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Figure 1. High-level idea behind the proposed DifFIQA face image quality assessment (FIQA) approach. The quality of face

images corresponds to a considerable degree to the stability of the respective representations in the embedding space of a given face

recognition (FR) model. DifFIQA utilizes a diffusion framework to explore the embedding stability through image perturbations caused

by the noising and denoising processes. The intuition behind this approach is that the forward (noising) Fd and backward (denoising) Bd

diffusion processes lead to larger embedding perturbations for lower-quality images (xl) compared to facial images of higher quality (xh).

By analyzing the impact of both the forward and backward processes on the representation of a given image, DifFIQA is able to infer the

corresponding quality and/or generate (FR model specific) quality rankings, as shown on the right. The figure is best viewed electronically.

Abstract

Modern face recognition (FR) models excel in con-

strained scenarios, but often suffer from decreased perfor-

mance when deployed in unconstrained (real-world) en-

vironments due to uncertainties surrounding the quality

of the captured facial data. Face image quality assess-

ment (FIQA) techniques aim to mitigate these performance

degradations by providing FR models with sample-quality

predictions that can be used to reject low-quality samples

and reduce false match errors. However, despite steady im-

provements, ensuring reliable quality estimates across fa-

cial images with diverse characteristics remains challeng-

ing. In this paper, we present a powerful new FIQA ap-

proach, named DifFIQA, which relies on denoising diffu-

sion probabilistic models (DDPM) and ensures highly com-

petitive results. The main idea behind the approach is to uti-

lize the forward and backward processes of DDPMs to per-

turb facial images and quantify the impact of these pertur-

bations on the corresponding image embeddings for qual-

ity prediction. Because the diffusion-based perturbations

are computationally expensive, we also distill the knowl-

edge encoded in DifFIQA into a regression-based quality

predictor, called DifFIQA(R), that balances performance

and execution time. We evaluate both models in compre-

hensive experiments on 7 datasets, with 4 target FR models

and against 10 state-of-the-art FIQA techniques with highly

encouraging results. The source code will be made publicly

available.

1. Introduction

State-of-the-art face recognition (FR) models achieve

near-perfect results on various benchmarks with high-

quality facial images, but still struggle in real-world situ-

ations, where the quality of the input samples is frequently

unknown [1, 13, 42]. For instance, surveillance, a common

application of FR, often involves lower quality samples due

to unconstrained and covert capture conditions. In such

cases, assessing the quality of the face-image samples is

crucial. Low-quality samples can mislead the FR models

and cause catastrophic false-match errors, leading to pri-

vacy breaches or even monetary loss. By determining the

quality of input samples and rejecting or requesting recap-

ture of those below a given quality threshold, the stability

and performance of FR models can typically be improved.

Face Image Quality Assessment (FIQA) methods pro-

vide FR methods with a quality estimate for each given face

sample. In this context, the term quality can refer to ei-

ther the character, fidelity or utility of the sample, as de-

fined by ISO/IEC 29794-1 [22]. Similarly to most FIQA re-

search, we focus on the biometric utility of the facial sam-

ples, rather than the visual quality (character and fidelity)

as perceived by humans [36]. Such image characteristics

are commonly evaluated by general-purpose Image Qual-

ity Assessment (IQA) techniques. Biometric utility encom-

passes several unknown aspects of the given face sample,

including its visual quality, face-specific information, and

the relative biases inherent to the targeted FR model. It

can be interpreted as the usefulness (or fitness) of the sam-
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ple for the recognition task. Several types of FIQA tech-

niques have been proposed over the years. The largest

group focuses on training regression models from calcu-

lated pseudo reference quality labels [7, 17, 33, 44], with

differences between methods in how they calculate the la-

bels. Other approaches include (unsupervised) analytical

methods [3, 29, 40] that use reference-free approaches for

quality prediction, and model-based solutions [5,31,39] that

combine the face recognition and quality assessment tasks.

While modern FIQA techniques have demonstrated impres-

sive performance, providing reliable quality predictions for

diverse facial characteristics is still a challenging task.

In this paper, we introduce a novel FIQA technique,

called DifFIQA (Diffusion-based Face Image Quality Ass-

essment), that leverages the image-generation versatil-

ity of modern Denoising Diffusion Probabilistic Models

(DDPMs) for face quality assessment and generalizes well

across a wide variety of datasets and FR models. As shown

in Figure 1, DifFIQA is based on the following two insights:
• Perturbation robustness: Images of higher-quality

have stable representations in the embedding space of

the given FR model and are less effected by noise per-

turbations introduced by the forward diffusion process.

• Reconstruction quality: High-quality samples are

easier to reconstruct from partially corrupted (noisy)

data with incomplete identity information and exhibit

less disparity between the embeddings of the input and

denoised samples than low-quality images.
Based on these observations, DifFIQA analyzes the embed-

ding stability of the input image by perturbing it through the

forward as well as backward diffusion process and infers a

quality score from the result. To avoid the computationally

expensive backward process and speed up computation, we

also distill the DifFIQA approach into a regression-based

model, termed DifFIQA(R). We evaluate both techniques

through extensive experiments over multiple datasets and

FR models, and show that both techniques lead to highly

competitive results when compared to the state-of-the-art.

2. Related Work

In this section, we briefly review existing FIQA solu-

tions, which can conveniently be partitioned into three main

groups: (i) analytical techniques, (ii) regression-based ap-

proaches, and (iii) model-based methods.

Analytical methods. The vast majority of methods from

this group can be viewed as specialized general-purpose

IQA techniques that focus on quality predictions defined

by (i) selected visual characteristics of faces, such as pose,

symmetry or interocular distance, and/or (ii) general vi-

sual image properties, such as sharpness, illumination or

noise. An early method from this group was presented by

Raghavendra et al. in [34], where a three stage approach

combining pose and image texture components was pro-

posed. Another method by Lijun et al. [29] combined sev-

eral face-image characteristics, including alignment, occlu-

sion and pose, into a pipeline for quality score calculation.

Several conceptually similar approaches that exploit differ-

ent (explicit) visual cues have been presented in the liter-

ature over the years [12, 14, 24, 32]. However, the perfor-

mance of such methods is typically limited, as they focus

only on the characteristics of the input samples, with no re-

gard to the utilized FR model. Nevertheless, a new group

of analytical methods has recently emerged that incorpo-

rates information from both, the input face sample as well

as the targeted FR system into the quality estimation pro-

cess. An example of such an approach was presented by

Terhörst et al. [40] in the form of the SER-FIQ technique.

