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Abstract

Conversational emotion recognition represents an important machine-learning problem with a wide

variety of deployment possibilities. The key challenge in this area is how to properly capture the

key conversational aspects that facilitate reliable emotion recognition, including utterance semantics,

temporal order, informative contextual cues, speaker interactions as well as other relevant factors. In

this paper, we present a novel Graph Neural Network approach for conversational emotion recognition

at the utterance level. Our method addresses the outlined challenges and represents conversations in

the form of graph structures that naturally encode temporal order, speaker dependencies, and even

long-distance context. To efficiently capture the semantic content of the conversations, we leverage the

zero-shot feature-extraction capabilities of pre-trained large-scale language models and then integrate

two key contributions into the graph neural network to ensure competitive recognition results. The

first is a novel context filter that establishes meaningful utterance dependencies for the graph construc-

tion procedure and removes low-relevance and uninformative utterances from being used as a source of

contextual information for the recognition task. The second contribution is a feature-correction pro-

cedure that adjusts the information content in the generated feature representations through a gating

mechanism to improve their discriminative power and reduce emotion-prediction errors. We con-

duct extensive experiments on four commonly used conversational datasets, i.e., IEMOCAP, MELD,

Dailydialog, and EmoryNLP, to demonstrate the capabilities of the developed graph neural network

with context filtering and error-correction capabilities. The results of the experiments point to highly

promising performance, especially when compared to state-of-the-art competitors from the literature.
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1. Introduction1

Conversational emotion recognition is the process of recognizing the expressed emotion in the2

utterances of a conversation and represents a highly active research area within the machine-learning3

and natural-language processing communities. Techniques for conversational emotion recognition can4

be applied to real-time conversation systems to assist machines in analyzing the affective state of5

speakers and in a wide range of applications in healthcare systems [1], automatic driving [2] among6

others [3, 4].7

Conversational emotion recognition is a complex task that differs from traditional text-based emo-8

tion recognition in that it is influenced by a variety of factors. For example, the same utterance can9

convey different emotions, depending on the context under which it was uttered and the speaker(s) in-10

volved in the conversation. Additionally, research in psychology [5] suggests that there are two critical11

factors that induce emotional changes in speakers during a conversation: self-dependence and inter-12

speaker dependence. Self-dependence refers to the speakers themselves affecting their emotions, while13

inter-speaker dependence refers to the emotions of the different parties in a conversation impacting14

each other. These factors make the emotion conveyed in the dialogue uncertain. At the same time, the15

need to effectively integrate various sources information and the requirement of real-time applications16

makes emotion recognition in dialogues a challenging task [6, 7, 8].17

To examine the impact of context and speakers on emotion recognition, a considerable body of work18

has employed recurrent neural networks (RNNs) due to their ability to capture the temporal order19

of the utterances within conversations, retain historical context, and account for distinct speakers20

[9, 10]. However, because of the inherent limitations of RNNs, RNN-based techniques often struggle in21

modeling long-distance contextual information, even if the temporal order of the conversation and the22

impact of short-term context are both taken into account. The technique based on the self-attention23

mechanism and position encoding can effectively solve the problem of capturing remote context clues.24

Although some studies [11, 12] attempted to infuse commonsense knowledge into the conversation-25

modeling procedure to improve the language understanding ability of the recognition techniques, these26

methods complicate conversation modeling.27

The emergence of graph neural networks (GNNs) and their variants [13, 14] alleviated the problem of28

the long-term dependencies to some extent. Due to the powerful ability of GNNs to process associative29

data, an increasing amount of research effort is being directed toward GNNs for conversational emotion30

recognition. Recent studies [15, 16], for example, have achieved highly competitive results by combining31

GNNs and pre-trained language models with context modeling to better understand the semantic and32

syntactic information in the given conversations.33
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GNN-based methods represent conversations in the form of graphs, with nodes representing utter-34

ances and edges representing utterance relationships. Psychological concepts such as self-dependence35

and inter-speaker dependence can naturally be captured through the speaker-specific utterance rela-36

tionships (edges) and the semantic similarity between utterances may be utilized to initialize the edge37

weights in the graph with the goal of modeling conversational context. However, establishing depen-38

dencies between all utterances in a conversation (through a fully connected graph) typically leads to39

associations with weakly relevant or even irrelevant contextual information that adversely affect per-40

formance [17, 18], whereas considering too few dependencies results in improper context modeling and41

consequently poorly performing recognition models. However, these GNN-based methods still ignore42

another potentially critical factor for conversation modeling, i.e., informativeness [19]. Intuitively, if43

an utterance has a high enough information content to significantly change the cognition of others,44

causing emotional changes, the utterance should be considered appropriate for emotion recognition.45

Conversely, there are often utterances present in a conversation that lack a clear emotional tendency46

and make little contribution to the perception of emotions [20]. Considering such utterances as a47

source of context not only wastes computational resources, but also introduces noise into the inference48

process.49

In addition to the potential for introducing noise into the model when establishing utterance de-50

pendencies, GNN-based models are also susceptible to noise during the learning process and error51

propagation from the early preprocessing steps applied to the given conversation. These issues are52

eventually reflected in the computed feature representations and their discriminative power for the53

emotion recognition task. To address this problem, Lian et al. [21] used graph convolutional neural54

networks to capture interlocutor interactions to correct some feature errors and adopted bidirectional55

GRUs and multi-head attention mechanisms to correct some errors due to contextual understanding.56

To the best of our knowledge, at present, no other work has attempted to design error-correction57

mechanisms for conversational emotion recognition.58

Based on the above discussions, we propose in this paper a novel graph neural network for con-59

versational emotion recognition with context-denoising and error-correction capabilities. To reduce60

the noise introduced into the graph-construction procedure by the context-modeling process, a con-61

text filter is designed to establish meaningful dependencies between the utterances of a conversation.62

Specifically, semantic correlations and context informativeness are considered during filtering so that63

only the most relevant and mutually informative utterances are connected in the graph structure of the64

GNN. This process not only avoids the loss of long-distance contextual information but also reduces65

the impact of noisy (i.e., irrelevant and uninformative) contextual cues on the model’s performance.66

Additionally, we also propose a novel feature-correction procedure to further improve results. The67

feature-correction procedure first integrates the semantic features, extracted from the conversation by68
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a pre-trained language model, and the emotion features, calculated from a graph neural network, into69

a fused representation and then corrects the information content in the fused representation through70

a dedicated gating mechanism. To demonstrate the capabilities of the proposed model, comprehensive71

experiments are performed on four commonly used conversational datasets, i.e., IEMOCAP, MELD,72

Dailydialog, and EmoryNLP. The experimental results show, that our model achieves highly promising73

results and compares favorably to the state-of-the-art.74

In summary, the main contributions of this paper are as follows:75

• We propose a novel (state-of-the-art) graph neural network for conversational emotion recognition76

that is capable of considering select contextual information and integrates a feature-correction77

mechanism that improves the computed feature representations and, in turn, reduces prediction78

errors. To facilitate reproducibility, we make the source code of our model publicly available.79

• We design a context filter that focuses on semantic relevance as well as informativeness when80

establishing dependencies between the utterances of a conversation. The filter, thus, removes81

context that is not relevant or uninformative from the emotion inference task, leading to better82

overall performance.83

• We introduce a feature-correction mechanism to further reduce prediction errors in conversational84

emotion recognition. The feature correction is learned end-to-end in our model and is shown to85

be beneficial for the emotion recognition task.86

2. Related work87

In recent years, there has been considerable interest in the problem of recognizing emotions in con-88

versations, leading to a significant amount of research in this field [22, 8]. While impressive progress89

has been made, challenges associated with modeling semantic information, context, and speaker de-90

pendencies still require further research.91

Recurrent Neural Networks (RNNs) have emerged as a promising research direction to address92

these challenges. For instance, Hazarika et al. [9] employed gate recurrent units to memorize historical93

information for each speaker separately, thus facilitating emotion recognition. Majumder et al. [10] pro-94

posed DialogueRNN, which utilizes speaker memory units and multilevel RNNs to model speakers and95

simulate the flow of emotions between them. Gan et al. [23] described a hierarchical feature interactive96

fusion network that integrates fine-grained emotion and act/intent information into utterance features97

while retaining temporal and contextual information. Zhang et al. [24] added “confidence gates” in98

front of each LSTM hidden cell to determine the trustworthiness of the previous speaker, simulating the99

emotional impact of the previous speaker. However, RNNs are known to suffer from information loss100
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during the propagation of data representations, resulting in an incomplete understanding of contextual101

information by the emotion recognition model.102

To gain a comprehensive understanding of utterance emotions, techniques for incorporating exter-103

nal knowledge into the recognition models were also explored in the literature. Ghosal et al. [11], for104

example, proposed an external knowledge base to comprehend the commonsense information present105

in the utterances, including psychological, event, and causal relationships, and to learn dependencies106

between speakers. More recently, the Transformer architecture has gained traction in dialogic emotion107

analysis due to its ability to effectively model long sequences and efficient parallel computing. BERT108

