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Abstract. Due to the recent advances in generative
deep learning, numerous techniques have been pro-
posed in the literature that allow for the creation of
so-called deepfakes, i.e., forged facial images com-
monly used for malicious purposes. These devel-
opments have triggered a need for effective deep-
fake detectors, capable of identifying forged and ma-
nipulated imagery as robustly as possible. While
a considerable number of detection techniques has
been proposed over the years, generalization across
a wide spectrum of deepfake-generation techniques
still remains an open problem. In this paper, we study
a representative set of deepfake generation methods
and analyze their performance in a cross-dataset set-
ting with the goal of better understanding the reasons
behind the observed generalization performance. To
this end, we conduct a comprehensive analysis on
the FaceForensics++ dataset and adopt Gradient-
weighted Class Activation Mappings (Grad-CAM) to
provide insights into the behavior of the evaluated
detectors. Since a new class of deepfake genera-
tion techniques based on diffusion models recently
appeared in the literature, we introduce a new subset
of the FaceForensics++ dataset with diffusion-based
deepfake and include it in our analysis. The results
of our experiments show that most detectors over-
fit to the specific image artifacts induced by a given
deepfake-generation model and mostly focus on lo-
cal image areas where such artifacts can be expected.
Conversely, good generalization appears to be corre-
lated with class activations that cover a broad spatial
area and hence capture different image artifacts that
appear in various part of the facial region.

1. Introduction

With the advances in generative deep neural net-
works, there has been a surge in methods capable of
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Figure 1: We evaluate the performance of three
conceptually distinct deepfake detection methods
in a cross-dataset setup on the FaceForensics++
database and investigate the reasons for the different
generalization capabilities using Gradient-weighted
Class Activation Mappings (Grad-CAM). To facili-
tate the analysis, we also introduce a dataset of deep-
fakes, generated with a diffusion-based generator.

synthesizing forged and/or manipulated images and
videos. The most widespread synthesis methods are
based on Generative Adversarial Networks (GANs)
[6,11,21], and in recent years, solutions utilizing the
concept of denoising diffusion [8, 13, 40]. Human
faces have always been one of the most popular tar-
gets for such synthesis and manipulation techniques,
as this allows for the design of numerous practical
applications, ranging from applications in the enter-
tainment industry (e.g., movies and smartphone ap-
plications), security systems, privacy-enhancing so-
lutions and many more [22]. However, due to the
high level of realism ensured by these methods, they
can also be employed for malicious purposes, such as
creating fake news or falsifying evidence. All of this
has prompted the development of so-called deepfake
detectors to alleviate this threat.



Among the first detectors developed were tech-
niques that work as binary classifiers. Such discrim-
inative detectors are commonly trained on a dataset
to perform classification between images represent-
ing original/pristine, unaltered images and images
that have been manipulated using one of the exist-
ing deepfake generation methods [1, 3]. A limita-
tion of the discriminatively-trained approach is that
the errors made by the synthesis method in generat-
ing deepfakes are quite specific to that method. This
results in poor generalization of the detector, which
learns to classify a specific type of deepfake. In real-
life deployment scenarios where we lack informa-
tion about how the forgery was created, it is cru-
cial for the detector to perform well regardless of the
type of deepfake encountered. Some solutions have
addressed these problems by introducing a specific
pipeline before the classifier that extracts additional
information from the given image, either by consid-
ering multiple modalities [20] or by manipulating the
image [27, 39]. The latter proves to be one of the
more effective approaches to improving generaliza-
tion. The idea behind these methods is that they gen-
erate so-called pseudo deepfakes and use them as an
extension of the training dataset, or they learn exclu-
sively on them. Images can be augmented in various
ways, which determines the types of artifacts that are
injected into the training set of the detector. How-
ever, even these methods can only improve gener-
alization to a certain extent, as they are fundamen-
tally discriminative. In this domain, approaches have
also been proposed that use only one class for train-
ing [12,15]. These methods learn only from samples
of unaltered images, defining in a way what a normal
image is, and anything deviating from it is marked as
an anomaly—indicating a potential deepfake. These
methods are expected to be robust to different types
of deepfakes, as they do not encounter any real deep-
fake samples during training.