SER-FIQ calculates a quality score from the embedding

variations of a given input face sample, caused by using dif-

ferent configurations of dropout layers. Another method,

called FaceQAN by Babnik et al. [3], relies on adversarial

attacks (which are harder to generate for high quality im-

ages) to calculate quality scores. Both of these methods

achieve excellent results, but are also comparably computa-

tionally demanding, due to their reliance on running several

instances of the same sample through the given FR model.

Regression-based methods. FIQA techniques from this

group typically train a (quality) regression model using

some sort of (pseudo) quality labels. Regression-based

methods have received considerable attention over recent

years, with most of the research exploring effective mech-

anisms for generating informative pseudo quality annota-

tions. An early technique from this group, by Best-Rowden

and Jain [4], for example, used human raters to annotate

the (perceived) quality of facial images, and then trained a

quality predictor on the resulting quality labels. Another

technique, named FaceQnet [16, 18], relied on embedding

comparisons with the highest quality image of each individ-

ual to estimate reference quality scores. Here, the highest

quality images of each individual were determined using an

external quality compliance tool and a ResNet-based regres-

sor was then trained on the extracted quality labels. A more

recent approach, called PCNet [44], used a large number

of mated image pairs (i.e., a pair of distinct images of the

same individual), to train a CNN-based regression model,

where the quality labels were defined by the embedding

similarity of the mated pairs. The SDD-FIQA approach,

by Ou et al. [33], extended this concept to also include

non-mated (impostor) pairs, (i.e., two unique images of dif-

ferent individuals), where the label for a single image was

computed as the Wasserstein distance between the mated

and non-mated score distributions. LightQNet, by Chen et

al. [7], trained a lightweight model, by employing an iden-

tification quality loss using quality scores computed from

various image comparisons. While regression-based meth-

ods in general perform well over a variety of benchmarks

and state-of-the-art FR models, their main weakness is the

lack of specialization. As the optimal quality estimate for a

given input image, is by definition FR model specific [2,22],

regression-based techniques may require retraining towards

the targeted FR model to ensure ideal performance.

Model-based methods. The last group of techniques com-
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Figure 2. Overview of DifFIQA. The proposed quality assessment pipeline consists of two main parts: the Diffusion Process and the

Quality-Score Calculation. The diffusion process uses an encoder-decoder UNet model (D), trained using an extended DDPM training

scheme that helps to generate higher-quality (restored) images. The custom DDPM model is used in the Diffusion Process, which generates

noisy xt and reconstructed x̂ images using the forward and backward diffusion processes, respectively. To capture the effect of facial pose

on the quality estimation procedure, the process is repeated with a horizontally flipped image x
f . The Quality Score Calculation part then

produces and compares the embeddings of the original images and the images generated by the diffusion part.

bines face-image quality assessment and face recognition

into a single task. One such technique, PFE by Shi and

Jain [39], learned to predict a pair of vectors from the in-

put image, i.e., a mean and a variance vector. The mean

vector can be thought of as the embedding of the input sam-

ple image, while the variance vector represents the sample’s

variability, and can be used to calculate the sample quality.

The presented method inspired several new (uncertainty-

aware) methods [8, 28, 46], further improving on the per-

formance of PFE. Another notable technique, called Mag-

Face [31], extended the popular ArcFace loss [10] by in-

corporating a magnitude-aware angular margin term, which

dynamically adjusts class boundaries. The embeddings pro-

duced by MagFace encode quality in the magnitude of the

embedding itself and can hence be easily inferred. A pow-

erful FIQA technique, called the CR-FIQA, was recently

proposed by Boutros et al. in [5]. CR-FIQA calculates the

quality of the input samples as the ratio between the positive

class center and nearest negative class center in a classifica-

tion task setting, and was demonstrated to produce highly

competitive results across various datasets and settings.

Our contribution. The DifFIQA technique, the main con-

tribution of this work, can be seen as an analytical method

that relies on the capabilities of a DDPM in combination

with a chosen FR model. From a conceptual point of view, it

is most closely related to FaceQgen [15], a FIQA technique

that uses a (GAN-based) generator model for synthesizing

high-quality versions of the input samples and the respec-

tive discriminator (that aims to distinguish between genuine

high-quality images and poorly restored ones) for quality

scoring. Unlike FaceQgen, which analyzes the differences

between the original and restored images independently of

the target FR model, DifFIQA utilizes results from the for-

ward (i.e., noising/degradation) as well as backward (de-

noising/restoration) diffusion processes and quantifies the

embedding variability/uncertainty in the embedding space

of a selected FR model for quality estimation. As we show

later in the experimental section, this leads to highly com-

petitive FIQA results when compared to the state-of-the-art.

3. Methodology

The stability of the image representations in the embed-

ding space of a given FR model is highly indicative of the

input-image quality, as demonstrated by the success of var-

ious recent FIQA techniques [3, 40]. One way to explore

this stability is by causing perturbations in the image space

and analyzing the impact of the perturbations in the embed-

ding space of the targeted FR model. This can, for example,

be achieved by using the forward and backward processes

of modern diffusion approaches where: the forward process

adds some amount of noise to the sample, and the backward

process tries to remove the noise, by reconstructing the orig-

inal. Our main contribution, the DifFIQA technique, takes

advantage of the proposed idea, as illustrated in Figure 2,

and employs a custom DDPM model for the generation of

noisy and reconstructed images. The generated images are

then passed through a chosen FR model to explore the im-

pact of the perturbations on the variability of the embedding

corresponding to the input image.

3.1. Preliminaries

To make the paper self-contained, we briefly present the

main concept behind denoising diffusion probabilistic mod-

els (DDPMs), with a focus on their application within our

approach. More information on the theoretical background

and applications of diffusion models can be found in [9].

In general, DDPMs represent a special type of genera-

tive model that learns to model (image) data distributions

through two types of processes: a forward (noising) process

and backward (denoising) process [9,23]. The forward dif-

fusion process Fd iteratively adds noise to the given in-

put image x0, by sampling from a Gaussian distribution

N (0, I). The result of this process is a noisy sample xt,

where t is the number of time steps chosen from the se-

quence {0, 1, . . . , T}. The whole forward process Fd can

3



be presented as a Markov chain given by

q(xt|xt−1) = N (xt|xt−1

√

1− βt, βtI), (1)

where βt is a variance parameter that defines how much

noise is added to the sample at the time instance t of the

forward process. By making use of the reparameterization

trick [19, 26], any sample xt can be obtained directly from

the input sample x0, i.e.:

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I), (2)

where αt =
∏t

i=0
(1− βi).