[25], a pre-trained transformer-based language model, has shown great efficacy in encoding seman-109

tic and grammatical information from diverse conversations. This model, trained on large language110

corpora, exhibits impressive zero-shot feature extraction capabilities that can be further enhanced111

through task-specific fine-tuning for various downstream tasks. Li et al. [26] proposed an emotion112

capsule structure based on the Transformer for multimodal dialogue emotion analysis, referred to as113

Emoformer. This structure integrates emotion vectors from three modalities and has achieved state-114

of-the-art results in multimodal dialogue emotion analysis. Liang et al. [27] combined the Transformer115

and graph neural network to introduce the position-aware Graph Neural Network (GNN). They de-116

signed a two-stream conversation converter to extract the contextual features of each interlocutor117

separately and then constructed a graph structure based on chronological order.118

In recent studies, Zhang et al. [28, 29] employed multi-task learning frameworks to model the119

contextual dependencies and interactions among multiple modalities simultaneously. They leveraged120

the shared knowledge across tasks and captured task correlations through a multi-task co-learning ap-121

proach. Yang et al. [30] and Song et al. [31] introduced curriculum learning into conversational emotion122

recognition to show that the order of training data affects model performance. Song et al. [31] also123

designed an adversarial contrast learning method to learn more contextual features and improve the124

robustness of the model. Researchers have also focused on dynamically modeling emotional changes125

during conversations. Song et al. [15] utilized a BERT-like model to encode utterances for conversa-126

tional emotion recognition. They employed a question-answering framework to incorporate modalities127

and capture emotion changes using a conditional random field (CRF), achieving competitive perfor-128

mance. Furthermore, when a speaker possesses a pronounced personal speaking style, the emotional129

categories identified by the model may display inherent biases. Wang et al. [32] introduced the SIMR130

framework to attenuate such effects, whereas Liang et al. [27] directly integrated personal style at-131

tributes into the discourse features during the modeling process.132

Graph neural networks (GNNs) are capable of associative data processing, which makes them use-133

ful for modeling conversational emotions since conversations are a collection of associative utterances.134

Several models have used GNNs to identify conversational emotions. Schlichtkru et al. [33] proposed135
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RGCN, the first work to apply GNN to model associative data. Ghosal et al. [17] introduced Dia-136

logueGCN, which entailed the construction of fully connected graphs corresponding to conversations.137

The approach considered distinct speakers and the temporal order of utterances, effectively addressing138

the challenge of propagating contextual information over long distances. However, because the number139

of graph nodes depends on the number of utterances in a conversation, longer conversations lead to140

an increase of graph nodes, and more importantly an exponential increase in graph edges, which can141

result in excessive memory usage and overfitting. To solve this problem, Ishiwatari et al. [18] extended142

the attention mechanism to the relational graph so that the weights between nodes can be dynamically143

adjusted. Shen et al. [34] considered the effect of past utterances and proposed a method for informa-144

tion transfer between different layers, in which nodes can access both node information of the previous145

layer and the current neighboring node information. Shou et al. [35] combined speaker relationships146

and dependent syntactic structures to model conversation based on GNNs, which improved the ability147

to acquire semantic information and understand utterance syntax.148

Unfortunately, the GNN-based methods discussed above establish utterance dependencies under149

fixed windows (i.e., under fixed utterance vicinity) and are therefore still susceptible to considering150

the context that is only weakly related or even irrelevant. Additionally, these methods ignore the151

informativeness of the utterances when establishing contextual dependencies in conversations. Finch152

et al. [19] evaluated the quality of a conversation across eight dimensions, and found both relevance153

and informativeness to be crucial dimensions for a comprehensive understanding of various aspects of154

a conversation. According to recent psychological insights [36], informativeness is also closely related155

to emotional response, indicating that research on how context affects emotion should take informa-156

tiveness into account as well. In conversations, there are often utterances with low informativeness and157

no apparent emotional tendency, and including such contextual information in the recognition task is158

expected to increase the computation effort as well as introduce noise.159

To address the above-mentioned issues, we propose in this paper a novel GNN-based approach for160

conversational emotion recognition that explicitly considers informativeness when defining contextual161

dependencies between the utterances of a conversation. To the best of our knowledge, our work is the162

first to incorporate this key aspect into the conversation-modeling procedure.163

3. The proposed method164

The main contribution of this work is a novel graph neural network with context denoising and165

feature-correction capabilities, designed for the task of utterance-level emotion recognition in conver-166

sations. As can be seen from the high-level overview in Figure 1, the proposed model consists of five167

main components that aim at: (i) preprocessing, (ii) context filtering, (iii) graph processing, (iv)168

6



Semantic 

correlation 

matrix

Context filter

Information 

entropy

matrix

Cosine 

similarity

context

key key

Forget gate

Memory gate

Memory gate

+

Graph processing

Feature correction

  
Weighted sum Threshold function

Concatenation

：Semantic feature

Utterances ：Emotional feature

Preprocessing

Classification

：Fused feature

+

+

~

~

Figure 1: Overall structure of the proposed method.

feature correction, and (v) classification.169

Let a conversation be represented by a collection of N utterances U = {u1, u2, · · · , uN}. During170

the preprocessing stage, the model first extracts a set of semantic features H = {H1, H2, · · · , HN} from171

the utterance collection U . These features encode the semantic content expressed in the utterances172

and form the basis for the later stages of the model. Next, a (novel) context filter is utilized to identify173

utterances that are the most relevant and informative for the emotion recognition task. The filter relies174

on semantic correlations and information-theoretic principles to establish useful dependencies between175

the utterances of the given conversation. The semantic features and identified utterance dependencies176

are then supplied to a graph convolutional neural network that captures the structure of the conver-177

sation, incorporates contextual cues and speaker information, and outputs graph-processed features D178

that encode various aspects of the conversation critical for conversational emotion recognition. Finally,179

a feature correction mechanism is employed to improve the discriminability of the initial semantic H180

and emotion features D and generate the final fused representation for emotion classification.181

3.1. Preprocessing182

The goal of the preprocessing stage is to extract information-rich semantic features from the utter-183

ances of the given conversation. Inspired by the success of recent techniques for conversational emotion184

recognition that use (large-scale) pre-trained language models for this task, e.g., [10], we adopt the185

RoBERTa-Large [37] model to preprocess the set of utterances in U and extract their semantic features186

H. The RoBERTa-Large model is chosen for our work due to its excellent zero-shot feature extraction187

capabilities, but also the fact that it can easily be fine-tuned and adapted towards the characteristics188

of the selected conversational dataset. To extract features with RoBERTa-Large, the given utterance189

ui is first transformed into a sequence Xi by the model’s tokenizer:190

Xi = {[T1], [T2], · · · , [TM ]}, (1)
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where [TM ] is the M -th token representation. Next, a special type of token [CLS] is added in front of191

the sequence, and the corresponding output vector of this token is used as the representation of the192

utterance ui. The input for the preprocessing stage Xi is represented as:193

Xi = {[CLS], [T1], [T2], · · · , [TM ]}. (2)

Finally, the features corresponding to the added token [CLS] in the last hidden layer of the model are194

utilized as the semantic features Hi of the utterance ui, i.e.:195

Hi = RoBERTa(Xi).last hidden layer[0]. (3)

We note that because RoBERTa-Large was pre-trained on a large and diverse (language) dataset,196

it is able to efficiently encode the semantic content of the input utterances and extract descriptive197

semantic features that serve as the basis for the later stages of the proposed emotion recognition198

model.199

3.2. Context filter200

Existing techniques for conversational emotion recognition commonly model the relationships be-201

tween speakers and consider temporal order to establish dependencies between the utterances of a202

conversation. Additionally, the semantic relevance of the utterances is analyzed to identify relevant203

conversational contexts. While such an approach has been shown to work well in practice, it can204

steer the recognition models towards focusing primarily on utterances with a high degree of semantic205

correlation, while also considering noisy contextual information with little relevance and low informa-206

tiveness.207

To mitigate the influence of low-relevance and uninformative contextual cues on conversational208

emotion recognition, we propose a novel context filter to remove (denoise) noisy information from the209

process of building dependencies between utterances. The filter considers (i) the semantic relevance of210

the utterances in a conversation by measuring the similarity of the semantic embeddings produced by211

the pre-trained language model, and (ii) the informativeness of the utterances providing context by212

using information-theory principles. To quantify relevance and informativeness, the filter first calcu-213

lates semantic-relevance and information-entropy matrices and then combines the two into (what we214

refer to as) the comprehensive-score matrix that is ultimately analyzed and filtered to discard contex-215

tual utterances with low comprehensive scores, that are indicative of low relevance and uninformative216

conversation content. A formal description of the context filter is given below.217