In this paper, we aim to explore the generalization
capabilities of existing deepfake detectors in cross-
dataset experiments, where the term cross-dataset
refers to the fact that the detectors are tested on
deepfake types that are distinct from those used for
training. Additionally, we are interested in the per-
formance of existing detectors with the more re-
cent diffusion-based deepfake generation techniques,
that have not been studied widely yet in the lit-
erature. Finally, our goal is also to understand
the causes behind the observed performances. To

this end, we conduct a comprehensive cross-dataset
evaluation of various types of detectors on deep-
fakes from the FaceForensics++ dataset [25] and
study the results quantitatively as well as qualita-
tively through Gradient-weighted Class Activation
Mappings (Grad-CAM) [26].

2. Related work

In this section, we present a brief overview of rel-
evant works on deepfake detection. For a more com-
prehensive review of existing detectors, the reader is
referred to some of the excellent surveys on this topic
available in the literature [22, 23, 36].

Early Detectors. Early deepfake detectors primarily
relied on the identification of known artifacts, intro-
duced into the forged images by the deepfake gen-
eration techniques. As a result, this group of detec-
tors used conventional (hand-crafted) descriptors and
classifiers to detect blending signs [2, 38], deviations
of the face from the surrounding background (e.g.,
incorrect lighting) [28], identification of face warp-
ing artifacts [19], and even methods that observe the
broader context of a video, such as detecting unusual
eye blinking patterns [18] or observing lip synchro-
nization and corresponding speech [14]. Such de-
tectors provided promising initial results, but were
limited in their performance due to their focus on
explicit (human-defined) image artifacts, induced by
the deepfake-generation models.

Discriminative Detectors. To mitigate the depen-
dence on manual modeling of image artifacts, a more
recent group of detectors approached deepfake detec-
tion from a machine learning perspective and formu-
lated the problem as a binary classification task. So-
lutions from this group, commonly learn a discrim-
inative model, e.g., a convolutional neural network
(CNN), on a dataset of real and fake images, and
during the training process, simultaneously learn rel-
evant features for detection. It turns out that even
standard (off-the-shelf) CNN architectures already
perform better in addressing deepfake detection than
the early hand-crafted techniques discussed above,
while more specialized solutions further improve on
these results. In [3], for example, the authors intro-
duced Xception, a CNN model that with minor mod-
ifications was demonstrated to be highly effective for
deepfake detection [24]. Tariq et al. [33] showed
that vanilla CNN detectors, based on Xception [3] or
DenseNet [9] backbones, perform poorly with low-
resolution deepfakes. To address this issue, they pro-



posed an ensemble of three Shallow Convolutional
Networks with different layer configurations, effec-
tively handling various input image resolutions. Sim-
ilarly, Afchar et al. [1], argued that microscopic im-
age analysis based on image noise is not suitable
for compressed images, where the noise induced by
the deepfake generation process is strongly degraded,
and similarly, that the analysis of high-level seman-
tics is also unsuitable due to the subtle appearance
differences between real and fake images. There-
fore, an intermediate approach was proposed, where
a neural network classifies images based on meso-
scopic features, a mid-level image representation.

Although discriminative detectors perform well in
detecting forgeries, when they are tested with the
same type of deepfakes that was also used for train-
ing, their performance tends to deteriorate, when ap-
plied to deepfakes created using a previously unseen
method. This generalization issue is also generally
considered as one of the main problems of modern
deepfake detectors, and the causes of the poor gener-
alization are still poorly understood.

Beyond Discriminative Detectors. The problem of
generalization was addressed in [20] by introducing
a dedicated feature extractor that incorporated spe-
cific domain-knowledge before the classifier. The
feature extractor infers task-specific and information-
rich features at multiple scales from the input image,
combining them into a discriminative representation
that is then fed to a classifier. In [4], the authors fol-
lowed a similar idea and proposed the Hierarchical
Memory Network to decide whether an image repre-
sents a deepfake or not. The proposed network con-
siders both the current facial content to be classified
as well as previously seen faces. Facial features are
extracted using a pretrained neural network, consist-
ing of a bidirectional GRU (Gated Recurrent Unit)
and an attention mechanism. The resulting output is
then compared to previously seen faces to make a de-
cision on whether the input face is a deepfake or not.