The backward diffusion process Bd attempts to itera-

tively denoise the generated samples xt, using a deep neural

network model Dθ parameterized by θ, according to

p(xt−1|xt) = N (xt−1;µθ(xt, t), β̃tI), (3)

where t = T, . . . , 0, β̃t =
1−αt−1

1−αt
βt, and

µθ(xt, t) =

√
αt−1βt

1− αt

x0 +

√
αt(1− αt−1)

1− αt

xt. (4)

The network is trained to optimize µθ, by minimizing the

L2 loss

L2 = Et,x0
||Dθ(xt, t)− x0||2, (5)

where Dθ(xt, t) is the reconstructed and x0 the input im-

age. In the remainder of the paper, we drop the subscript

θ and use D to denote the deep neural network, which is

represented by an unconditional UNet model.

3.2. Overview of DifFIQA

Given a face image x, the goal of DifFIQA is to estimate

the quality score qx ∈ R, by exploring the effects of the for-

ward and backward diffusion processes of a custom DDPM

model D on the image representation ex in the embedding

space of a given FR model M . DifFIQA consists of two

main steps, dedicated to: (i) image perturbation and (ii)
quality-score calculation. The image perturbation step uses

the forward diffusion process Fd to create a noisy sample xt

from the input image x and the backward process Bd to gen-

erate the restored (denoised) image x̂. In the quality-score

calculation step, the representations ex, ext
, ex̂ correspond-

ing to the input x, noisy xt and restored image x̂, are calcu-

lated using the FR model M and then analyzed for dispari-

ties to infer the final quality score qx of the input sample x.

To also capture pose-related quality information, DifFIQA

repeats the entire process using a horizontally flipped ver-

sion xf of the input image x, as also illustrated in Figure 2.

3.3. Extended DDPM Training

To train the DDPM model D (i.e., a UNet [35]) needed

by DifFIQA, we extend the standard training process of dif-

fusion models to incorporate time dependent image degra-

dations, as illustrated in Figure 3. These additional (time-

dependent) degradations allow the model to learn to grad-

ually reverse these degradations and, in turn, to construct

Figure 3. Presentation of the extended DDPM learning scheme.

Given a training sample x and a time step t, the proposed approach

generates a time step dependent degraded image x′
t, by combining

the original with a degraded image using the function Y . The im-

age x
′
t is then used to generate a noisy sample xt using the stan-

dard forward diffusion approach Fd. A UNet (D) is then trained

to reconstruct the input sample in the backward process Bd.

higher quality images during the backward process. For-

mally, given an input face image x0 = x, the training pro-

cedure first constructs a degraded image x′ = d(x), where

d(·) is some degradation function. A time step t ∈ [0, T ]
is then selected for the given sample, from which a time-

dependent degraded image is computed as follows:

x′
t = Y (x0, x

′, t) = (1− α̈t)x0 + α̈tx
′ (6)

where α̈t is calculated as sin( t
T
· π
2
). The degraded image

x′
t is then used to produce the noisy sample xt using (2).

Here, α̈t is a time-dependent variable that monotonically

increases on the interval t ∈ [0, T ], such that α̈t=0 = 0 and

α̈t=T = 1. In other words, at time step 0 only the non-

degraded image is considered, while at time step T only the

degraded image is considered. To implement the degrada-

tion function d(·), we use part of the BSRGAN [45] frame-

work that creates a random sequence of image mappings

that imitate real-life degradations.

Diffusion models are commonly trained on the full range

of time steps [1, T ] and learn to generate images from pure

noise. However, such a setting is not relevant in the context

of quality assessments, as the generated (denoised) images

have to exhibit a sufficient correspondence with the input

samples x. The easiest solution to this issue is to limit the

number of time steps, on which the model is trained t ∈
[1, T ′], where T ′ < T , and, in turn, ensure that the noisy

image is properly conditioned on the input x. The extended

training procedure then minimizes (5) until convergence.

3.4. Generating Noisy and Reconstructed Images

To estimate the quality of a given face image x, DifFIQA

makes use of the forward and backward diffusion processes

of the trained DDPM. Because head pose is an important

factor of face quality, which the underlying DDPM can not

explicitly account for, we extend our methodology, by first

constructing a horizontally flipped image xf that we utilize

alongside the original image x in the quality-score calcula-

tion step, similarly to [3]. The main intuition behind this

approach is to exploit the symmetry of human faces, where

large deviations from frontal pose induce large disparities

between the embeddings of the original and flipped images

that can be quantified during quality estimation. Thus, for
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Table 1. Summary of the characteristics of the experimental

datasets. We evaluate DifFIQA across seven diverse datasets with

different quality factors and of different size.

Dataset #Images #IDs
#Comparisons Main Quality Factors†‡

Mated Non-mated Pose O-E B-R-N Sc

Adience [11] 19,370 2,284 20,000 20,000 M M L M

CALFW [48] 12,174 4,025 3,000 3,000 M M L M

CFP-FP [38] 7,000 500 3,500 3,500 H L L M

CPLFW [47] 11,652 3,930 3,000 3,000 H L M M

IJB-C [30] 23,124†† 3,531 19,557 15,638,932 H H H Lr

LFW [20] 13,233 5,749 3,000 3,000 L L L M

XQLFW [27] 13,233 5,749 3,000 3,000 L L H M

†O-E - Occlusion, Expression; B-R-N - Blur, Resolution, Noise; Sc - Scale.

‡L - Low; M - Medium; H - High; Lr - Large; Values estimated subjectively by the authors.

†† number of templates, each containing several images

a pair of input face images (x, xf ) and a given time step t,

we construct a pair of noisy (xt, x
f
t ) and restored images

(x̂, x̂f ) and use the generated data for quality estimation.

3.5. QualityScore Calculation

DifFIQA relies on the assumption that the embeddings

of lower-quality images are more sensitive to image per-

turbations introduced by the forward and backward diffu-

sion processes than higher-quality images. To quantify this

sensitivity, we calculate the average cosine similarity be-

tween the embedding of the input image x and all generated

noisy and restored counterparts. Additionally, since diffu-

sion models rely on the (random) sampling from a normal

distribution, we repeat the whole process n times and aver-

age the results, i.e.,

qx =
1

n|E|
n
∑

i=1

∑

ey∈E

eTx ey
∥ex∥ · ∥ey∥

, (7)

where E is a set of generated image embeddings, i.e, E =
{ext

, ex̂, exf , e
x
f
t
, ex̂f }, computed with the FR model M as

ez = M(xz). In the above equation, the operator |·| denotes

the set cardinality and ∥ · ∥ the L2 norm.