Given a set of semantic features H, extracted from the conversation U using the pre-trained lan-218

guage model, the context filter first evaluates the semantic relevance of each utterance ui with respect219
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to all other utterances in U . The semantic feature of each utterance Hi will act as a key to ask context220

features H about their similarity by computing the cosine similarity between Hi and H.221

si1 =
HiH

∥Hi∥2∥H∥2
∈ R1×N , (4)

where si1 denotes the 1 × N (contextual) semantic relevance vector corresponding to ui. The vector222

encodes the semantic correlations between ui and U , and thus produces high scores for utterances that223

share similar (and, therefore, relevant) semantic content. The complete semantic relevance matrix s1224

is obtained by stacking the semantic relevance vectors of each utterance:225

s1 = [(s11)
T , (s21)

T , · · · , (sN1 )T ]T ∈ RN×N . (5)

Next, information (Shannon) entropy is used to measure the informativeness of the utterances226

in U that provide context for the emotion recognition task. Here, the context filter calculates the227

information entropy of each utterance by aggregating the entropies of all words/tokens of the given228

utterance, i.e.:229

si2 = −
M∑
j=1

p(Tj) log2 p(Tj), (6)

where p(Tj) denotes the frequency of the j-th token in the utterance ui, and si2 stands for the corre-230

sponding entropy. After evaluating the above equations on all N utterances of the conversation U , the231

information entropy matrix ŝ2 is computed as follows:232

ŝ2 = [s12, s
2
2, · · · , sN2 ] ∈ R1×N . (7)

To ensure that the dimensions of the information-entropy matrix match those of the semantic-233

relevance matrix, we stack N copies of ŝ2 to construct the final matrix s2 as:234

s2 = diag(ŝ2) · 1N ∈ RN×N , (8)

where diag(·) is an operator that generates a diagonal matrix and 1N is an N ×N matrix of all ones.235

In order to consider both semantic relevance and informativeness when evaluating context for the236

emotion recognition task, the semantic-relevance matrix and information-entropy matrix are weighted237

and summed to obtain the comprehensive-score matrix:238

s = (1− α)s1 + αs2, (9)
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where α is a weight hyperparameter that balances the contribution of the two components. By taking239

the weighted sum of these two matrices, we obtain a comprehensive influence matrix, where each240

aggregated element reflects the combined influence of semantic relevance and information value of the241

contexts on the target utterance. In the proposed emotion recognition model, the comprehensive-score242

matrix serves as the basis for defining the adjacency matrix A = {aij} ∈ RN×N that is needed for the243

graph construction procedure. Specifically, we first apply the context filter on the comprehensive-score244

matrix by truncating all elements below the threshold γ to zero. Additionally, to avoid self-connections245

in the graph, all diagonal elements of the adjacency matrix are also set to 0. If we denote an entry in246

the N ×N adjacency matrix as aij , then the context filtering procedure can formally be described as:247

aij =

0, sij < γ or i = j,

1, sij ⩾ γ,

(10)

where γ is a hyperparameter that represents the threshold, sij denotes the comprehensive score of the248

context utterance uj with respect to the target utterance ui, and a value of 1 implies that a connection249

should be present in the constructed graph between the two utterances, while a value of 0 suggests the250

opposite.251

3.3. Graph processing252

In order to capture the dependencies between the utterances of a conversation and their context, a253

relational graph of the following form G = {V,E,R} is constructed for our emotion recognition model,254

where V and E represent the set of nodes and edges, respectively, and R denotes the edge type. It255

is important to highlight that the proposed graph neural network represents a unidirectional graph,256

indicating the presence of a causal relationship as context passes through a context filter. We provide257

a comprehensive description of the graph construction process in the graph processing module. In258

the context of conversations, a causal relationship refers to the transmission of information from the259

preceding context to the subsequent one, while the emotional state of the previous discourse remains260

unaffected by subsequent words. Specifically, when examining emotional transmission in conversations,261

it becomes evident that the emotional state of a speaker during previous conversations remains unaf-262

fected by the emotions expressed in subsequent interactions. To simulate this unidirectional emotion263

transfer, we construct a directed graph denoted as G = {V,E,R} to depict the flow of emotions in264

a conversation. Within this graph, each utterance is represented as a node, and the directed edges265

indicate the flow of information from one utterance to the subsequent one. From the perspective of266

emotional flow, the directed edges in the graph ensure that the emotions of subsequent utterances do267

not impact the emotional states of preceding utterances. With this graph formulation, each utterance268
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is represented as a node vi ∈ V , and each node is represented by the semantic features Hi extracted269

during the preprocessing stage. The nodes vi and vj are in general connected by the corresponding270

edge eij ∈ E and the presence of the edge is dependent on the respective output of the context filter,271

i.e., aij . Additionally, each edge eij can correspond to one of two edge types rij = {0, 1} ∈ R, where a272

value of 1 indicates that the nodes vi and vj are from the same speaker, and a value of 0 indicates that273

they are from different speakers. We use an L-layer relational Graph Convolutional Network (GCN)274

as the basis for our model.275

To initialize the edge weights between an utterance node vi and a context node vj in the lth layer of276

the graph and, thus, encode the degree of influence of uj on ui, a similarity-based attention mechanism277

is first utilized, i.e.:278

αl
ij = softmaxj∈⌊Ai⌋(W

l
αconcat(H

l
j , H

l
i)), i ∈ [0, N ], (11)

where Ai ∈ R1×N represents the adjacency matrix of node ui (i.e., a row from A), the operator ⌊x⌋279

returns the indices of the non-zero elements of x, and W l
α stands for the parameters that need to be280

learned during training.281

Next, to model information propagation across the graph, we follow [33], and compute the semantic282

features H l+1
i of the (l + 1)th layer by aggregating information across the neighboring nodes of ui in283

the lth layer. This process partially maintains the sentiment information of the i-th utterance from the284

lth layer, but infuses additional information into the features by incorporating additional contextual285

cues from neighboring (relevant and informative) utterances:286

H l+1
i =

∑
r∈R

∑
j∈⌊Ai⌋

αij∑
αij

W l
ijH

l
j + αiiW

l
iH

l
i , (12)

where W l
ij , W

l
i are trainable parameters and αii is the edge weight of the i-th node connecting to287

itself between different layers. This weight can be interpreted as the semantic self-similarity of the288

utterance, which defaults to 1, so the formula in Eq. (12) can be rewritten as:289

H l+1
i =

∑
j∈⌊Ai⌋

α∗
ijW

l
ijH

l
j +W l

iH
l
i , (13)

where α∗
ij is the normalized version of αij . At each of the L layers of the GCN, a set of semantic290

features is, thus, computed. Here, the set of semantic (node) features H l for the entire conversation291

at the lth layer can be written as:292

H l = [H l
1, H

l
2, · · · , H l

N ]. (14)

To obtain context-embedded emotional features G for the entire conversation U from the graph293
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structure, the node features H l from all layers (0 to L) are concatenated, such that:294

G = concat(H l), where l = {1, 2, . . . , L}. (15)

Ultimately, the final emotion features D of the utterances are generated by the fully connected layer295

of the model and its respective activation function, i.e.:296

D = PReLU(W dG+ bd), (16)

where W d and bd are the trainable weights and the bias of the fully connected layer, respectively. The297

PReLU activation is used with our model to help with over-fitting problems.298

3.4. Feature correction299

After processing the given conversation U through the GCN, emotional features D are gener-300

ated, which encode context information and account for the relations and dependencies between301

the utterances. To facilitate emotion recognition, a common strategy from the literature is to com-302

bine the semantic features H and the emotion features D and produce an aggregated representation303

C = concat(D,H) with higher discriminative power. However, such a naive strategy may be sub-304

optimal and propagate potential errors from the previous stages of the model into the naively fused305

features. Lian et al. [21] employed graph convolutional neural networks to capture interactions and306

address certain errors, while bidirectional GRUs and multi-head attention mechanisms were utilized to307

correct errors stemming from contextual understanding. In our graph processing module, we consider308

the interaction between speakers, which helps mitigate errors resulting from inadequate interaction and309

limited contextual understanding to a certain extent. To avoid such issues and make full use of the310

computed feature representations, we propose a novel feature correction mechanism. The mechanism311

is inspired by the enhanced LSTM network from [38] and aims at reducing model prediction errors.312