One of the more effective methods for improving
the generalization of deepfake detectors is the syn-
thesis of forged images, which are then used together
with real/pristine face images to train discriminative
detection models. These so-called pseudo-deepfake
methods are in essence learned from real data only
and never observe a real deepfake image. Instead,
they simulate deepfake artifacts through various aug-
mentation and synthesis strategies, leading to highly
effective detection models. Li et al. [17], for ex-

ample, proposed the Face X-ray method, which fo-
cuses on identifying image artifacts resulting from
the blending process. In the learning stage, real faces
are initially blended together to generate blended im-
ages, and a detector is then trained on these samples
to distinguish between original and blended images.
This idea was later extended in [27], where the au-
thors synthesized training samples by blending a face
back into its original frame. Because the same face
is used as the target as source for swapping, the pro-
posed self-blending process introduces very subtle
artifacts from which a deepfake detector is learned,
leading to very competitive detection performance.

Since the primary task of deepfake detectors is
to distinguish forgeries of any kind from pristine
images, solutions have also been proposed that ap-
proach the problem within a one-class anomaly de-
tection setting. In [12], Khalid et al. proposed the
OC-FakeDect method that is based on a One-Class
Variational Autoencoder. Here, the input images are
classified based on the reconstruction score obtained
through the encoder-decoder architecture. Similarly,
in [15], a one-class method, called SeeABLE, was
presented, where the model learns low-dimensional
representations of synthetic local image perturba-
tions. To detect forgeries, an anomaly score derived
from a prototype matching procedure is used.

Our Contribution. While the evolution of deep-
fake detectors, discussed above, has led to obvious
progress in detection performance and improvements
in the generalization capabilities, the characteristics
of these models that impact cross-deepfake detec-
tion performance are still underexplored. In the ex-
perimental section, we therefore study the behavior
of a representative set of existing deepfake detec-
tors in cross-dataset detection experiments and an-
alyze class activation mappings to better understand,
which image areas contribute to the detection deci-
sions. Additionally, we also explore the performance
of the detectors with a new class of deepfakes, gen-
erated with modern diffusion-based models. To the
best of our knowledge, this issues has not yet been
widely explored in the open literature.

3. Methodology

To facilitate the analysis, we select three concep-
tually distinct deepfake detectors: (i) a discrimina-
tive model based on the Xeception architecture that
learns to distinguish between real and forged images
through a binary classification problem [24], (ii) the



High-Frequency Face Forgery Detection (HF-FFD)
method [20] that aims to improve the generalization
capabilities of discriminatively learned deepfake de-
tectors by extracting informative task-specific fea-
tures, and (iii) a pseudo-deepfake detector relying
on Self-Blended Images (SBI) [27] that learns from
pristine images only and simulates deepfake induced
artifacts for the training process through a dedicated
blending process. Details on the selected deepfake
detectors are given in the following sections.

3.1. The Discriminative Xception-Based Detector

The Xception method conceptually originates
from the family of Inception methods [10, 29–31].
Unlike traditional convolutional layers that learn fil-
ters in 3D space (two spatial dimensions and one
channel dimension), processing both the spatial and
cross-channel correlations with each convolutional
kernel, the fundamental idea of Inception modules
is to divide this process into multiple operations that
independently handle the mapping of these corre-
lations. Specifically, in Inception modules, cross-
channel correlations are first computed using 1 × 1
convolutional filters, followed by all other correla-
tions using 3 × 3 convolutions. If we simplify the
module by omitting the average pooling tower and
reformulate the architecture as one large 1 × 1 con-
volutional layer followed by 3 × 3 convolutions, we
get a streamlined version of the Inception layer. Tak-
ing this idea to the extreme by mapping spatial cor-
relations for each output channel, we get a mod-
ule very similar to depthwise separable convolution.
Xception is a convolutional neural network architec-
ture that replaces Inception modules with depthwise
separable convolution layers, assuming that mapping
cross-channel correlations and spatial correlations in
the feature maps of a convolutional neural network
are completely decoupled. The proposed architecture
consists of 36 convolutional layers structured into 14
modules, each with a linear residual connection (ex-
cept the first and last). At the end, there is logis-
tic regression and an optional fully-connected layer.
The first detector used in this work uses the Xception
model to learn a discriminative deepfake detector.