3.6. Model Distillation

One of the main shortcomings of DifFIQA (and diffu-

sion models in general) is the high computational complex-

ity compared to other types of FIQA techniques. This com-

plexity stems from the iterative nature of the backward dif-

fusion process, which requires a large number of forward

passes through the generative network. Since our approach

repeats this process n-times, this only exacerbates the prob-

lem and adversely affects the applicability of the technique

in real-world applications. To address this problem, we

distill the knowledge encoded by DifFIQA into a regres-

sion model. Specifically, we select a pretrained CosFace

FR model augmented with a (quality) regression head and

fine-tune it on roughly two million quality labels extracted

from the VGGFace2 [6] dataset using the proposed Dif-

FIQA technique. Here, the labels are normalized to [0, 1]
and then split into train and validation sets for the training

procedure. We refer to the distilled CosFace model as Dif-

FIQA(R) hereafter, and evaluate it together with the original

DifFIQA technique in the following sections.

4. Experiments and Results

4.1. Experimental Setup

Experimental setting. We analyze the performance of

FaceQDiff in comparison to 10 state-of-the-art FIQA meth-

ods, i.e.: (i) the analytical FaceQAN [3], SER-FIQ [40],

and FaceQgen [15] models, (ii) the regression-based Face-

Qnet [17], SDD-FIQA [33], PCNet [44], and LightQnet [7]

techniques, and (iii) the model-based MagFace [31], PFE

[39], and CR-FIQA [5] methods. We test all methods on 7
commonly used benchmarks with different quality charcter-

istics, as summarized in Table 1, i.e.: Adience [11], Cross-

Age Labeled Faces in the Wild (CALFW) [48], Celebri-

ties in Frontal-Profile in the Wild (CFP-FP) [38], Cross-

Pose Labeled Faces in the Wild (CPLFW) [47], large-scale

IARPA Janus Benchmark C (IJB-C) [30], Labeled Faces in

the Wild (LFW) [20] and the Cross-Quality Labeled Faces

in the Wild (XQLFW) [27]. Because the performance of

FIQA techniques is dependent on the FR model used, we

investigate how well the techniques generalize over 4 state-

of-the-art models, i.e.: AdaFace1 [25], ArcFace2 [10], Cos-

Face2 [43], and CurricularFace3 [21] - all named after their

training losses. All FR models use a ResNet100 back-

bone, and are trained on the WebFace12M1, MS1MV32,

Glint360k2, and CASIA-WebFace3 datasets.

Evaluation methodology. Following standard evaluation

methology [3, 5, 40] and taking recent insights into ac-

count [22, 37], we evaluate the performance of DifFIQA

using non-interpolated Error-versus-Discard Characteristic

(EDC) curves (often also referred to as Error-versus-Reject

Characteristic or ERC curves in the literature) and the con-

sequent pAUC (partial Area Under the Curve) values. The

EDC curves measure the False Non-Match Rate (FNMR),

given a predefined False Match Rate (FMR) (10−3 in our

case), with increasing low-quality image discard (reject)

rates. In other words, EDC curves measure how the perfor-

mance of a given FR model improves when some percent-

age of the lowest quality images is discarded. Since reject-

ing a large percentage of all samples is not feasible/practical

in real-world application scenarios, we are typically most

interested in the performance at the lower discard rates. For

this reason we report the pAUC values, where only the re-

sults up to a predetermined drop rate threshold are consid-

ered. Furthermore, for easier interpretation and compari-

son of scores over different dataset, we normalize the cal-

culated pAUC values using the FNMR at 0% discard rate,

with lower pAUC values indicating better performance.

Implementation Details. During training of the DDPM,

1https://github.com/mk-minchul/AdaFace
2https://github.com/deepinsight/insightface
3https://github.com/HuangYG123/CurricularFace
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Figure 4. Comparison to the state-of-the-art in the form of (non-interpolated) EDC curves. Results are presented for seven diverse

datasets, four FR models and in comparison to ten recent FIQA competitors. Observe how the distilled model performs comparably to the

non-distilled version, especially at low discard rates. DifFIQA and DifFIQA(R) most convincingly outperform the competitors on the most

chalenging IJB-C and XQLFW datasets. The figure is best viewed in color.

the maximum number of forward steps is set to T = 1000,

yet the underlying model is trained only using up to T ′ =
100 forward diffusion steps. The value of T ′ does not de-

fine the number of time steps t taken at inference time, it

only sets the possible upper bound. This process ensures

that images produced by the forward process are only par-

tially noisy, so the backward process is properly conditioned

on the input image and learns to restore it during training.

To account for the randomness introduced by the forward

process, we repeat the diffusion process n = 10 times and

average the results over all iterations, when computing the

final quality score. The utilized UNet model (D) consists

of four downsampling and upsampling modules, each de-

creasing (increasing) the dimensions of the representations

by a factor of two. Training is done using the Adam opti-

mizer, with a learning rate of 8.0e−5 in combination with
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Table 2. Comparison to the state-of-the-art. The table reports

pAUC scores at a discard rate of 0.3 and a FMR of 10−3. Average

results across all datasets are marked pAUC. The best result for

each dataset is shown in bold, the overall best result is colored

green, the second best blue and the third best red.

AdaFace - pAUC@FMR=10−3 (↓)

FIQA model Adience CALFW CFP-FP CPLFW IJB-C LFW XQLFW pAUC

FaceQnet [17] 0.963 0.938 0.717 0.887 1.256 0.884 0.977 0.946
SDD-FIQA [33] 0.839 0.871 0.500 0.688 0.782 0.825 0.842 0.764
PFE [39] 0.833 0.890 0.566 0.681 0.868 0.771 0.798 0.772
PCNet [44] 1.005 0.979 0.862 0.898 0.788 0.661 0.987 0.883
MagFace [31] 0.860 0.866 0.524 0.664 0.883 0.666 0.913 0.768
LightQNet [7] 0.847 0.894 0.641 0.684 0.797 0.777 0.704 0.763
SER-FIQ† [41] 0.807 0.892 0.475 0.626 0.762 0.935 n/a 0.749
FaceQAN [3] 0.890 0.919 0.383 0.619 0.756 0.656 0.654 0.697
CR-FIQA [5] 0.844 0.851 0.391 0.588 0.750 0.707 0.684 0.688
FaceQgen [15] 0.858 0.970 0.718 0.694 0.853 0.834 0.736 0.809

DifFIQA (ours) 0.864 0.900 0.416 0.608 0.761 0.719 0.627 0.699
DifFIQA(R) (ours) 0.865 0.895 0.412 0.601 0.731 0.708 0.610 0.689