While speaker dependence and contextual information contribute to the understanding of the emotion313

of the target utterance, excessive connections can sometimes lead to incorrect predictions during model314

training. To address this issue, our feature correction module focuses on rectifying erroneous predic-315

tions that arise from excessive reliance on speaker relationships and contextual connections within the316

graph processing modules. The problem of over-connection is mitigated by incorporating a gating317

mechanism that selectively discards emotional features from the graph processing module.318

As illustrated in Figure 2, the feature correction process utilizes a gating mechanism to control the319

semantic features H, the context-infused emotion features D, and their fused combination, so that the320

recognition model may pay attention to the semantics of the given utterance, while also taking the321

informativeness and relevance of the utterances providing context into account. Because the graph322
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Figure 2: The structure of the feature correction module.

network already captures and propagates long-distance relationships between utterances, the proposed323

feature correction module does not utilize any chain structure to incorporate such information.324

The feature correction module is divided into three branches and relies on two distinct inputs. The325

input to the upper branch comes from the preprocessing stage and represents the semantic features326

H, extracted by the pre-trained language model. The input to the lower branch comes from the327

graph processing and represents the emotion features D. Additionally, the two inputs are combined to328

generate fused features, which are then passed through the third (fusion) branch. To achieve efficient329

feature correction, a forgetting gate is first utilized to forget part of the semantic information in H as330

well as part of the emotion cues in D and obtain (information-deprived) fused features f , i.e.,331

f = σ(W fH +QfD + bf ), (17)

where W f and Qf are the trainable weights corresponding to the semantic and emotional features,332

respectively. σ is the activation function and bf is the trainable bias. Next, the calculated (initially333

fused) features f are updated through the outputs of the upper and lower module branches that process334

the semantic features H and emotion features D through two separate memory gates, constructed by335

combining two activation functions and a multiplier, i.e.:336

z = σ(W zH + bz),

c = tanh(W cH + bc),

H̃ = z ⊗ c.

(18)
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337

m = σ(WmD + bm),

s = tanh(W sD + bs),

D̃ = m⊗ s,

(19)

whereW (·), Q(·), and b(·) are trainable parameters and the different superscripts imply that the weights338

are not shared, and tanh denotes the activation function (marked g in Figure 2). In general, a memory339

gate consists of a forgetting gate and a learning gate and can be used to modify the information content340

of the processed features. With the semantic features H, for example, the forgetting gate z decides341

what information is less relevant and needs to be updated in H. The learning gate c, on the other342

hand, learns to incorporate new information into the features that help to make them more descriptive343

and improve their discriminative power. Based on these two gates, the initial semantic features H are344

then updated through the multiplier to H̃. In the same way, the emotion features D are updated to345

D̃. Finally, to compensate for the forgotten part of the information in the initially fused features f , we346

add the updated semantic H̃ and emotion features D̃ to f and calculate the final fused (and corrected)347

features C for the classification task, as follows:348

C = f + H̃ + D̃. (20)

3.5. Classification349

The output of the feature-correction mechanism C is used in the proposed model as the final feature350

representation of the given utterance. For classification purposes, a fully connected network is adopted351

and utilized to obtain the probability Pi of each of the considered emotion categories. The category352

corresponding to the highest probability is taken as the final emotion label:353

Pi = softmax(W pCi + bp), (21)

354

ŷi = argmax
k

Pi(k), (22)

where Ci and ŷi are the (corrected) fused features and predicted emotion of the utterance ui, respec-355

tively. W p and bp are the trainable weights and the bias of the fully connected layer. The proposed356

model is trained end-to-end using the cross-entropy as the loss function, which can be expressed as:357

Li(θ) = (yi) log(ŷi) + (1− yi)(1− log(ŷi)), (23)

where θ is the set of all parameters that need to be learned for the model, ŷi is the highest prediction358

probability of the i–th emotion label, and yi is the one-hot encoded ground truth emotion label for359
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utterance ui.360

4. Experiments361

To demonstrate the performance and merits of the proposed model, we conduct comprehensive362

experiments on four different datasets and compare our approach to eight competing state-of-the-art363

(SOTA) techniques. In this section, we first describe the experimental setup (i.e., the selected datasets,364

implementation details, SOTA baselines, and evaluation metrics) and then discuss the results and their365

implications.366

4.1. Datasets367

Four standard datasets are adopted for the experiments. The selected datasets represent a diverse368

cross-section of data commonly used to evaluate the performance of techniques for conversational369

emotion recognition. Details on the datasets are given below.370

• IEMOCAP [39] is a multimodal dataset, consisting of 151 conversations recorded from 5 speaker371

pairs. The dataset contains annotations for nine emotional categories, i.e.: angry, excited, fear,372

sad, surprised, frustrated, happy, disappointed, and neutral. To facilitate comparisons with373

prior work, we used six primary emotions for the experiments, i.e.: neutral, happy, sad, angry,374

frustrated, and excited. The remaining three categories appear less frequently in the dataset and375

were not included in the comparative assessments.376

• MELD [40] is a multimodal dataset containing 1400 conversation pairs and 13,000 utterances.377

The dataset was constructed from recordings of the Friends TV show and, therefore, features a378

rich set of emotional conversations. The MELD dataset is annotated with the name of speakers,379

and emotion labels spanning seven distinct categories: anger, disgust, sadness, joy, neutrality,380

surprise, and fear, alongside additional meta-information.381

• Dailydialog [41] is a conversational dataset with 13118 conversations and 102979 utterances,382

each annotated with one of six emotion labels: anger, disgust, fear, happiness, sadness, surprise.383

The dataset contains human-written text on diverse topics, follows a multi-turn dialog flow384

that resembles human communications and is designed specifically for the task of conversational385

emotion recognition.386

• EmoryNLP [42] is a plain text dataset, containing 12,606 utterance annotations from one of six387

emotional labels: sad, mad, scared, powerful, peaceful, and joy. The dataset consists of multi-388

party dialogues created from transcripts of a popular TV show and hence features a rich set of389

(emotional) dialogues in various settings and circumstances.390
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A high-level overview (and comparison) of the datasets is given in Table 1. Here, information391

is provided on the number of conversations in each dataset, the number of utterances, the average392

conversation length (in utterances), and the average length of each utterance in the dataset (in words).393

For the experiments, we partition the datasets into three non-overlapping sets for training (train),394

development (dev), and testing (test) in accordance with the official splits (or as used with the methods395

selected for comparison if an official split is not available). We use the training set to learn the proposed396

model, the development set to monitor convergence, and the test set for the final performance reporting.397

Table 1: High-level comparison of the four experimental datasets

Dataset

Number of
conversations

Number of
utterances

Average
conversation length

Average
utterance length

train dev test train dev test train dev test train dev test

IEMOCAP [39] 100 20 31 6490 1404 2196 64.9 70.05 70.84 14.93 15.9 15.72

MELD [40] 1038 114 280 9989 1109 2610 9.62 9.73 9.32 11.41 11.32 11.71

Dailydialog [41] 11118 1000 1000 87170 8069 7740 7.84 8.07 7.74 15.49 15.38 15.68

EmoryNLP [42] 713 99 85 9934 1344 1328 13.93 13.58 15.62 15.03 14.09 14.51

4.2. Implementation details398

The proposed model was implemented on a Desktop PC with an eight-core CPU and a Tesla T4399

16G GPU. All experiments were conducted within the Ubuntu 18.04 operating system using Python400

3.7, Pytorch 1.10, CUDA 10.2, and AdamW, as the optimizer for the model-learning procedure. To401

accommodate different dataset characteristics and ensure reasonable convergence, different training402

parameters were used for the optimization process, as summarized in Table 2. Additionally, details403

are available in the publicly released source code1.404

Table 2: Training parameters used to learn the proposed model on each dataset

Parameters IEMCOAP MELD Dailydialog EmoryNLP

Optimizier AdamW
Embedding size 1024
Hidden size 300
Dropout rate 0.1
Learning rate 1e-6 2e-5 2e-5 2e-5
Batch size 16 32 64 32
Epoch 100 100 50 100
Weight α 0.75 0.80 0.80 0.75
Threshold γ 1.0 1.5 1.2 2.3

