced novel
datasets for this task together with manually annotated
ground truth masks [17]. The second iteration (SSRBC
2016) investigated the performance of segmentation and for
the first time, recognition techniques in a group evaluation
setting [18] was also accomplished. In the fourth itera-
tion, i.e., SSERBC 2017, ocular recognition models for the
iris, sclera and peri-ocular region were benchmarked with
images of varying gaze directions in addition to the stan-
dard segmentation task [19]. SSBC 2018, the fifth edition
of this series, explored the impact of cross sensor image
capture on sclera segmentation [20], and the sixth iteration,
SSBC 2019, investigated the performance of segmentation
models in cross-resolution settings [21]. In the last edi-
tion, SSBC 2020, sclera-segmentation techniques applied to
images, captured in the mobile environments, were bench-
marked [22]. A follow-up group benchmarking effort fol-
lowing SSBC 2020 also looked at bias in sclera segmenta-
tion models due to the capturing sensors, ethnicity, and eye
color [23].

The 2023 edition of SSRBC aims to continue the series
with a benchmarking competition focused on a joint seg-
mentation and recognition problem, which is highly rele-
vant for the deployment of sclera biometrics in real-life ap-
plications. To make this task challenging and as close to
real-world operating conditions, we utilize diverse ocular
data captured with different sensors, with varying gaze di-
rections and acquisition conditions, which is expected to be
an additional important contribution to the community.

3. Benchmarking methodology
This section presents the benchmarking methodology

used for SSRBC 2023. It first describes the datasets and lo-
gistics of the competition and then presents the performance
metrics utilized for the final comparative evaluation.

3.1. SSRBC 2023 datasets

Three datasets were used for SSRBC 2023: (i) the Multi-
Angle Sclera Dataset (MASD) [24], (ii) the Mobile Ocular
Biometrics in Unconstrained Settings (MOBIUS) dataset
[23], and (iii) the Sclera Blood Vessels, Periocular, and Iris
(SBVPI) [2]. The high-level characteristics of these datasets
are given in Table 1, a few visual examples are presented in
Figure 2 and a more detailed description is provided below:

MASD The MASD dataset consists of high-resolution oc-
ular images captured using a DSLR camera (Nikon D800
28-300mm lens). There are a total of 2624 RGB images ob-
tained from 82 distinct participants. Each eye is treated as a
separate identity, so there are a total 164 different IDs in the



(a) MASD (b) MOBIUS (c) SBVPI

Figure 2. Sample images and ground truth masks for the datasets used in the competition. The figure displays images and sclera ground
truth masks from (a) MASD, (b) MOBIUS, and (c) SBVPI. Note the variability across image qualities and gaze directions present in the
datasets.

Table 1. Overview of the datasets used for SSRBC 2023. Infor-
mation on the number of images, number of subjects, the image
resolution (in pixels), main sources of variability and purpose in
the competition is provided.

Dataset #Images #IDs Resolution Variability Purpose
MASD 2624 82 7500× 5000 GZ, BL Training
MOBIUS 3542 35 3000× 1700 MD, CN, GZ, BL Testing
SBVPI 1858 55 3000× 1700 CN, GZ Testing
†GZ - gaze, BL - blur, CN - acquisition condition, MD - mobile device.

dataset available for the experiments, and each ID has im-
ages that correspond to four gaze directions (straight, left,
right and up). A total of 4 images are taken for each direc-
tion. The participants consist of a mix of male and female
subjects with some of them wearing contact lenses. The
ambient lighting and overall illumination factors are varied
by capturing images at different times of the day. There
are also some images in which the participants blinked or
partially closed the eyes. The images are of a resolution
7500× 5000 and come with manually annotated segmenta-
tion masks for the sclera region.

MOBIUS. The second dataset used for SSRBC 2023 is a
recent one, intended for use in mobile ocular biometrics.
MOBIUS has 100 subjects and over 16,000 RGB ocular im-
ages. For SSBC 2023, the segmentation split of the entire
dataset is used that contains 3542 manually annotated RGB
images captured from 35 participants (i.e. 70 eyes). Differ-
ent smartphones, such as Apple’s iPhone 6s, Sony’s Xperia
Z5 Compact, and Xiaomi’s Pocophone F1, in various light-
ing conditions were used for the acquisition process. The
lighting conditions can be further grouped into Good: con-
trolled indoor lighting, Neutral: uncontrolled outdoor light-
ing, and Poor: uncontrolled indoor lighting. The subjects of

the dataset are a mix of Caucasian male and female persons.
The variability in the captured images is due to the differ-
ent types of mobile photo-sensors utilized and changes in
the acquisition conditions. All images are manually anno-
tated with masks for the sclera, iris and pupil and the im-
perfections were fixed by a semi-automated post-processing
technique. Because SSRBC 2023 is only focusing on sclera
segmentation, the masks of the other ocular parts are not
considered in the competition.