3.2. High-Frequency Face Forgery Detection

Luo et al. [20] identified that face manipulation
procedures generally consist of two stages: fake face
creation and face blending. Since only the facial part
is altered in the image while the background remains
the same, the blending stage disrupts the original data

distribution, and this characteristic discrepancy can
be utilized for forgery detection. As a result of this
observation, the authors proposed a method that em-
ploys both RGB spatial features and high-frequency
noises for detecting forgeries. The pipeline com-
prises three parts: the entry, middle, and exit flows.
The input image is first converted into a residual
image Xh using SRM filters [5]. The entry flow
takes both the RGB image X and the residual image
Xh, performing convolution on both to obtain feature
maps F 1 and F 1

h . To extract more high-frequency
information, an SRM followed by a 1 × 1 convolu-
tion is applied to F 1

h , resulting in F̃ 1
h . This result is

then added to F 1
h , and the operations are repeated.

The output of the entry flow consists of feature maps
of two modalities, where the high-frequency Fh car-
ries much more information than the input Xh. The
output spatial feature map F is element-wise mul-
tiplied with an attention map M obtained from the
residual image as: M = fatt(Xh), where fatt is an
attention block, inspired by CBAM [37]. In the mid-
dle flow, feature maps of two modalities are fed into
a dual cross-modality attention module (DCMA),
which captures dependencies between low-frequency
textures and high-frequency noises. Each input is
divided into two components: a value, representing
domain-specific information, and a key, measuring
the correlation between these two domains. In the
exit flow, high-level features of the two modalities
are merged. Classifier training to distinguish be-
tween genuine and forged images can then be per-
formed on these obtained features. In this work, we
again use the Xception [3] model to learn a deepfake
detector over the extracted features.

3.3. Self-Blended Images [27]

The third approach considered for our analysis
[27], i.e, Self-Blended Images, falls into the cate-
gory of detectors that address the generalization is-
sue by generating synthetic forgeries, on which a
discriminative detector is learned. Typically, these
methods synthesize training samples by blending two
distinct faces and generating artifacts based on the
gap between source and target images. In con-
trast, this method performs blending of a slightly
altered version of the same face, actively generat-
ing artifacts with selected transformations. The so-
caleld Self-Blended Images (SBIs) are generated in
three steps. First, the source-target generator creates
pseudo source and target images for blending. The



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Examples of images generated using
DiffFace. DiffFace produces convincing deepfakes
that are almost indistinguishable from real images,
e.g., see the pristine images in (e) and (g) and their
deepfakes in (f) and (h), but also leads to failure
cases in challenging scenarios, e.g., a profile view
in (a), facial occlusions, e.g., a visible border around
glasses in (b). Sometimes artifacts also remain in the
images, e.g., shadows in (c) or hair segments in (d).

input image I is initially duplicated, and both im-
ages are augmented to introduce statistical inconsis-
tencies (RGB and HSV color space values are ran-
domly shifted, as well as brightness and contrast;
the images are downsampled or upsampled). Blend-
ing boundaries in landmark mismatches are repro-
duced by resizing the source image, zero-padding, or
center-cropping, and finally translating it. Pseudo-
source and target images end up with the same size
as the original image. In the next step, the mask gen-
erator creates a grayscale mask used for blending the
previously generated images. This is done by having
a landmark detector first determine parts of the face
based on which a convex hull is calculated. To in-
crease the diversity of the mask, the obtained shape
is deformed with elastic deformation and then eroded
or dilated. Lastly, the blending ratio of the source
image is determined by multiplying the mask by a
constant r ∈ (0, 1]. In the final step, the blending
of the source image Is and target image It is per-
formed with the blending mask M to generate the
self-blended image. With such synthetically gener-
ated samples, a binary classifier is then trained to
distinguish between genuine images and deepfakes.
Following [27], we also use EfficientNet-b4 [32] for
this task.