1https://github.com/Jahao26/denoiseGNN.
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Using the presented hardware, parameter settings, and well-pre-trained RoBERTa-Large, the model405

was trained for 100 epochs on each dataset except Dailydialog. Due to the large amount of Dailydialog406

data, 50 epochs can be trained well. All reported results on the comparison experiments are averaged407

over 5 runs.408

4.3. Baselines and state-of-the-art (SOTA) methods409

To demonstrate the capabilities of the proposed model and provide a reference frame for the gener-410

ated results, we consider multiple (conceptually distinct) baseline and state-of-the-art methods in the411

experiments, i.e.:412

• CMN [9]. The Conversational Memory Network (CMN) uses a gated recurrent unit (GRU)413

to memorize the utterance information of each speaker from the conversion history and provide414

contextual information for the emotion recognition task.415

• bc-LSTM [43]. The bi-directional contextual LSTM (bc-LSTM) model consists of two stacked416

LSTM models with different directions. Because of the opposing directions of the models, bc-417

LSTM considers contextual information from utterances occurring either before or after a given418

target utterance for conversational sentiment analysis.419

• DialogueRNN [10]. DialogueRNN uses a recurrent neural network to model three aspects420

that are important for the emotion recognition problem, i.e.: the speaker, the context, and the421

emotion from the preceding utterances. These aspects are modeled through three types of GRUs422

that account for the global, speaker, and emotional state of the conversation.423

• DialogueGCN [17]. DialogueGCN is a Graph Convolutional Neural Network (GCN) that uses424

intra- and inter-speaker dependencies to model conversations and generate graph-encoded rep-425

resentations to capture the structure of a conversation and the associated context information.426

Compared with the traditional recurrent neural networks, it alleviates the problem of the diffi-427

culty of modeling long-distance context information.428

• DialogXL [12]. DialogXL exploits knowledge encoded in the pre-trained XLNet language model429

and uses enhanced memory to store the conversation history to model context. Additionally, it430

utilizes a dialogue-aware self-attention mechanism to model dependencies between speakers.431

• COSMIC [11]. COSMIC represents a common-sense guided framework for conversational emo-432

tion recognition. It uses external knowledge to understand the commonsense information ap-433

pearing in the utterances and to model complex interactions between speakers, emotions, events,434

and other related influential factors that facilitate efficient emotion recognition.435
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• DAG-ERC [34]. The DAG-ERC network represents a directed acyclic graph that captures436

the structure of the conversations and combines characteristics of graph-based models and re-437

current neural networks. The model intuitively models the long-distance dependencies between438

utterances in a conversation as well as nearby contextual information.439

• DSAGCN [35]. DSAGCN is a graph convolutional neural network (GCN) that uses speaker440

relations and dependency syntactic analysis (DSA) to establish utterance relations and analyze441

utterance sentiment. Specifically, the syntactic structure of the dialogue context used in the442

model allows for highly efficient emotion recognition.443

4.4. Evaluation metrics444

Following established evaluation methodology [35, 44], we report the accuracy (Acc) and weighted445

F1 scores to evaluate the performance of the tested methods on the IEMOCAP, MELD, and EmoryNLP446

datasets. Here, accuracy is defined as [45]:447

Acc =

∑n
i=1(TPi + TNi)∑n

i=1(TPi + TNi + FPi + FNi)
, (24)

448

F1 =
1

n

n∑
i=1

ωi(
2TPi

2TPi + FNi + FPi
), (25)

where n denotes the number of classes. ωi denotes the weight of i-th class according to the quantity449

difference of all classes. TPi and TNi denote the number of true positive and true negative predic-450

tions for the i-th class, whereas FPi and FNi denote the number of false positive and false negative451

predictions for the i-th class, respectively.452

Because the Dailydialog dataset has a severe class-imbalance problem, where the “neutral” class453

represents 77.94% of the data, the MacroF1 and MicroF1 are utilized to report performance on this454

dataset, similarly to [11].455

MacroF1 =
1

n

n∑
i=1

(
2TPi

2TPi + FNi + FPi
), (26)

456

MicroF1 =

∑n
i=1 2TPi∑n

i=1(2TPi + FNi + FPi)
. (27)

4.5. Results and discussions457

We evaluate the proposed model on four datasets to demonstrate its capabilities and compare458

it to the SOTA competitors. However, it should be noted that not all considered baselines were459

experimentally validated on all four datasets, so the selection of comparative methods differs from460

dataset to dataset. In the following sections, we therefore analyze the results for each dataset separately.461
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Table 3: Comparison results on IEMOCAP

Methods

IEMOCAP

Happy Sad Neutral Angry Excited Frustrated
Acc (↑) F1 (↑)

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

bc-LSTM [43] 29.1 34.4 57.1 60.8 54.1 51.8 57.1 56.7 51.1 57.9 67.1 58.9 55.2 54.9

CMN [9] 25.0 30.3 55.9 62.4 52.8 52.3 61.7 59.8 55.5 60.2 71.1 60.6 56.5 56.1

DialogueRNN [10] 33.5 35.4 69.0 68.8 54.1 54.7 67.1 61.1 55.9 60.4 62.9 60.3 58.3 58.1

DialogueGCN [17] 45.7 47.7 86.9 84.4 41.9 48.5 61.5 62.2 72.4 69.3 51.5 56.6 59.0 56.1

DSAGCN [35] 60.1 62.6 84.8 82.3 44.5 47.5 63.7 59.6 69.3 71.5 54.8 62.1 63.5 61.7

DialogXL [12] 44.0 44.0 69.4 77.1 64.5 64.6 54.7 61.5 68.5 69.7 75.6 66.9 65.7 65.8

DAG-ERC [34] 43.4 45.1 82.9 80.6 69.8 68.1 65.9 66.9 64.9 69.2 71.7 69.8 68.6 68.4

Ours 53.1 54.9 81.6 81.9 74.8 73.5 66.0 66.4 68.7 73.3 65.5 68.0 69.7 69.7

4.5.1. Comparison on IEMOCAP462

Table 3 shows the accuracy and weighted F1 for each emotion label on the IEMOCAP dataset. It463

can be seen that the performance of the proposed model is highly competitive, with the highest overall464

Accuracy (69.7%) and F1 score (69.7%) over the entire dataset among all of the evaluated methods.465

With the “neutral” class, the accuracy and weighted F1 of our method are 5.0% and 5.4% better than466

that of DAG-ERC [34]. This can be ascribed to the fact that DAG-ERC only models nearby contexts,467

while our context filtering expands the context acquisition range, thus, leading to better performance.468

The syntactic-dependency analysis used in DSAGCN [35] improves the ability to recognize obvious469

emotions (such as happy and sad), but it performs poorly in predicting the “neutral” emotion class.470

Similarly, DialogueGCN [17] achieves the best accuracy and weighted F1 score of 86.9% and 84.4%,471

respectively, for the “sad” class, but only yields an accuracy of 45.7% and a weighted F1 score of 47.7%472

with the “happy” class. Conversely, our method achieves competitive results in predicting both, the473

“happy” and “sad” classes, while all other methods, except DSAGCN, perform quite poorly with these474

two emotion categories. These results are a consequence of the filtering mechanism implemented with475

the proposed context filter that enables the removal of noisy connections during the graph construction476

step of our model, leading to highly competitive performance.477

In Figure 3, we provide the confusion matrix of our method on IEMOCAP, which shows a more478

in-depth picture of the performance of the proposed model. We observe that our method exhibits the479

weakest performance when trying to recognize similar emotions, such as “happy” and “excited”. The480

difference between these emotion categories is in their intensity, but our method does not capture these481

subtle differences well enough to be capable of efficiently discriminating between the two. A possible482

solution for this issue is to emotion intensity as an auxiliary label for model training and we plan to483

explore such extensions as part of our future work.484
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Figure 3: The confusion matrix of the proposed method on IEMOCAP.