ArcFace - pAUC@FMR=10−3 (↓)

FIQA model Adience CALFW CFP-FP CPLFW IJB-C LFW XQLFW pAUC

FaceQnet [17] 0.943 0.955 0.693 0.878 1.224 0.884 0.899 0.925
SDD-FIQA [33] 0.783 0.901 0.491 0.734 0.720 0.808 0.774 0.744
PFE [39] 0.774 0.932 0.524 0.738 0.783 0.779 0.641 0.739
PCNet [44] 1.022 1.006 0.868 0.783 0.706 0.623 1.004 0.859
MagFace [31] 0.812 0.902 0.549 0.717 0.824 0.635 0.943 0.769
LightQNet [7] 0.789 0.913 0.612 0.752 0.721 0.745 0.621 0.736
SER-FIQ† [40] 0.767 0.903 0.416 0.656 0.671 0.935 n/a 0.724
FaceQAN [3] 0.824 0.941 0.373 0.677 0.673 0.624 0.581 0.670
CR-FIQA [5] 0.808 0.891 0.358 0.689 0.664 0.675 0.642 0.675
FaceQgen [15] 0.817 0.985 0.784 0.701 0.785 0.802 0.653 0.789

DifFIQA (ours) 0.805 0.900 0.399 0.647 0.675 0.695 0.546 0.667
DifFIQA(R) (ours) 0.801 0.898 0.389 0.646 0.655 0.708 0.554 0.665

CosFace - pAUC@FMR=10−3 (↓)

FIQA model Adience CALFW CFP-FP CPLFW IJB-C LFW XQLFW pAUC

FaceQnet [17] 0.952 0.955 0.693 0.879 1.248 0.884 0.899 0.930
SDD-FIQA [33] 0.825 0.901 0.491 0.735 0.721 0.808 0.774 0.751
PFE [39] 0.813 0.932 0.524 0.748 0.784 0.779 0.641 0.746
PCNet [44] 1.009 1.006 0.868 0.835 0.710 0.623 1.004 0.865
MagFace [31] 0.852 0.902 0.549 0.724 0.821 0.635 0.943 0.775
LightQNet [7] 0.835 0.913 0.612 0.753 0.713 0.745 0.621 0.742
SER-FIQ† [40] 0.793 0.903 0.416 0.711 0.661 0.935 n/a 0.736
FaceQAN [3] 0.871 0.941 0.373 0.667 0.675 0.624 0.581 0.676
CR-FIQA [5] 0.835 0.891 0.358 0.681 0.664 0.675 0.642 0.678
FaceQgen [15] 0.847 0.985 0.784 0.702 0.783 0.802 0.653 0.794

DifFIQA (ours) 0.841 0.900 0.399 0.669 0.672 0.695 0.546 0.675
DifFIQA(R) (ours) 0.838 0.900 0.389 0.669 0.644 0.695 0.546 0.669

CurricularFace - pAUC@FMR=10−3 (↓)

FIQA model Adience CALFW CFP-FP CPLFW IJB-C LFW XQLFW pAUC

FaceQnet [17] 0.921 0.947 0.601 0.867 1.248 0.908 0.984 0.925
SDD-FIQA [33] 0.776 0.900 0.409 0.696 0.721 0.821 0.817 0.734
PFE [39] 0.759 0.923 0.415 0.691 0.784 0.785 0.835 0.742
PCNet [44] 1.004 0.996 0.887 0.899 0.710 0.656 0.938 0.870
MagFace [31] 0.793 0.892 0.477 0.689 0.821 0.661 0.862 0.742
LightQNet [7] 0.769 0.910 0.462 0.704 0.713 0.767 0.739 0.723
SER-FIQ† [40] 0.750 0.883 0.389 0.625 0.661 0.942 n/a 0.708
FaceQAN [3] 0.811 0.931 0.343 0.637 0.669 0.644 0.835 0.696
CR-FIQA [5] 0.797 0.877 0.318 0.615 0.664 0.693 0.789 0.679
FaceQgen [15] 0.815 0.974 0.662 0.698 0.783 0.845 0.750 0.790

DifFIQA (ours) 0.806 0.884 0.384 0.624 0.672 0.711 0.736 0.688
DifFIQA(R) (ours) 0.788 0.892 0.358 0.622 0.644 0.724 0.768 0.685
†SER-FIQ was used to create XQLFW, so the results here are not reported for a fair comparison.

an Exponential Moving Average (EMA) model, with a de-

cay rate of 0.995. The presented hyperparameters were de-

termined through preliminary experiments on hold-out data

to ensure a reasonable trade-off between training speed and

reproducible performance. All experiments were conducted

on a desktop PC with an Intel i9-10900KF CPU, 64 GB of

RAM and an Nvidia 3090 GPU.

4.2. Comparison with the StateoftheArt

In this section, we compare DifFIQA and the distilled

version, DifFIQA(R), with ten state-of-the-art competitors

and analyze: (i) the performance characteristics of the

tested techniques, and (ii) their runtime complexity.

Performance analysis. In Figure 4, we show the (non-

interpolated) EDC curves for all tested FR models and

datasets, and report the corresponding pAUC scores in Ta-

ble 5. Following the suggestions in [22, 37], we chose a

discard rate of 0.3, when calculating the pAUC values, but

also report additional results in the supplementary material.

We observe that the proposed diffusion-based FIQA tech-

niques result in highly competitive performance across all

datasets and FR models. The distilled DifFIQA(R) model,

for example, leads to the lowest average pAUC score with

the ArcFace and CosFace FR models, and is the runner-up

with the AdaFace and CurricularFace models with pAUC

scores comparable to the top performer CR-FIQA4. Sev-

eral interesting findings can be made from the reported

results, e.g.: (i) While the performance of DifFIQA and

DifFIQA(R) is in general close, the distilled version has a

slight edge over the original, which suggests that the distil-

lation process infuses some additional information into the

FIQA procedure through the FR-based regression model;

(ii) The proposed FIQA models are particularly competi-

tive on the difficult large-scale IJB-C dataset, where the Dif-

FIQA(R) approach consistently outperforms all competing

baseline models. A similar observation can also be made

for the challenging XQLFW dataset, where the diffusion-

based models are again the top performers, which speaks of

the effectiveness of diffusion-based quality estimation.