SBVPI. The third dataset used [2, 3] for SSRBC 2023 con-
sists of 55 participants (110 eyes), and comprises a total
of 1858 semi-high resolution RGB images, captured by a
DSLR camera. The resolution of each image is scaled to
3000 × 1700 and the image quality used during capturing
was set to the highest possible setting under controlled light-
ing. Similar to MASD the dataset, SBVPI contains images
of four gaze directions (i.e. straight, up, right and left).
The data variability in the dataset is due to identity, gen-
der, age and eye color. Each image is manually annotated
with masks for the sclera and periocular regions.

Since the datasets are publicly available, abstraction was
used on the annotations of the images and masks. For each
task, pseudonyms were used in place of the original file-
names so as to not reveal the labels for identity, gaze direc-
tion, lighting condition and capturing device. Participants
were instructed to make their submissions in the same for-
mat.

3.2. Competition tasks and protocol

SSRBC 2023 defined three main competition tasks tar-
geting, i.e., (i) sclera segmentation, (ii) sclera recognition
and (iii) joint sclera segmentation and recognition. The
tasks are described in detail below:



• Segmentation task (ST). For the segmentation task,
participants had to learn segmentation models on the
MASD datasets and then test them on the MOBIUS
datasets. Here, the manually generated (ground truth)
segmentation masks were provided along with the eye
images of MASD for the training procedure. For test-
ing purposes, only the ocular images from the MO-
BIUS dataset were provided to the participants without
any ground truth annotations.

• Recognition task (RT). For the recognition task, the
participants were asked to develop recognition mod-
els on the MASD datasets. The performance evalu-
ation was then conducted on the sequestered SBVPI
dataset. In this setting, the manually generated (ground
truth) segmentation mask were used to get the region-
of-interest (ROI) before subjecting the images to the
recognition/feature extraction models. Thus, Oracle-
type of experiments were performed in this task.

• Joint Segmentation and Recognition task (SRT).
For the joint segmentation-recognition task, the par-
ticipants were asked to develop segmentation as well
as recognition models on the MASD datasets and then
submit the trained models for scoring to the organizers.
The performance evaluation was conducted on the se-
questered MOBIUS dataset. The segmentation masks
generated by the participants’ models were used to ex-
tract ROIs.

For the segmentation task, the participants were asked
to submit two types of results to the organizers for scoring,
i.e., (i) binary masks, where a thresholding procedure was
already applied to the segmentation output by the partici-
pants, and (ii) probabilistic predictions, where each pixel
in the segmentation map is represented on a scale between
0 and 1 and a value of 1 implies absolute certainty that the
pixel belongs to the sclera region. A visual example of the
requested submission material is shown in Figure 3. For
the two recognition-oriented tasks, the participants had to
submit complete recognition models, which were then eval-
uated by the organizers.

3.3. Evaluation protocol

SSRBC 2023 was implemented in two separate stages.
In the first stage, the MASD dataset was provided to the
participants along with the ground truth masks and labels
for training their models for segmentation and recognition,
respectively. In the second stage, the MOBIUS and SVBPI
datasets were provided (barring the ground truth segmenta-
tion masks) to the participants. The timeframe for deliver-
ing the final result was four days from release of the two
datasets to ensure that the participants could not manually
inspect and label the data.

Figure 3. Illustration of results to be submitted (from left to right):
original image, generated binary segmentation mask, probabilistic
(grey-scale) segmentation prediction.

3.4. Performance metrics

The following segmentation (Sg) and recognition (Rc)
measures and graphs were used for SSRBC 2013 to judge
the performance of the submitted models:

• Precision (Sg), defined as the ratio of pixels that are
true positives or correctly classified for the sclera,
to the total number of pixels classified as belong-
ing to sclera, including the false positives, i.e.,
( TP
TP+FP ) [25–28].

• Recall (Sg), defined as the ratio of correctly classified
pixels by the segmentation mask, to the overall number
of ground truth sclera pixel, i.e. TP

TP+FN [25–28].
• F1 score (Sg), defined as the harmonic mean of preci-

sion and recall, calculated as: 2 · precision·recall
precision+recall ). Some

of the results may be biased towards better precision or
recall. The F1 score mitigates this bias by considering
both and is, therefore, used as the primary performance
indicator for the segmentation task in SSRBC 2023.