4.5.2. Comparison on MELD485

In Table 4, we show comparative results on the MELD dataset. We again observe that the pro-486

posed model achieves the highest accuracy (67.3%) and weighted F1 score (66.4%) overall among487

all considered methods. Our model fares particularly well with the “neutral” class, but similarly to488

all other methods, performs less convincingly with the “fear” and “disgust” classes. The reason for489

such a behavior is that the “fear” and “disgust” classes only account for 1.9% and 2.6% of the data490

in MELD and, as a result, none of the evaluated models can be sufficiently trained from the few491

available samples to efficiently recognize these two emotions. This class imbalance eventually leads492

to incorrect recognition results and predictions that favor emotion categories with a higher represen-493

tation within the dataset. Nonetheless, it can be observed that the GNN-based methods perform494

significantly better than the remaining techniques. We conjecture that there is a significant amount495

of short-range dependencies between the utterances in the MELD dataset compared to IEMOCAP,496

which heavily impacts the recognition procedure. Mechanisms for modeling a much wider context are,497

therefore, needed to recognize the emotion categories accurately on this dataset, especially with the498

under-represented classes. The context filter (integrated into our model) allows us to better capture499

the long-range conversational context, as well as the utilized pre-trained language model that enables500

(zero-shot) extraction of descriptive semantic information from the conversations, hence, leading to501

significantly better performance of our model in recognizing the “fear” and “disgust” emotions when502

compared to the baselines. The performance is only rivaled by the DAG-ERC approach, which also503

features a graph structure and mechanism for modeling longer-range contextual information.504

Figure 4 shows the confusion matrix of our method on MELD. It can be seen that most of the505

errors come from misclassifying different emotions as “neutral”. This is most evident with the “fear”,506
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“disgust”, and “sadness” classes, where a significant portion of the test data is assigned a “neutral”507

label. The reason for such behavior is that the “neutral” class accounts for 48.12% of the data in508

MELD, leading to a highly imbalanced recognition problem during training and testing. Furthermore,509

it is highly challenging to efficiently distinguish “fear”, “disgust”, and “sadness” from the “neutral”510

class given text, as the only source of information for the emotion recognition task. These limitations511

are reflected in the results of our model and, as discussed above, are even more problematic for most512

of the competing techniques.513

Table 4: Comparison result on MELD

Methods

MELD

Neutral Surprise Fear Sadness Joy Disgust Anger
Acc (↑) F1 (↑)

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

bc-LSTM [43] 78.4 73.8 46.8 47.7 3.8 5.4 22.4 25.1 51.6 51.3 4.3 5.2 36.7 38.4 57.5 55.9

CMN [9] 76.2 74.9 43.3 45.5 4.6 3.7 18.2 21.1 46.1 49.4 8.9 8.3 35.3 34.5 54.3 55.0

DialogueRNN [10] 72.1 73.5 54.4 49.4 1.6 1.2 23.9 23.8 52.0 50.7 1.5 1.7 41.0 41.5 56.1 55.9

DialogueGCN [17] 70.3 72.1 42.4 41.7 3.0 2.8 20.9 21.8 44.7 44.2 6.5 6.7 39.0 36.5 54.9 54.7

DSAGCN [35] 76.7 74.4 48.6 45.5 5.2 4.8 24.4 22.1 52.5 49.6 7.4 8.7 52.2 46.9 60.9 58.7

DialogXL [12] 79.4 78.5 63.7 57.5 0.0 0.0 29.8 33.1 60.9 61.2 0.0 0.0 55.3 49.9 64.2 62.7

DAG-ERC [34] 77.4 77.2 67.3 57.1 42.0 48.4 30.3 35.7 66.4 61.7 25.0 31.8 42.0 48.4 63.9 63.3

Ours 84.4 80.7 63.7 59.7 20.0 22.2 31.7 40.7 66.4 64.3 26.5 31.3 48.7 53.2 67.7 66.7
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Figure 4: The confusion matrix of the proposed method on MELD.

4.5.3. Comparison on Dailydialog514

On the Dailydialog dataset, our model performs better than all competing methods in terms of515

the MicroF1 score, as shown in Table 5. The MicroF1 accounts for class imbalances when quan-516

tifying performance and our model convincingly outperforms all considered baselines in this regard.517

The proposed model is the runner-up behind COSMIC [11] when the MacroF1 score is considered,518
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Table 5: Comparison result on DailyDialog

Methods

DailyDialog

Happinese Anger Sadness Fear Surprise Disgust
MacroF1 (↑) MicroF1 (↑)

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

DialogueRNN [10] 62.5 60.3 0.0 0.0 6.8 11.1 0.0 0.0 12.9 21.5 0.0 0.0 43.4 51.5

DialogXL [12] 59.5 62.8 31.3 35.2 29.4 34.6 0.0 0.0 50.0 46.6 0.0 0.0 40.3 55.6

COSMIC [11] 82.6 60.4 37.2 36.9 59.8 33.5 29.4 16.9 61.2 42.0 40.4 41.7 52.2 58.9

DAG-ERC [34] 60.9 63.4 38.9 43.4 32.3 38.4 11.7 20.0 53.4 52.1 21.3 28.5 53.4 59.1

Ours 64.1 77.6 38.1 52.0 43.1 59.4 29.4 45.5 52.6 60.1 23.4 33.8 48.6 59.6

where a few poorly performing categories typically adversely affect the overall MacroF1 result. With519

the proposed approach, the “disgust” class is not sufficiently learned due to the insufficient number of520

training samples available, negatively impacting its MacroF1 score. Nevertheless, compared to Dia-521

logueRNN [10] and DialogXL [12], our model yields a significantly higher MacroF1 score. The reason522

for this result lies in the use of the pre-trained language model and its (zero-shot) feature extraction523

capabilities that allow us to infer information-rich and descriptive representations from the provided524

utterances that result in highly competitive downstream emotion recognition capabilities.525
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Figure 5: The confusion matrix of the proposed method on Dailydialog.

Figure 5 shows the confusion matrix of our method on Dailydialog. We observe that the model526

exhibits the strongest performance with the “happiness” class and the weakest with the “disgust”527

class. As already suggested above, the underrepresentation of “disgust” samples in this dataset leads528

to classification errors, where “disgust” is most often incorrectly labeled as “anger”. Among other529

common (and somewhat consistent) substitutions, we also see “surprise” being confused with “happi-530

ness”, “fear” with “disgust”, and “sadness” being labeled as “anger”. Such misclassification is, in a531

sense, expected given the nature of the emotions and is still sufficiently rare to result in competitive532

MicroF1 scores, as reported in Table 5.533
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Figure 6: The confusion matrix of the proposed method on EmoryNLP.

4.5.4. Comparison on EmoryNLP534

As illustrated in Table 6, the proposed model achieves the best performance among all evaluated535

(state-of-the-art) methods on the EmoryNLP dataset with an accuracy of 40.65% and a weighted536

F1 score of 39.71%. However, compared to the results on the three other datasets, i.e., IEMOCAP,537

MELD, and Dailydialog, the performance of all tested techniques is much lower overall. We ascribe this538

result to the definition of the emotion classes in EmoryNLP. While similarly to MELD, EmoryNLP was539

constructed from conversations of the Friends TV show, the class labels between the two datasets differ540

significantly. This suggests that non-standard classes, such as “powerful” or “peaceful” may not be541

clearly expressed in the conversations and are therefore more difficult to recognize. This can also be seen542

from the confusion matrix of our model in Figure 6, where conversations labeled “powerful” are easily543

confused with “joy”, and utterances labeled “peaceful” with “neutral”. The number of misclassified544

samples for the “powerful” and “peaceful” categories even exceeds the number of correctly predicted545

samples.546

Table 6: Comparison result on EmoryNLP

Methods

EmoryNLP

Joy Neutral Powerful Mad Sad Scared Peaceful
Acc (↑) F1 (↑)

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

DialogXL [12] 55.3 50.16 61.8 50.0 6.9 8.3 46.9 35.8 15.3 21.9 32.9 37.3 0.6 1.1 38.4 34.6

COSMIC [11] 58.9 53.0 51.3 51.0 1.0 1.9 51.1 36.5 21.4 26.5 49.1 37.3 4.5 7.0 40.4 37.1

DAG-ERC [34] 59.2 52.7 67.0 53.9 0.0 0.0 47.7 37.7 17.3 21.5 34.6 34.0 6.2 10.1 41.0 36.0

Ours 51.3 52.0 57.9 53.5 17.5 17.2 40.0 40.9 15.7 21.0 44.7 39.9 15.9 18.6 40.7 39.7
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Table 7: Comparision with the latest models

Model
IEMOCAP MELD DailyDialog EmoryNLP

F1 F1 MicroF1 F1

EmoCaps [26] 69.49 63.51 - -
M2FNet [46] 66.20 66.23 - -
SACL-LSTM [47] 69.22 66.45 - 39.65
CoMPM [48] 66.61 66.52 60.34 37.37
S+PAGE [27] 68.72 63.32 64.07 39.14
Ours 69.71 66.70 59.62 39.73

4.5.5. Comparision with the latest models547

Among the latest comparison methods, models that combine transformers with other neural net-548

works [26, 48, 27] have shown competitive results across multiple benchmark datasets. However, these549

models often struggle to achieve a balanced performance across all datasets. In contrast, Hu et al. [47]550

proposed a context-antagonistic strategy that enhances the learning of contextual features, resulting551

in a more robust model that outperforms other approaches on three experimental datasets. This learn-552

ing strategy, which emphasizes model robustness, is a rarity in the field of conversational sentiment553

analysis, yet it demonstrates clear reliability and effectiveness.554

We have identified the lack of robustness in existing models as a concern and have taken measures555

to address this issue. Specifically, we have introduced two hyperparameters to adapt to the variations556

across different datasets and enhance the model’s contextual understanding. Additionally, by leverag-557

ing the powerful contextual understanding capabilities of transformers and the interactive capabilities558

of GNNs, our model exhibits promising performance that surpasses some recent comparison models.559