Runtime complexity. In Table 3, we compare the runtime

complexity of the evaluated FIQA techniques (in ms). To

ensure a fair comparison, we utilize (i) the same experimen-

tal hardware for all methods (described in Section 4.1), (ii)
use the official code, released by the authors for all tech-

niques, and (iii) compute average runtimes and standard

deviations over the entire XQLFW dataset. As can be seen,

the original approach, DifFIQA, despite being highly com-

petitive in terms of performance, is among the most com-

putationally demanding due to the use of the complex dif-

fusion processes. With around 1s on average per image,

the runtime complexity of the model is even significantly

higher than that of the FaceQAN or SER-FIQ techniques

that require multiple passes through their networks to esti-

mate quality and which are already among the slower FIQA

models. However, the distillation process, allows to reduce

the runtime by roughly three orders of magnitude (or by

99, 9%), making the distilled DifFIQA(R) comparable to

the faster models evaluated in this experiment.

4.3. Ablation Study

We perform several ablation studies to explore the im-

pact of the main components of DifFIQA. Specifically, we

are interested in: (A1) the impact of the flipping proce-

dure, utilized to capture pose-related quality factors, (A2)

the contribution of the forward pass (i.e., the noising step

of the diffusion), and (A3) the impact of the number of for-

ward diffusion steps t, where a larger number corresponds

to higher amounts of noise in the image xt produced by the

4In the supplementary material we show that with a discard rate of
0.2, DifFIQA(R) is the top performer with 3 of the 4 FR models.
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Table 3. Runtime complexity. The reported results (in ms) were computed over the XWLFW dataset and the same experimental hardware.

Note how the destillation process leads to a speed-up of more than three orders of magnitude from DifFIQA to DifFIQA(R).

FIQA model CR-FIQA [5] SDD-FIQA [33] FaceQAN [3] MagFace [31] SER-FIQ [40] FaceQnet [17] FaceQgen [15] LightQnet [7] PCNet [44] PFE [39]
Ours

DifFIQA DifFIQA(R)

Runtime (µ± σ) 0.15± 0.37 0.62± 0.36 334.13± 118.79 1.08± 0.36 112.93± 33.81 42.11± 2.14 42.11± 2.05 18.54± 18.68 17.06± 0.34 42.69± 12.26 1074.62± 11.45 1.24± 0.36

Table 4. Results of the ablation study. The results are reported

in terms of pAUC (↓) at a FMR of 10−3 and a discard rate of 0.3.

Model variant LFW CPLFW CALFW XQLFW pAUC

(A1): w/o Image Flipping 0.702 0.727 0.888 0.535 0.713
(A2): w/o Forward Pass 0.730 0.684 0.897 0.531 0.710
(A3): DifFIQA (t = 20) 0.657 0.694 0.945 0.628 0.731

DifFIQA (complete) 0.695 0.669 0.900 0.546 0.702

Figure 5. Quality-score distributions. DifFIQA by DifFIQA(R)

produce very consistent distributions over all seven test datasets.

forward process. Because the ablations are only relevant for

the (non-distilled) approach, we experiment solely with the

DifFIQA technique and report results using the CosFace FR

model and four datasets that feature a broad range of quality

characteritics, i.e., LFW, CPLFW, CALFW and XQLFW.

From the results in Table 4, we observe that the exclusion

of the flipping operation significantly degrades performance

on the cross-pose (CPLFW) dataset, while contributing to

minor improvements on CALFW and XQLFW. However,

given that pose is considered one of the main factors still ad-

versely affecting modern FR models, the flipping operation

still helps with the performance across all the test datasets

(see average A1 results). When removing the forward pass

(in A2), we again see considerable performance drops on

LFW and CPLFW, leading to lower average pAUC scores.

This suggest that both (forward and backward) processes

are important for good results across different datasets. Fi-

nally, we see that lesser amounts of noise and stronger con-

ditioning on the input images leads to better results as evi-

denced by the A3 results with our model with 20 timesteps,

instead of the 5 utilized in the complete DifFIQA approach.

4.4. Qualitative Evaluation

While the proposed DifFIQA approach has a sound the-

oretical basis that links the forward and backward diffu-

sion processes to face image quality, the distilled variant

abstracts this relation away and approaches the FIQA task

from a pure learning perspective. To get better insight into

the characteristics of both models, we investigate in this sec-

Figure 6. Illustration of the quality scores produced by the pro-

posed FIQA techniques. The scores on the top shows results for

DifFIQA and the scores at the bottom for DifFIQA(R). While the

concrete scores differ, both models generate similar rankings.

tion their behavior in a qualitative manner.

Quality-score distributions. In Figure 5, we compare the

quality-score distributions, generated by DifFIQA and Dif-

FIQA(R) on all seven test datasets. As can be seen, the

two models produce very similar distributions, with a slight

preference of DifFIQA(R) towards higher quality scores.

Visual analysis. In Figure 6, we show example images

from the XQLFW dataset and the corresponding quality

scores, generated by the DifFIQA and DifFIQA(R) tech-

niques. Note that both approaches produce a similar ranking

but differ in the concrete quality score assigned to a given

image. It is interesting to see that some blurry images with

low (human-perceived) visual quality receive relatively high

quality scores, as they feature frontal faces that may still be

useful for recognition purposes. Additional qualitative re-

sults that illustrate the capabilties of the DifFIQA model

are also shown on the right part of Figure 1.

5. Conclusion

We have presented a novel approach to face image qual-

ity assessment (FIQA), called DifFIQA, that uses denoising

diffusion probabilistic models as the basis for quality esti-

mation. Through comprehensive experiments on multiple

datasets we showed that the proposed model yields highly

competitive results, when benchmarked against state-of-

the-art techniques from the literature and that the runtime

performance can be reduced significantly if the model is

distilled into a quality predictor through a regression-based

procedure. As part of our future work, we plan to investi-

gate extensions to our model, including transformer-based

UNet alternatives and latent diffusion processes.
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6. Supplementary Material

In the main part of the paper, we evaluated the pro-

posed DifFIQA technique in comprehensive experiments

across 7 diverse datasets, in comparison to 10 state-of-the-

art (SOTA) competitors, and with 4 different face recogni-

tion models. In this supplementary material, we now show

additional results using the same setup as in the main part of

the paper that: (1) illustrate the performance of the model

at another discard rate, (2) show the average performance

of the proposed approach across all datasets and FR models

and in comparison to all considered SOTA techniques for

two different discard rates, and (3) provide details on the

runtime complexity of the DifFIQA model. Additionally,

we also discuss the limitation of the proposed FIQA models

and provide information on the reproducibility of the exper-

iments described in the main part of the paper.

6.1. Additional Results

Comparison to SOTA techniques. In Table 5, we present

additional comparisons to the ten state-of-the-art techniques

already considered in the main part of the paper. However,

here the results are reported for a lower drop rate of 0.2. We

note again that the performance of FIQA techniques is most

relevant at lower drop rates, since this facilitates real-world

applications, as also emphasized in [37].