4. Experiments and results

4.1. Datasets

For the experiments, we select the FaceForen-
sics++ dataset [25], which is one of the most pop-
ular and challenging datasets publicly available for
the development and testing of deepfake detectors
in cross-deepfake type experiments. Additionally,
to make the analysis more comprehensive, we gen-
erate two novel subsets of the FaceForensics++
dataset, one based on a recent GAN-based face swap-
ping procedure, and one based on a diffusion-based
model. These two subsets also represents one of the
tangible contributions of this work. Below, we pro-
vide details on the FaceForensics++ dataset and the
novel InsightFace and DiffFace subsets.
FaceForensics++. For the training and testing of
models, we utilize the FaceForensics++ dataset [25],
which comprises 1000 videos. These videos are di-
vided into three groups: 720 for training, 140 for
validation, and 140 for testing. The dataset is par-
titioned into several subsets that are generated using
5 distinct deepfake-generating methods: Deepfakes1,
Face2Face [35], FaceShifter [16], FaceSwap1, and
NeuralTextures [34]. These deepfakes are created
using predefined target and source face pairs and
are mostly based on methods relying on Generative
Adversarial Networks (GANs). Additionally, each
group includes authentic, unaltered videos. We aug-
ment the dataset with two additional subsets. The
first uses the InsightFace [7] face swapping proce-
dure, and the second the diffusion-based DiffFace ap-
proach from DiffFace [13]. Because deepfakes based
on diffusion models have so far not been widely dis-
cussed in the literature and no relevant datasets are
available in the literature, we discuss the generated
DiffFace subset of FaceForensics++ (FF++) in a sep-
arate section below.
The DiffFace FF++ Subset. We structure the Diff-
Face Subset in the same way as all others from the
FaceForensics++ collection: it consists of frames
from 1000 videos, divided into training, validation,
and test sets, with only every tenth frame processed
for each recording. Forged images generated us-
ing the DiffFace approach are highly convincing and
difficult to distinguish from authentic ones at first
glance. In Figures 2e to 2h, we see that the generated
deepfake can even look more convincing than the
original images. However, the method yields poorer

1https://github.com/deepfakes/faceswap

https://github.com/deepfakes/faceswap


Train set Test set - AUC

Deepfakes DiffFace Face2Face FaceShifter FaceSwap InsightFace NeuralTextures

Deepfakes 0.9974 0.7018 0.8844 0.5699 0.6434 0.6130 0.9174
DiffFace 0.6111 0.9959 0.5079 0.6128 0.5151 0.6072 0.5199
Face2Face 0.9420 0.6475 0.9903 0.6946 0.6562 0.5316 0.8106
FaceShifter 0.6533 0.9368 0.5197 0.9969 0.5161 0.6156 0.5696
FaceSwap 0.6647 0.6928 0.8608 0.5050 0.9955 0.5361 0.7730
InsightFace 0.6981 0.6473 0.5851 0.8027 0.5473 0.9298 0.6535
NeuralTextures 0.9931 0.6765 0.9497 0.7302 0.6847 0.5516 0.9862

Table 1: Performance of Xception trained on different databases in cross-dataset scenario.

(a) (b) (c) (d)

Figure 3: Grad-CAM analysis of the last convolu-
tional layer of the Xception network. The model
trained on Deepfakes (a), Face2Face (b), and Neu-
ralTextures (c) databases typically activates in the re-
gions around the eyes, mouth, and nose. The classi-
fier trained on deepfakes from the DiffFace database
(d) typically activates in a circular pattern.

results when faced with more challenging scenarios,
such as under face orientations that cause the face to
be partially visible (e.g., a profile view in Figure 2a)
and various occlusions on the face (e.g., glasses in
Figure 2b). As the process is of a sequential stochas-
tic nature, artifacts such as shadows (in Figure 2c)
or hair segments (in Figure 2d) are sometimes trans-
ferred to the output as well.

4.2. Performance metrics

Following standard evaluation methodology [12,
15, 23] we evaluated the performance of the selected
methods based on the Area Under the Receiver Op-
erating Characteristic Curve (AUC). We also con-
duct a qualitative analysis of the results, comparing
the characteristics of images and Gradient-weighted
Class Activation Mapping (Grad-CAM) heatmaps of
samples where the methods are successful and those
where they are not [26]. We use Grad-CAM as the
primary tool for understanding the generalization ca-
pabilities of the tested detectors.

4.3. Results

Xception Results. For the evaluation, we trained
the Xception model using deepfakes generated with
one of the face forgery methods that constitute the

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Illustration of Grad-CAM depicting
the triggering regions of the last convolutional
layer of the Xception network with an added
feature-extracting pipeline: focus on the root of
the nose (Deepfakes (a)) and on the edge of the
nose (InsightFace (b)), triangular area with the cen-
ter on the mouth (DiffFace (c)), circular focus on
the philtrum (Face2Face (d) and NeuralTextures (g)),
hourglass shape (FaceShifter (e)), and truncated tri-
angle (FaceSwaps (f)), focus on the eyes in genuine
images (h). Best viewed in color.