• Intersection over union (IoU) (Sg), also termed as the
Jaccard index, is the ratio between the intersection of
the predicted and ground truth sclera pixels over their
union. IoU is computed as TP

TP+FP+FN .
• ROC curves (Rc), Receiver Operating Characteristics

curves, that plot the verification rate against the false
acceptance rate (FAR) for various values of the deci-
sion threshold. Here, the verification rate is defined as
1-FRR, where FRR stands for the false rejection rate.
The Area Under the ROC curve is also reported as a
performance measure for the verification experiments.

• Equal Error Rate (EER) (Rc), defined as the operat-
ing point on the ROC curve, where the values of FAR
and FRR are equal.

In the equations above, TP denotes true positives, i.e.,
the number of pixels correctly classified as sclera pixels,
FP denotes false positives, i.e., the number of background
pixels misclassified as sclera pixels, and FN denotes false
negatives, i.e., the number of correct sclera pixels misclas-
sified as background pixels. The results based on binary
mask only show a partial picture of the overall performance
for a certain decision threshold and may lead to biased
conclusions. That is why complete precision-recall curves
were generated by moving the threshold over the proba-
bilistic segmentation masks [29, 30]. An optimal F1 score



Table 2. Summary of participants and list of submitted approaches to SSRBC 2023. The table lists the abbreviations of the models, as used
in the experimental section.

Segmentation Algorithms

No. Group† Model Acronym DL/Other

1. School of Computer Science, Jilin University, China Unet-VGG DL
2. Beijing University of Civil Engineering and Architecture (BUCEA) Sclera-TransFuseCNN DL
3. Indian Institute of Technology, Mandi (IIT Mandi) SegDeep+ DL
4. Couger Inc., Japan and Vellore Institute of Technology (VIT Vellore) Attention-Sclera-net DL
5. Fraunhofer Institute for Computer Graphic Research IGD IGD-EyeMMS DL
6. Fraunhofer Institute for Computer Graphic Research IGD IGD-U-Net DL

Recognition Algorithms

No. Group Model Acronym DL/Other

1. Beijing University of Civil Engineering and Architecture (BUCEA) Res2Net DL

†For details on the participants from the institutions see the author list.

(F opt
1 ) was also calculated based on these curves, and ul-

timately the Area Under Curve Area Under the precision-
recall Curve was included in the evaluation, as another per-
formance metric [31].

4. Summary of submitted approaches

Five groups entered SSRBC 2023 and submitted 6 seg-
mentation models and one recognition approach for scor-
ing. Table 2 presents a summary of the participating groups,
while a brief description of the submitted models is pro-
vided below.

4.1. Segmentation Algorithms

Unet-VGG uses the VGG model pretrained on ImageNet
as the backbone feature extraction part of its Unet. The en-
hanced features extraction is done by using the five initial
feature layers obtained from the pre-trained model for up-
sampling and feature fusion using both, the cross entropy
loss and the dice loss.

Sclera-TransFuseCNN uses a novel two-stream hybrid
model to integrate ResNet-34 and Swin Transformer en-
coders [32] into a dual-encoder architecture for segmenta-
tion. The model employs an encoder-decoder structure. The
dual encoders first separately extract (in a hierarchical man-
ner) coarse- and fine-grained feature representations. Then
a novel Cross-Domain Fusion module is introduced to effi-
ciently fuse the multi-scale features extracted from the dual
encoders. Finally, the fused features are progressively up-
sampled and aggregated to predict the sclera masks in the
decoding process. Additionally, deep supervision strategies
are employed to learn intermediate feature representations
better and faster.

SegDeep+ is based on the DeepLabV3plus [33] architec-

ture, which is widely used for semantic segmentation tasks.
It consists of a feature extraction backbone network fol-
lowed by an encoder-decoder structure. In this case, a pre-
trained ResNet50 model is used as the backbone network,
which has been trained on a large dataset to extract high-
level features from images. The input images for the seg-
mentation task are resized. After passing the input image
through the ResNet50 backbone, the feature maps are ex-
tracted from the ”conv4 block6 2 relu” layer. These feature
maps contain rich spatial information. To capture multi-
scale contextual information, the Dilated Spatial Pyramid
Pooling layer is introduced. This layer performs average
pooling on the feature maps to reduce their spatial dimen-
sions. Then, different convolutional blocks with different
dilation rates (1, 6, 12, 18) are applied to capture contex-
tual information at multiple scales. These blocks have con-
volutional layers with appropriate dilation rates to expand
the receptive field and capture both local and global contex-
tual information. The output feature maps from the Dilated
Spatial Pyramid Pooling layer and the convolutional blocks
are concatenated and passed through another convolutional
layer to refine the segmentation predictions.