From the presented results, we observe that the distilled

model, DifFIQA(R) yields the lowest average pAUC scores

(computed over the seven test datasets), when used with the

AdaFace, ArcFace and CosFace models. With the Curricu-

larFace model, DifFIQA(R) is the runner-up with perfor-

mance close to the best performing CR-FIQA technique.

It is worth noting that among the tested methods, four

FIQA techniques performed significantly better than the

rest across the four different FR models, i.e., CR-FIQA [5],

FaceQAN [3] and the two diffusion-based models proposed

in this paper, DifFIQA and DifFIQA(R). However, the dis-

tilled DifFIQA(R) technique is overall the top performer

and fares particularly well on the most challenging datasets

considered in the experiments, i.e., IJB-C and XQLFW.

Overall performance. To further illustrate the performance

of the proposed DifFIQA and DifFIQA(R) techniques, we

present in Tables 6 and 7 the average pAUC scores for two

discard rates (0.2 and 0.3), computed over the seven test

datasets and all four considered FR models. The reported

results again support the findings already made above, i.e.,

FaceQAN, CR-FIQA, and our proposed techniques signif-

icantly outperform all other FIQA techniques, while Dif-

FIQA(R) performs overall the best.

Runtime complexity. In the main part of the paper, we an-

alyzed and tested all considered techniques from a runtime-

performance perspective. Here, we explore the runtime

complexity of DifFIQA in more detail to get better insight

into the computationally most demanding steps of the ap-

proach. The whole method includes five steps: the ini-

tialization step (i), which creates all the necessary image

Table 5. Comparison to the state-of-the-art. The table reports

pAUC scores at a discard rate of 0.2 and a FMR of 10−3. Average

results across all datasets are marked pAUC. The best result for

each dataset is shown in bold, the overall best result is colored

green, the second-best blue and the third-best red.

AdaFace - pAUC@FMR=10−3 (↓)

FIQA model Adience CALFW CFP-FP CPLFW IJB-C LFW XQLFW pAUC

FaceQnet [17] 0.969 0.960 0.772 0.935 1.133 0.934 0.969 0.953
SDD-FIQA [33] 0.884 0.911 0.632 0.789 0.854 0.857 0.907 0.833
PFE [39] 0.873 0.917 0.659 0.772 0.918 0.854 0.885 0.840
PCNet [44] 1.003 0.985 0.893 0.926 0.843 0.730 0.999 0.911
MagFace [31] 0.890 0.900 0.632 0.747 0.915 0.735 0.958 0.825
LightQNet [7] 0.890 0.925 0.711 0.784 0.846 0.837 0.836 0.833
SER-FIQ [40] 0.871 0.930 0.563 0.715 0.812 0.982 n/a 0.812
FaceQAN [3] 0.905 0.942 0.474 0.700 0.800 0.721 0.764 0.758
CR-FIQA [5] 0.890 0.887 0.504 0.684 0.796 0.755 0.830 0.764
FaceQgen [15] 0.889 0.967 0.774 0.778 0.877 0.887 0.814 0.855

DifFIQA 0.897 0.932 0.500 0.698 0.813 0.770 0.769 0.768
DifFIQA(R) 0.893 0.913 0.505 0.696 0.796 0.752 0.754 0.758

ArcFace - pAUC@FMR=10−3 (↓)

FIQA model Adience CALFW CFP-FP CPLFW IJB-C LFW XQLFW pAUC

FaceQnet [17] 0.957 0.970 0.761 0.918 1.123 0.934 0.933 0.942
SDD-FIQA [33] 0.841 0.931 0.637 0.829 0.806 0.857 0.874 0.825
PFE [39] 0.823 0.943 0.624 0.833 0.844 0.854 0.746 0.810
PCNet [44] 1.013 0.998 0.910 0.809 0.770 0.697 1.003 0.886
MagFace [31] 0.852 0.925 0.683 0.809 0.867 0.712 0.961 0.830
LightQNet [7] 0.840 0.930 0.706 0.857 0.788 0.814 0.772 0.816
SER-FIQ [40] 0.840 0.934 0.508 0.797 0.732 0.982 n/a 0.798
FaceQAN [3] 0.850 0.957 0.470 0.771 0.731 0.699 0.710 0.741
CR-FIQA [5] 0.861 0.912 0.475 0.791 0.724 0.732 0.764 0.751
FaceQgen [15] 0.857 0.980 0.823 0.834 0.823 0.865 0.786 0.853

DifFIQA 0.848 0.931 0.493 0.771 0.743 0.759 0.696 0.749
DifFIQA(R) 0.840 0.920 0.484 0.772 0.732 0.752 0.688 0.741

CosFace - pAUC@FMR=10−3 (↓)
FIQA model Adience CALFW CFP-FP CPLFW IJB-C LFW XQLFW pAUC

FaceQnet [17] 0.962 0.970 0.761 0.917 1.139 0.934 0.933 0.945
SDD-FIQA [33] 0.873 0.931 0.637 0.832 0.806 0.857 0.874 0.830
PFE [39] 0.856 0.943 0.624 0.837 0.848 0.854 0.746 0.816
PCNet [44] 1.005 0.998 0.910 0.861 0.776 0.697 1.003 0.893
MagFace [31] 0.882 0.925 0.683 0.808 0.875 0.712 0.961 0.835
LightQNet [7] 0.880 0.930 0.706 0.855 0.787 0.814 0.772 0.821
SER-FIQ [40] 0.863 0.934 0.508 0.790 0.725 0.982 n/a 0.800
FaceQAN [3] 0.890 0.957 0.470 0.759 0.741 0.699 0.710 0.747
CR-FIQA [5] 0.884 0.912 0.475 0.778 0.734 0.732 0.764 0.754
FaceQgen [15] 0.880 0.980 0.823 0.821 0.824 0.865 0.786 0.854

DifFIQA 0.881 0.931 0.493 0.758 0.738 0.759 0.696 0.751
DifFIQA(R) 0.870 0.931 0.484 0.758 0.723 0.759 0.696 0.746

CurricularFace - pAUC@FMR=10−3 (↓)