FF++ dataset, and tested the model on the entire test-
ing set to obtain insight about the method’s perfor-
mance detecting various types of deepfakes. The re-
sults are compiled in Table 1. It is evident that the
method performs best on forgeries generated using
the same method as used for the generation of train-
ing samples. Clearly, the detector overfits to the tex-
tural errors specific to the given deepfake generation
method. Consequently, when applied to images ma-
nipulated using a different method, the detector’s per-
formance significantly decreases.

Additionally, we observe that the model exhibits
significantly better generalization across the Deep-
fakes, Face2Face, and NeuralTextures databases
compared to other types of deepfakes. These forg-
eries contain visually similar artifacts, e.g., blend-



Train set Test set - AUC

Deepfakes DiffFace Face2Face FaceShifter FaceSwap InsightFace NeuralTextures

Deepfakes 0.9971 0.7494 0.9403 0.6615 0.5666 0.6353 0.9596
DiffFace 0.5166 0.9999 0.5302 0.5076 0.5210 0.5086 0.5294
Face2Face 0.9965 0.5277 0.9912 0.7614 0.7343 0.6638 0.9591
FaceShifter 0.7750 0.8228 0.8491 0.9987 0.7094 0.6229 0.7910
FaceSwap 0.9407 0.9897 0.9934 0.8823 0.9969 0.4995 0.9274
InsightFace 0.6896 0.7830 0.6146 0.5203 0.5447 0.9725 0.5843
NeuralTextures 0.9928 0.8561 0.9891 0.9220 0.9302 0.6603 0.9933

Table 2: Performance of HF-FFD with an Xception classifier in a cross-dataset scenario.

(a) (b) (c) (d)

Figure 5: Typical examples of artifacts that the
SBI method successfully detects: obvious blend-
ing border (a), color mismatch (b), structural incon-
sistencies (e.g., partially deleted glasses (c)), poorly
generated facial landmarks (e.g., nose (d)).

ing edges, distortions in facial landmarks, and color
mismatches. An analysis of the detector using Grad-
CAM [26] reveals that the last convolutional layer of
the method trained on one of these subsets activates
in similar regions during inference, i.e., areas around
the eyes, mouth, and nose, as seen in Figure 3a to 3c.

The results also indicate that training the detector
on diffusion-based deepfakes leads to poor general-
ization. Diffusion-based forgeries appear markedly
different at first glance and do not exhibit typical ar-
tifacts. This suggests that the detector is attentive
to entirely different features, as evident in the Grad-
CAM analysis shown in Figure 3d, i.e., the triggering
area of the last convolutional layer is typically circu-
lar, unlike any other training database.

HF-FFD Results. In this case, HF-FFD detector,
we are dealing with a discrimantive model that uses
the Xception architecture for classification and a spe-
cialized pipeline for feature extraction, as described
in Section 3.2. We conduct training and testing of
this model in the same way as with Xception. The
results are shown in Table 2. As can be seen, the
introduction of the pipeline significantly improves
generalization. However, a more in-depth analysis
using Grad-CAM is needed for a better understand-
ing. Based on Grad-CAM analysis, we can roughly
categorize the learned bases into three groups based
on the focus of the last convolutional layer: nose,

mouth, and philtrum (the area between the nose and
mouth). The network’s focus on the root of the nose
and its surroundings occurs when training the net-
work on the Deepfakes dataset. A similar focus is ob-
served when training on the InsightFace dataset, but
in this case, the center of focus is not the root of the
nose; instead, it is somewhere on the edge (tip, left or
right edge, or the top of the nose). In the case of the
DiffFace dataset, the network focuses on the mouth,
with a triangular area towards the nose. For all other
datasets, the network focuses on the philtrum area,
but they differ in the shape of the focus area. The
Face2Face and NeuralTextures datasets have a circu-
lar area similar to Deepfakes, while the FaceShifter
and FaceSwaps datasets have areas that stretch up-
ward on the face, with the former having an hourglass
shape and the latter a truncated triangle. In the case
of genuine images, the model is triggered in the eye
area, regardless of the training dataset. These focus
areas are illustrated in Figure 4.