4.6. Ablation study560

In order to verify the importance of the proposed context filtering and feature correction components561

of the proposed model, we perform comprehensive ablation studies using all four experimental datasets.562

Specifically, we ablate the context filter by setting the corresponding threshold to zero, so the filtering563

operation has no effect, i.e., no context is filtered out. As a result, each given conversation is represented564

as a fully connected graph. For the feature correction ablation experiment, we adopt a similar approach565

to other GNN-based methods in the literature. We concatenate the emotion features produced by the566

graph processing module with the original features and use this combined input as the input to the567

final emotion classifier. This allows us to compare the performance of our model with and without568

the feature correction stage. The results of the ablation studies are presented quantitatively in Tables569

8-11, and in the form of confusion matrices for the feature-correction ablations in Figure 7.570
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4.6.1. Ablation on IEMOCAP571

After ablating the context filter on IEMOCAP, the proposed model yields an accuracy of 67.69%572

and a weighted F1 score of 67.41%, as summarized in Table 8. Compared with the complete model, the573

accuracy and weighted F1 degrade by 1.99% and 2.28%, respectively, due to the absence of the context-574

filtering mechanism. The lack of the filtering mechanism results in dependencies between all utterances575

in a given conversation, regardless of whether a given utterance is relevant and informative for the576

emotion recognition task, i.e., irrespective of the context of said utterance. Without the evaluation577

of contextual relevance, it is possible (and even likely) that distant utterances with irrelevant/weak578

contextual information are considered during the inference process, leading to suboptimal results.579

Similarly, without the measurement of informativeness, weakly correlated utterances with (potentially)580

high information content may not be considered to a sufficient extent by the proposed model due to581

the similarity-based attention mechanism used in graph processing.582

After ablating the feature correction stage on IEMOCAP, the accuracy and weighted F1 decrease583

by 0.94% and 0.86%, respectively, compared to the results of the entire model. The performance584

degradation due to the removal of the feature correction process is slightly lower than the degradation585

caused by the removal of the context filter but still points to its importance for the performance of586

the overall model. If we compare the confusion matrices in Figure 3 and Figure 7(a), we can find587

that there is a considerable 4% to 5% decrease in the recognition performance for the “happy” and588

“excited” emotion classes if the feature correction mechanism is not used, while the accuracy is also589

reduced for “sad”, “angry” and “neutral” categories, albeit to a lesser extent.590

Table 8: Ablation results on IEMOCAP

Context filter Feature correction Acc (↑) F1 (↑)

% ! 67.69 67.41

! % 68.74 68.73

! ! 69.68 69.69

4.6.2. Ablation on MELD591

Table 9 shows the results on the MELD dataset after ablating the context filter and feature cor-592

rection mechanism. The results show a similar picture as the ablation experiments on IEMOCAP.593

The accuracy (now 66.05%) and weighted F1 scores (65.02%) decrease by 1.69% and 1.65%, respec-594

tively, when removing the context filter. This implies that it is unreasonable to treat all utterances595

(regardless of context) as influencing factors when recognizing emotions. Some of these utterances may596

introduce misleading contextual cues into the emotion recognition task and, consequently, adversely597

affect performance.598
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Next, we ablate the feature correction stage on MELD and observe an accuracy of 66.55% and599

a weighted F1 score of 65.43%. This corresponds to a performance decrease of 1.19% and 1.24%,600

respectively, compared to the complete model. If we compare the confusion matrices in Figure 4 and601

Figure 7(b), we find that the feature correction mechanism adversely affects all emotion categories.602

This is due to the stronger dependencies between utterances in the MELD dataset, and, consequently,603

the larger impact of contextual information on the recognition performance. If the feature correction604

stage is removed, the model is more susceptible to spurious contextual information that is not rectified605

during the feature correction stage, resulting in reduced performance on MELD.606

Table 9: Ablation results on MELD

Context filter Feature correction Acc (↑) F1 (↑)

% ! 66.05 65.02

! % 66.55 65.43

! ! 67.74 66.67

4.6.3. Ablation on Dailydialog607

The ablation-study results on Dailydialog in Table 10 show that removing the context filter results608

in performance degradations of 1.82% for the MacroF1 and 0.52% for the MicroF1 score compared609

to the scores achieved by the complete model, i.e., 46.84% and 59.10%, respectively. Compared to610

the IEMOCAP and MELD datasets, the performance degradations are smaller, but still suggest that611

the context filtering contributes to the overall performance. If we remove the feature correction stage612

on Dailydialog, we observe MacroF1 and MicroF1 scores of 46.83% and 59.40%, respectively, which613

corresponds to a decrease of 1.83% and 0.22%, when compared to the complete model. From the614

comparison of Figure 5 and Figure 7(c), we can see that the performance difference with and without615

the use of the feature correction mechanism is relatively modest. While we do see degradations for616

the “fear”, “sadness”, and “surprise” categories, these degradations are quite minute. This is because617

the Dailydialog dataset is about an order of magnitude larger than the other datasets (in 1), so the618

emotion features that are learned are able to ensure reasonable performance even without the feature619

correction. Therefore, the performance differences caused by the feature correction on the Dailydialog620

dataset are less obvious.621

4.6.4. Ablation on EmoryNLP622

Finally, we present ablation results for the EmoryNLP dataset in Table 11. After removing the623

context filter, the accuracy and weighted F1 scores are 39.68% and 38.95%, suggesting a decrease of624

0.97% and 0.76% compared to the complete model. The accuracy and weighted F1 score after ablating625
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Table 10: Ablation results on Dailydialog

Context filter Feature correction MacroF1 (↑) MicroF1 (↑)

% ! 46.84 59.10

! % 46.83 59.40

! ! 48.66 59.62

the feature correction mechanism weigh in at 40.36% and 39.52%, respectively, which corresponds to626

a decrease by 0.29% and 0.19% compared to the setting where the mechanism is used. Looking at627

Figures 6 and 7(d), we find that on the EmoryNLP dataset, the performance degradation caused by628

the removal of the feature correction stage is less obvious, and has various degrees of impact on the629

performance across the individual emotion categories. The feature correction module demonstrates630

its effectiveness in correcting neutral labels by leveraging the rich feature information obtained from631

a large number of neutral emotion utterances. Consequently, the performance of the model improves632

after incorporating the feature correction module. However, it is important to acknowledge that633

the annotations in the EmoryNLP dataset can be subjective and controversial. There is a lack of634

consensus among annotators regarding emotional labels, with the lowest level of agreement observed in635

annotations for the “powerful” emotion, reaching only 0.8% agreement among all four annotators [42].636

This subjectivity and ambiguity in emotional labels pose challenges for the feature correction module637

in learning emotional features specific to certain emotions and distinguishing them from other similar638

emotions. It is worth noting that the accuracy and weighted F1 scores on EmoryNLP are about 40%639

lower than on the other datasets. This observation (together with the ablation-study results) suggests640

that the feature correction stage has a limited ability to correct the information content in the feature641

representations if this content is too ambiguous. Furthermore, the reported results may to a certain642

extent also be related to the definition of the emotion categories on this dataset. Regardless of whether643

the feature-correction mechanism is present or not, the weighted F1 score of some emotional categories644

with less obvious emotional tendencies, such as “powerful”, “sad” and “peaceful”, are always lower645

than 20%, greatly impacting the performance of the overall model.646

Table 11: Ablation results on EmoryNLP

Context filter Feature correction Acc (↑) F1 (↑)

% ! 39.68 38.95

! % 40.36 39.52

! ! 40.65 39.71

The feature correction module exhibits varying patterns of decline for different emotional categories647
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Figure 7: The confusion matrices after ablating the feature correction.

in different datasets due to the characteristics of the data. Table 1 provides insights into the specific648

characteristics of each dataset. The differences in data volume, data characteristics, and data imbalance649

contribute to the varying degree of fit achieved by the feature correction module for different emotional650

categories across different datasets.651

Interestingly, when comparing the performance before and after the ablation of the feature correc-652

tion module, we observed that the module outperformed EmoryNLP in highly unbalanced datasets653

such as IEMOCAP, MELD, and Dailydialog. This observation was supported by the comparison of654

confusion matrices, which revealed the module’s ability to effectively correct mispredictions in cat-655

egories that have a larger proportion in unbalanced datasets. Notably, in the MELD dataset, the656

feature correction module demonstrated exceptional performance in correcting mispredictions related657

to categories such as “disgust” and “anger”.658

4.6.5. Parameter analysis659

In order to study the influence of semantic relevance and informativeness on the performance of our660

model, we explore the impact of changing the weight parameter α (given in Eq (9)) in the context filter.661
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When the weight is set to 0, the comprehensive score s is equal to the semantic relevance score s1, and662

the context filter is completely dependent on the semantic similarity between utterances. When the663

weight is 1, the comprehensive score s is equal to the informativeness score s2, and the context filter664

depends on the informativeness of the contextual cues In addition to two edge cases, we also explore665

various weights that maximize the model’s performance on each dataset. For the sake of simplicity,666

we report results only for a subset of weights that are the most informative for the analysis. The667

experimental results are shown in Figure 8.668

Figure 8(a) illustrates the variation in performance as a function of the weight parameter on669