FIQA model Adience CALFW CFP-FP CPLFW IJB-C LFW XQLFW pAUC

FaceQnet [17] 0.941 0.964 0.692 0.914 1.139 0.960 0.990 0.943
SDD-FIQA [33] 0.838 0.932 0.556 0.802 0.806 0.865 0.867 0.810
PFE [39] 0.815 0.937 0.539 0.793 0.848 0.863 0.900 0.814
PCNet [44] 1.000 0.993 0.931 0.938 0.776 0.732 0.971 0.906
MagFace [31] 0.841 0.921 0.624 0.779 0.875 0.736 0.901 0.811
LightQNet [7] 0.827 0.938 0.574 0.815 0.787 0.834 0.857 0.805
SER-FIQ [40] 0.832 0.926 0.493 0.747 0.725 0.986 n/a 0.784
FaceQAN [3] 0.843 0.948 0.453 0.736 0.730 0.713 0.908 0.762
CR-FIQA [5] 0.859 0.908 0.428 0.729 0.734 0.746 0.902 0.758
FaceQgen [15] 0.858 0.972 0.754 0.806 0.824 0.894 0.836 0.849

DifFIQA 0.851 0.919 0.499 0.738 0.738 0.771 0.863 0.768
DifFIQA(R) 0.832 0.922 0.467 0.740 0.723 0.764 0.883 0.762
†SER-FIQ was used to create XQLFW, so the results here are not reported for a fair comparison.

copies and converts them into tensors, the forward diffusion

step (f), the backward diffusion step (b), the image embed-

ding step (fr), and the quality score calculation step (q). As

can be seen from the reported results in Table 8, DifFIQA

takes 1074ms on average to estimate the quality of a single

face image. Recall, that the distilled approach requires only

around 1ms for the same task. By far the most demand-

ing part of the quality estimation procedure is the backward

diffusion process, which iteratively denoises the given im-

ages, with an average time of a little more than 840ms. Even

though we use only 5 iterations, we create for a single image

10 noisy copies of the original and the flipped version. All

of these images are then passed through the denoising net-

work, which accounts for the high time complexity of the

backward process. The generation of image embeddings

also requires some time, i.e., 66ms, as the step encapsulates
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Table 6. Average performance over all seven test datasets and four FR models at a drop rate of 0.2. The results are reported in terms

of average pAUC score at the FMR of 10−3. The proposed DifFIQA(R) approach is overall the best performer. The best result is colored

green, the second-best blue and the third-best red.

FaceQnet [17] SDD-FIQA [33] PFE [39] PCNet [44] MagFace [31] LightQNet [7] SER-FIQ [40] FaceQAN [3] CR-FIQA [5] FaceQgen [15] DifFIQA DifFIQA(R)

0.9458 0.8244 0.8197 0.8989 0.8253 0.8183 0.7985 0.7519 0.7567 0.8527 0.7591 0.7518

Table 7. Average performance over all seven test datasets and four FR models at a drop rate of 0.3. The results are reported in terms

of average pAUC score at the FMR of 10−3. The proposed DifFIQA(R) approach is overall the best performer. The best result is colored

green, the second-best blue and the third-best red.

FaceQnet [17] SDD-FIQA [33] PFE [39] PCNet [44] MagFace [31] LightQNet [7] SER-FIQ [40] FaceQAN [3] CR-FIQA [5] FaceQgen [15] DifFIQA DifFIQA(R)

0.9315 0.7483 0.7497 0.8691 0.7635 0.7412 0.7292 0.6847 0.6800 0.7954 0.6822 0.6768

Table 8. Detailed analysis of the runtime performance of DifFIQA in ms. The reported results were computed over the entire XQLFW

dataset and for each component of the model separately. For DifFIQA the times are presented separately for the initialization ti, the forward

process tf , the backward process tb, embedding of the images tfr , and the quality calculation tq steps. The symbol Σ denotes the overall

runtime.

Model component runtime ti tf tb tfr tq Σ

Runtime in ms (µ± σ) 0.166± 0.006 0.192± 0.010 842.041± 9.068 66.224± 0.689 166.335± 1.750 1074.627± 11.458

the collection of all starting, noisy and reconstructed images

into a single tensor as well as the forward pass through the

FR model. In total, the image embedding steps need to pro-

duce embeddings for 60 images, all constructed from the

given input sample. The score computation also takes close

to 170ms, because it includes the calculation of five sepa-

rate cosine similarities for all image copies, calculation of

the average value over all copies and the data transfer from

VRAM to RAM.

6.2. Limitations

The proposed DDPM-based DifFIQA technique ensure

highly competitive FIQA performance, but also has some

limitations. One obvious limitation is the computational

complexity that affects the model’s runtime performance,

as emphasized throughout the paper. While this can be

addressed through a distillation procedure, the distillation

process removes the relation between the (noising and de-

noising) tasks and image quality, and consequently impacts

the interpretability of the results. From a conceptual point

of view, the nosing and denoising steps probe the quality

of the facial images by (in a sense) first obscuring impor-

tant facial features and then measuring the ability to restore

the obscured features through denoising. Such restoration-

based solutions may depend, to a significant degree, on the

restoration model utilized, which in our case is a CNN-

based UNet that implements the denoising diffusion. While

such models are known to be able to capture local image

characteristics very well, they may be less capable in cap-

turing key global image properties, and we plan to explore

transformer-based models in our future work to further im-

prove on this limitation.

6.3. Reproduciblity

We would like to note that all of our experiments are

fully reproducible. Most of the models used for the imple-

mentation and testing of DifFIQA and DifFIQA(R) are pub-

licly available from the official repositories, while all others

can be obtained by request from the authors, i.e.:

• AdaFace:

https://github.com/mk-minchul/AdaFace

• ArcFace:

https://github.com/deepinsight/insightface

• CosFace:

https://github.com/deepinsight/insightface

• CurricularFace:

https://github.com/HuangYG123/CurricularFace

• FaceQnet:

https://github.com/javier-hernandezo/FaceQnet

• SDD-FIQA:

https://github.com/Tencent/TFace/tree/quality

• PFE:

https://github.com/seasonSH/Probabilistic-

Face-Embeddings

• PCNet:

Requested from authors

• MagFace:

https://github.com/IrvingMeng/MagFace

• LightQNet:

https://github.com/KaenChan/lightqnet
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• SER-FIQ:

https://github.com/pterhoer/FaceImageQuality

• FaceQAN:

https://github.com/LSIbabnikz/FaceQAN

• FaceQgen:

https://github.com/javier-hernandezo/FaceQgen

• CR-FIQA:

https://github.com/fdbtrs/CR-FIQA

• Diffusion models:

https : / / github . com / lucidrains / denoising -

diffusion-pytorch

Additionally, we also plan to publicly release the Dif-

FIQA source code, including all training and testing scripts,

model design and learned weights, once the review proce-

dure is completed.
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