From the results in Table 2, it is evident that the
method trained on the Deepfakes, Face2Face, and
NeuralTextures subsets also generalizes well across
those specific deepfake types. Moreover, it is also
noticeable that the triggering area of the method on
these subsets is very similar, i.e., an approximately
circular area around the focus center, with slight vari-
ations in the center’s position (Figure 4a, 4d, 4g).
However, it turns out that the method performs bet-
ter among datasets where the intersection between
the triggering areas of the network is larger. Thus,
a model trained on datasets with a larger triggering
area (FaceSwap (Figure 4f), FaceShifter (Figure 4e),
and NeuralTextures (Figure 4g)) detects deepfakes
of almost all types. In contrast, training on datasets
with a small triggering area (DiffFace (Figure 4c))
results in very poor generalization. A special case is
the InsightFace dataset, where the center and shape
of the focus are not constant/consistent. Different
spatial/semantic areas in the images seem informa-



Model Test set - AUC

Deepfakes DiffFace Face2Face FaceShifter FaceSwap InsightFace NeuralTextures

SBI 0.9106 0.5708 0.8715 0.7922 0.7851 0.5892 0.8430

Table 3: Performance of EfficientNet-b4 fine-tuned using self-blended images tested on deepfakes created with
seven different approaches. Results are shown in terms of AUC.

tive for the method in these types of deepfakes ar-
eas in the images seem informative for the method in
these types of deepfakes. Consequently, when rec-
ognizing forgeries of other types, we correctly detect
only those images with a similar informative defect,
which is evident in Grad-CAM heatmaps by the cen-
ter and shape of the focus approximating the typi-
cal focusing area of this dataset. However, detection
with these subsets also results in many false nega-
tives, as in cases where the network focuses on the
top of the nose, it closely resembles the focus of a
genuine image (which typically focuses on the eye
area). Slightly better performance is achieved only
when testing on the DiffFace dataset, as the samples
of these two datasets are the most similar, which is
why we often obtain a triangular area at the base of
the nose that closely resembles the triggering area in
the DiffFace dataset.

Self-Blended Images (SBI) Results. This method
relies solely on pristine images from the training
dataset, eliminating the need for deepfakes in the
training dataset. To evaluate its performance, we
conduct tests using a pre-trained model that was
trained, as described in the paper [27]. The results
are summarized in Table 3. This technique utilizes
only authentic images to generate pseudo-deepfakes
for training the detector. This unique approach en-
ables the direct determination of specific artifacts on
which the detector should focus. The authors of this
approach categorize these artifacts into four groups:
landmark mismatch, blending boundary, color mis-
match, and frequency inconsistency. The results in-
dicate that the method performs comparably well in
recognizing forgeries of all types where the same ar-
tifacts that were synthesized on training images are
present. The method achieves its highest success
rates on samples from the Deepfakes dataset (Fig-
ure 5a) and Face2Face dataset (Figure 5b), where the
injected artifacts are most conspicuous. The method
is also effective in detecting structural inconsisten-
cies (e.g., partially deleted glasses in Figure 5c) and
poorly generated facial landmarks (e.g., nose in Fig-
ure 5d). However, the method’s performance signif-

icantly declines when confronted with forgeries that
do not contain the artifacts present in the training set.
It notably struggles with forgeries from the DiffFace
and InsightFace datasets. In the latter, the method
focuses primarily on areas that appear to have been
smoothed during the forgery process. However, this
is not precise enough, leading to misclassification
of many genuine images as deepfakes. Forgeries
from the DiffFace dataset present a unique challenge
as they do not exhibit typical errors due to a dif-
ferent generation approach. Consequently, a clas-
sifier trained on pseudo-deepfakes with typical arti-
facts faces difficulty distinguishing these forgeries.
This approach successfully mitigates the problem of
overfitting to a specific deepfake generation method.
However, the issue of generalization is then shifted to
the level of selecting transformations during the syn-
thesis of training samples. This directly influences
what the classifier will decide upon during classifi-
cation, meaning that in the presence of new types
of forgeries expressing different defects, the detector
may not successfully identify them.

5. Conclusion

In this paper, we analyzed three face forgery de-
tection methods, evaluating them in a cross-dataset
scenario and assessing generalization. Using Grad-
CAM, we examined failure cases and observed that
discriminative models like Xception generalize pri-
marily among forgeries with similar textural arti-
facts, while models with a feature-extracting pipeline
before the classifier demonstrated improved general-
ization when trained on datasets that induce larger fo-
cus areas in the final convolutional layer. Classifiers
trained with pseudo deepfakes proved effective only
when artifacts assumed during training sample gen-
eration also appeared in the forgeries. Future work
will expand the analysis to a broader detector set, ex-
plore aspects like the impact of image compression,
investigate the characteristics of the detection tech-
niques in the frequency domain, and assess the dis-
criminativness of learned image representations.
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