IEMOCAP. One can see that when the weight is 0, the accuracy and weighted F1 score are only670

68.62% and 68.59%, respectively. An initial weight increase can bring some improvement to the671

performance, and the highest accuracy and weighted F1 are 69.68% and 69.69% when the weight is672

equal to 0.75. Increasing the weight beyond this value does not bring additional performance gains.673

When the weight is 1 and the model is completely dependent on the informativeness of utterances but674

ignores the semantic relevance, the performance decreases, leading to the accuracy and weighted F1675

scores of 69.05% and 69.17%.676

Figure 8(b) displays the variation in accuracy and weighted F1 scores due to changes in the weight677

parameter on MELD. When the weight is 0, the accuracy and weighted F1 of the model are 67.12% and678

66.08%, respectively. However, different from IEMOCAP, when the weight is less than 0.5, increasing679

the value of the weight parameter does not significantly improve performance, and the accuracy is680

always around 67.2%. When the weight is set to 0.8, the performance is the highest but then decreases681

with further increases in the weight value. When the weight is set to 1, the accuracy and weighted682

F1 score are 67.09% and 66.1%. This is because the average length of the utterances in MELD is683

shorter than that in IEMOCAP (see also Table 1), while the utterances also contain noise components684

that impact the expressivity of the emotions. As a result, the informativeness of the utterances is still685

comparably low, even if the informativeness score is considered with the maximum possible weight.686

Figure 8(c) demonstrates the change of the MacroF1 and MicroF1 scores with respect to the687

weight parameter on Dailydialog. When the weight is 0, the MacroF1 and MicroF1 scores are 47.61%688

and 59.22%, respectively. The scores then slowly increase and reach the optimal/highest MacroF1 and689

MicroF1 values at the weight of 0.8, i.e., MacroF1 = 48.66% and MicroF1 = 59.62%. Figure 8(d)690

shows the change in accuracy and weighted F1 scores caused by the weight changes on the EmoryNLP691

dataset. We observe that the accuracy fluctuates significantly with changes in the weight parameter692

values and is impacted by the data imbalance of this dataset. When the weight is 0, the weighted F1693

score is 39.09%. The score then slowly increases to the highest value of 39.71%, at which time the694

weight is 0.75. When the weight is 1, the recognition accuracy and F1 score are reduced to 39.83%695

and 39.08%, respectively.696
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Figure 8: The influence of semantic relevance and informativeness on model performance.

4.7. Case study697

To validate the effectiveness of cosine similarity in capturing contextual relevance, we conducted698

a case study using two instances from the MELD dataset. We computed the specific contextual699

correlation between these instances to visually depict the degree of correlation. To delve deeper into700

the examination of the impact of context filter and gain a more profound comprehension of the errors701

rectified by the feature correction mechanism, we opt for a dialogue scenario extracted from the test set702

of IEMOCAP. We aim to visually depict the contextual evaluation process and analyze the predictive703

outcomes in both the presence and absence of feature correction.704

Table 12: Two case conversation in MELD dataset

Index
NO.38 No.59

Utterance Label Utterance Label

0 Oh. neutral Does Monica still turn on the lights in her bedroom? anger
1 But I don’t. Me, Phoebe. neutral It looks like a women’s purse. neutral
2 Well, I’m not I’m not at all surprised they feel that way. neutral No Joey, look. Trust me, all the men... neutral
3 You’re not? See, that’s why you’re so great! surprise See look, neutral
4 Actually it’s, it’s quite, y’know, typical behavior... neutral Exactly! Unisex! neutral
5 Y’know, this kind of co-dependant, emotionally ... anger Maybe you need sex. neutral
6 Define me! anger No! No Joey! U-N-I-sex. joy
7 Love me, I need love! anger Well, I ain’t gonna say no to that. neutral

The selected cases for the analysis are from conversations No.59 and No.38 in the MELD dataset.705

By comparing the labels and heatmaps, we can observe a clear pattern of high semantic similarity,706
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as measured by cosine similarity, among words belonging to the same label. For instance, in Figure707

9(a), words associated with the neutral label in the first three sentences and the anger label in the708

last three sentences exhibit significantly higher similarity compared to words in other contexts. When709

expressing intense emotions, the model tends to focus more on the utterance itself rather than relying710

on semantic similarity. This can be observed in Figure 9(b), where the first anger utterance and the711

penultimate joy utterance have lower similarity to utterances in other contexts.712

As shown in Figure 10, the context filter evaluates the comprehensive score of the target utterance713

and, in a sense, quantifies the amount of contextual information that can be obtained from the rest714

of the utterances in the conversion for the selected target. The threshold function then filters out715

utterances whose scores are lower than the predefined threshold. Table 13 shows a conversation case716

detailing which feature errors are corrected by the feature correction. Column 3 of the table shows717

the predicted labels when using a fully connected network to classify semantic features. Columns 4718

and 5 show the predicted emotion labels with and without the feature correction, respectively. By719

comparing the predicted labels, one can find that although the feature correction can correct part of720

the prediction errors by fusing semantic features, the feature correction still cannot correct prediction721

errors that are caused by factors other than context.722

Comparing Table 13 and Figure 10, one can find that most utterances are short texts, and it is723
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Table 13: Comparison of the results before and after feature correction for a conversation case of IEMOCAP

Utterance Label
Prediction

after preprocessing direct fusion feature correction

With the most perfect poise. exc hap hap neu
Yes, I shall probably do a Court Curtsey. exc hap hap hap
The whole business is really rather ridiculous. neu hap hap hap
Meaning exactly that. neu hap hap neu
What does it all mean? That’s what I asked myself in my
ceaseless quest for the ultimate truth. Dear God, what does
it all mean?

exc hap neu neu

Who’s they? neu hap hap hap
All the futile mortals who try to make life unbearable. Laugh
at them. Be flippant. Laugh at everything, all their sacred
shibboleths. Flippancy brings out the acid in their damned
sweetness and light.

exc exc neu neu

Certainly you must. We’re figures of fun alright [LAUGH-
TER].

neu neu hap neu

Well, what if-what happens when our love- exc neu neu neu
Who knows? exc neu neu neu
No, that fire will fade along with our passion. neu neu hap neu
It all depends on how well we played. exc exc neu exc

challenging to reliably recognize the correct emotion labels from these utterances. If we compare the724

predicted labels with the reference emotion labels, one can find that the model has difficulty distin-725

guishing between similar emotions by utterance and context, such as the emotion labels “frustrated”726

and “sad”, “frustrated” and “angry”, “excited” and “happy”. Similarly, it can be seen that with some727

samples, the model can not discriminate between different levels of intensity of the emotion. Addi-728

tionally, there are also cases where “happy” and “frustrated” are predicted as “neutral”. Since most729

conversational datasets do not contain labels that describe emotional states from multiple perspec-730

tives, such as arousal, valence, and dominance, it is challenging to distinguish utterances with different731

emotions in intensity only through the text modality and context. Most existing models do not per-732

form well in discriminating similar emotions, which is one of the main open issues in conversational733

sentiment analysis.734

5. Conclusion735

In this paper, we proposed a model for recognizing emotions in conversations using a graph neu-736

ral network supplemented with a novel context filter and feature correction mechanism. In order to737

identify utterances that are most relevant and informative for mining contextual information, a con-738

text filter was designed to consider both the semantic relevance and the information content of the739

utterances. The context filter was shown to be adaptable to the characteristics of different datasets by740

varying weights and thresholds. Additionally, the proposed feature correction mechanism was demon-741

strated to be able to correct the extracted feature representations that would otherwise cause incorrect742

predictions. By combining emotional and semantic features, the feature correction mechanism was il-743

32



lustrated to adapt the fused features and to rectify the potentially erroneous fused features that are744

employed during classification. Finally, through comprehensive and rigorous experiments on four di-745

verse datasets, i.e., IEMOCAP, MELD, Dailydialog, and EmoryNLP, it was shown that the proposed746

model yields superior performance compared to the latest methods commonly used in the literature747

for the task of conversational emotion recognition.748
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