Attention-Sclera-net draws inspiration from the AB Sclera
Net architecture. It consists of four encoder and four de-
coder blocks. In the encoder part, DenseNet layers with
down-sampling are employed, while the decoder utilizes
up-sampling layers followed by a residual block with con-
current spatial and channel attention mechanisms. The en-
coder skip connection is passed through the CBAM block
[34], and the output of the CBAM block is connected to the
decoder block. The fourth encoder block is connected to the
residual block and linked to decoder block 1. Furthermore,
all decoder blocks undergo additional upsampling and are
fused together at the end. The incorporation of supervision



Table 3. Comparative assessment of the segmentation algorithms on the MOBIUS dataset. The results are ordered according to the
achieved F1 scores. The F1, Precision, Recall and IoU scores were computed from the submitted binary masks. The optimal F1 score on
the precision-recall curve (F opt

1 ) and AUC values were calculated from the probabilistic segmentation predictions.

Segmentation Model Number of Parameters
From binary masks From probabilistic predictions

(in Millions) F1 Precision Recall IoU F opt
1 AUC

Sclera-TransFuseCNN 192.4 0.863213 0.854184 0.883867 0.768490 0.863649 0.818853

IGD-EyeMMS 22.7 0.820630 0.922743 0.763570 0.714149 0.822482 0.718979

IGD-U-Net 31.0 0.762797 0.933832 0.710583 0.664876 0.766242 0.705874

Unet-VGG 24.9 0.607015 0.888362 0.544279 0.504948 0.675423 0.687316

Attention-Sclera-net 7.1 0.518656 0.973090 0.430581 0.423650 0.722804 0.730540

SegDeep+ 11.9 0.470149 0.688844 0.405713 0.324566 0.485030 0.409351

at different levels facilitates efficient learning by enabling
gradient propagation and weight updates in these layers.
Finally, the output of each level is concatenated along the
channel axis, followed by the application of the CBAM at-
tention block before the final supervision stage.

IGD-EyeMMS extends over Multi-scale segmentation so-
lutions (Eye-MMS [35, 36]) by having an additional input
to the first module of Eye-MMS from an encoder network
(ResNet34 [37]). IGD-EyeMMS is a convolutional neural
network (CNN) that consists of inter-connected refinement
modules. Each module consists of two convolutional layers,
each followed by layer normalization and a Leaky ReLU
with non-linearity. The submitted IGD-EyeMMS is trained
using the Intersection over Union (IoU) loss and the SGD
optimizer with an initial learning rate of 1e-1 and batch size
of 16 for 200 epochs. The learning rate is exponentially
reduced by γ = 0.99 every epoch. The predicted segmenta-
tion is rounded to the nearest integer values to represent the
discrete labels.

IGD-U-Net is based on the U-Net for brain segmentation
[38]. The U-Net architecture consists of two parts, an en-
coder and a decoder. Each of these two parts is built us-
ing four levels of blocks, each containing two convolutional
layers with batch normalization and ReLU activation func-
tion and one max pooling layer in the encoder and up-
convolutional layers in the decoder. Details of the utilized
architecture are described in [38]. The submitted IGD-U-
Net model is trained using the Intersection over Union (IoU)
loss and SGD optimizer with an initial learning rate of 1e-1
and batch size of 16 for 200 epochs. The learning rate is
exponentially reduced by γ = 0.99 every epoch. The pre-
dicted segmentation is rounded to the nearest integer values
to represent the discrete labels.

4.2. Recognition Algorithms

Res2Net adopts a Res2Net model [39] pre-trained on Im-
ageNet as the backbone, and the pixel-by-pixel product of
the sclera mask and the original ocular image is regarded as

Figure 4. Performance comparison of the submitted models in
terms of the F1 score achieved over all test images from the MO-
BIUS dataset. Best viewed in colour.

the input for feature extraction. During training, the model
is fine-tuned for sclera classification by using a regular cross
entropy loss, where the provided (limited) training dataset is
enriched with various augmentation strategies, such as hor-
izontal flipping, rotation, and shifting. Next, the segmented
sclera image is resized to 224× 224 and the CLAHE algo-
rithm is performed twice on the red, green and blue layers
of the resized image to enhance the vessel structure. Finally,
the image is fed into the model for training. After training,
a feature vector is extracted from the penultimate layer of
the model and is utilized as the identity representation of
the input test image. The normalized Euclidean distance is
applied to calculate the similarity of any two images. In or-
der to obtain the score that an image belongs to a subject,
the score between the image and all gallery images from
the subject are calculated. The highest value of the scores is
treated as the final comparison score. Therefore, the iden-
tity label of the subject with the highest score is assigned as
the identity of the input image.

5. Benchmarking results and discussion

In this section, the results of SSRBC 2023 are presented.
A comprehensive analysis in conducted to analyze the per-
formance of the submitted segmentation models and study



their impact on the recognition accuracy.

5.1. Comparative assessment

We first evaluate the submitted segmentation models and
analyze their performance in cross-sensor environments.

Results on binary segmentation masks. Binary segmen-
tation masks represent the most common output of modern
segmentation models. Typically, a thresholding procedure
is utilized within the model that determines the trade-off
between precision and recall, and, consequently, the final
F1 score. Because this is the default output of the majority
of modern segmentation models, we first analyze the sub-
mitted binary mask generated by the SSBRC entries. The
results of the comparison are presented in Table 3 and Fig-
ure 4.

It can be seen that the Sclera-TransFuseCNN is the top
performer of the competition w.r.t. to recall, F1 and IoU
scores. The second-best algorithm, IGD-EyeMMS, per-
formed very closely to Sclera-TransFuseCNN, with recall,
F1 and IoU scores slightly below the results of the best
performing approach, however, with better precision. The
other four models achieved somewhat lower F1, recall, and
IoU scores. Nonetheless, the IGD-U-Net and Attention-
Sclera-net models produced higher precision scores than the
top performers of SSRBC 2023.

It is also interesting to observe that the performance
of the models is not always correlated with their size,
i.e., the number of parameters of the models. IGD-
EyeMMS, for example, ensures better performance than
IGD-U-Net with a lower number of parameters, whereas
Sclera-TransFuseCNN with around 192.4 million parame-
ters achieved comparable results as IGD-EyeMMS. Overall,
we can conclude that most models produced solid results
on the segmentation task, but also that there are consider-
able differences in the results between the top-performers
and the rest, both in terms of performance characteristics as
well as model size.

Results on probabilistic segmentation predictions. For
better insight into the performance of the submitted seg-
mentation models, we proceed to analyze them w.r.t. the
probabilistic segmentation predictions. From the right part
of Table 3 and the precision-recall curves in Figure 7, it can
be observed that the two top-performing submission of SS-
RBC 2023, i.e., Sclera-TransFuseCNN and IGD-EyeMMS,
also lead to the best results in terms of optimal F1 score,
i.e., F opt

1 . Moreover, given that the optimal F1 scores are
close to the ones observed with the binary masks, this also
suggests that the two techniques are well calibrated.

Qualitative comparison. A qualitative comparison of the
submitted models is shown in Figure 6 in terms of the bi-
nary masks. Three challenging samples from the MOBIUS
dataset, where the acquisition environment is varying, are

Figure 5. Precision-recall curves of the submitted models. The
operating points denoted with a full circle represent the best possi-
ble F1 score (F opt

1 ), whereas the cross denotes the precision-recall
point produced by the binary masks. The dotted lines denote the
standard deviation. The figure is best viewed in colour and zoomed
in.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Qualitative comparison of the submitted models (in
terms of binary masks) on selected MOBIUS images. Observe the
difference in the segmentation quality across the evaluated models.
The figure shows (a) the original image; (b) the ground truth mask;
and the submitted binary masks from: (c) Attention-Sclera-Net,
(d) IGD-EyeMMS, (e) IGD-U-Net, (f) Sclera-TransFuseCNN, (g)
SegDeep+, (h) Unet-VGG.

presented to illustrate the capabilities of the submitted seg-
mentation models. As can be seen, there are significant dif-
ferences between the best and worst performing models in
terms of overlap with the manually annotated ground truth
masks, which is also reflected in quantitative scores in Ta-
ble 3.



Table 4. Comparative assessment of two recognition algorithms
applied on the segmented images for MOBIUS, obtained from
each of the segmentation algorithms.

Segmentation Model Task
Res2Net SqueezeNet

AUC EER AUC EER

Ground Truth RT 0.948729 0.123418 0.920501 0.106319

Sclera-TransFuseCNN SRT 0.944574 0.130192 0.910725 0.116070

IGD-EyeMMS SRT 0.926692 0.151305 0.913165 0.117795

IGD-U-Net SRT 0.921143 0.160622 0.902389 0.146742

Unet-VGG SRT 0.863086 0.213110 0.838594 0.204368

Attention-Sclera-net SRT 0.906672 0.164379 0.865137 0.165836

SegDeep+ SRT 0.853497 0.236792 0.820378 0.210503
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Figure 7. ROC curves generated for the (a) submitted Res2Net
model and the (b) baseline SqueezeNet model. The figures illus-
trate the sensitivity of the recognition models on differences in
segmentation performance in a joint evaluation setting.

5.2. Impact of segmentation on recognition perfor-
mance

In this section, we analyze the impact of segmentation
performance on the overall sclera-recognition pipeline. Be-
cause only the BUCEA group submitted a recognition ap-
proach for the RT and SRT tasks, we implement and train
another baseline model, SqueezeNet [40], for the analy-
sis and utilize it to put the results of the BUCEA Res2Net
model into perspective. As can be seen from the results in
Table 4 and Figure 7, the Res2Net model performs some-
what better than the lightweight SqueezeNet approach and
yields higher AUC scores in all experiments, suggesting that
larger models with better capacity are needed for compet-
itive results - note that SqueezNet has 0.76 and Res2Net
2.4 M parameters. Nonetheless, the baseline SqueezeNet
model produced competitive EER scores and consistently
outperforms Res2Net in this operating point. In the recogni-
tion tasks (RT), where the ground truth segmentation masks

were used on the SBVPI dataset, for example, the Res2Net
model yielded an AUC score of a little above 0.94 and an
equal error rate (EER) of 0.123, whereas SqueezeNet re-
sulted in an AUC score of 0.92, but a slightly lower EER of
0.106.

To further analyze the sensitivity of the recognition mod-
els to changes in the quality of the segmentation masks, we
ran verification experiments on a subset of the MOBIUS
dataset and investigated the performance of the Res2Net
and SqueezeNet models with all 6 submitted sets of seg-
mentation masks. From the reported results, it can be
clearly seen that in most cases better segmentation also
leads to better recognition performance. Additionally, it can
be observed that Sclera-TransFuseCNN i.e. the best sub-
mission for the segmentation task, ensured very similar per-
formance to the one observed with the manually generated
ground truth masks, both in terms of AUC and EER. It is
also worth noting that recognition performance ensured by
the Attention-Sclera-net segmentation is better than that of
Unet-VGG, despite the fact that the latter exhibited stronger
segmentation results. The reason behind this is assumed
to be the higher precision attained by Attention-Sclera-net
during segmentation on the MOBIUS dataset. However, it
is questionable whether such performance can also gener-
alize to other datasets given the lower recall rate. In other
words, it can be assumed that other information in addition
to the sclera pattern is also retrieved and considered during
the recognition stage when the segmentation masks gener-
ated by Attention-Sclera-net are used.

6. Conclusion
The eight edition of the Sclera Segmentation Bench-

marking Competition (SSRBC 2023) was organized in con-
junction with IJCB 2023 to benchmark and record the re-
cent developments and performance of sclera segmentation
and recognition models with varying sensors, gaze angles,
and acquisition conditions. A total of 5 groups from 6 in-
stitutions participated in the competition and contributed 6
segmentation techniques and 1 recognition model for the
group evaluation. The submitted models ensured solid seg-
mentation and recognition results. It can be concluded that
better segmentation can lead to better recognition results. In
future we will aim at investigating the impact of covariates
such as lighting condition and gaze angle on the SRT.

Acknowledgements
The authors are grateful to CodaLab Competitions [41]

for providing a platform to conduct the competition.
The authors also gratefully acknowledge the computing

time provided on the high performance computing facility,
Sharanga, at the Birla Institute of Technology and Science -
Pilani, Hyderabad Campus.



References
[1] Abhijit Das, Umapada Pal, Michael Blumenstein, and

Miguel Angel Ferrer Ballester. Sclera recognition-a survey.
In 2013 2nd IAPR Asian Conference on Pattern Recognition,
pages 917–921. IEEE, 2013. 1

[2] Peter Rot, Matej Vitek, Klemen Grm, Žiga Emeršič, Pe-
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