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Abstract

We propose a novel reconstruction-based model for anomaly detection in image data, called ’Y-GAN’. The model

consists of a Y-shaped auto-encoder and represents images in two separate latent spaces. The first captures meaningful

image semantics, which are key for representing (normal) training data, whereas the second encodes low-level residual

image characteristics. To ensure the dual representations encode mutually exclusive information, a disentanglement

procedure is designed around a latent (proxy) classifier. Additionally, a novel representation-consistency mechanism

is proposed to prevent information leakage between the latent spaces. The model is trained in a one-class learning

setting using only normal training data. Due to the separation of semantically-relevant and residual information, Y-

GAN is able to derive informative data representations that allow for efficacious anomaly detection across a diverse

set of anomaly detection tasks. The model is evaluated in comprehensive experiments with several recent anomaly

detection models using four popular image datasets, i.e., MNIST, FMNIST, CIFAR10, and PlantVillage. Experimental

results show that Y-GAN outperforms all tested models by a considerable margin and yields state-of-the-art results.

The source code for the model is made publicly available at https://github.com/MIvanovska/Y-GAN.

Keywords: anomaly detection, one-class learning, disentangled data representations

1. Introduction

Anomaly detection in images represents a challenging computer-vision problem, where the goal is to distinguish

anomalous data from data considered to be normal. Here, the term normal usually corresponds to images (or other

types of visual data) that conforms to some predefined characteristics, and is, in general, application dependent (Per-

era et al., 2021). Most recent solutions approach anomaly detection from a one-class classification perspective and

attempt to learn detection models using normal training data only. Such an approach has led to successful deployment

of anomaly detection techniques in a wide variety of application domains where the anomalous data is not readily

available or is difficult to collect, including (visual) quality inspection (Racki et al., 2018; Zavrtanik et al., 2021a; Ris-

tea et al., 2022), surveillance and security (Doshi & Yilmaz, 2020; Sabokrou et al., 2017; Ionescu et al., 2019; Bakalos

et al., 2022; Thakare et al., 2022; Sultani et al., 2018), information forensics (Khalid & Woo, 2020; Wang et al., 2020),
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Figure 1: We propose Y-GAN, a novel anomaly detection model for images built around a Y-shaped auto-encoder

network. The model disentangles semantically-relevant image information from irrelevant, residual characteristics and

facilitates efficacious anomaly detection based on selective image encoding. As illustrated on the right, the removal of

residual characteristics allows for easier detection of the digit “1”, considered anomalous in this illustrative example.

biometrics, (Fatemifar et al., 2019; Oza & Patel, 2019; Yadav et al., 2020; Perera & Patel, 2019; Ivanovska & Štruc,

2023) or medical imaging (Schlegl et al., 2017, 2019) among others.

Contemporary research on one-class image-based anomaly detection is dominated by reconstruction-oriented

models and typically relies on powerful auto-encoders (Gong et al., 2019; Nguyen & Meunier, 2019) or genera-

tive adversarial networks (GANs) (Schlegl et al., 2019; Zhou et al., 2020). These models commonly learn some latent

representation that can be used to reconstruct normal data samples with high fidelity. Because no anomalous data is

seen during training, the basic assumption here is that such (anomalous) samples will lead to poor reconstructions. As

a result, differences in reconstruction quality are commonly exploited to differentiate between normal and anomalous

data. Reconstructive approaches have been shown to perform well across a broad range of anomaly detection tasks

and to provide competitive results across several popular benchmarks (Akçay et al., 2019b,a). However, as empha-

sized in Fei et al. (2021), the learning objectives typically utilized for learning reconstructive models predominantly

focus on low-level pixel comparisons instead of image semantics intrinsic to the training data. This results in latent

representations that encode low-level data characteristics that are likely to be shared between normal and anomalous

data samples (Dosovitskiy & Brox, 2016) instead of more discriminating higher-level semantics. Additionally, when

data with rich visual characteristics and complex appearances is used for training, the likelihood of high-fidelity re-

constructions of anomalous data increases as well, rendering reconstruction-based models less effective in such cases.

This problem is further exacerbated by the high generalization capabilities of modern generative models, where high-

quality reconstructions of anomalous samples can already be expected under more relaxed assumptions (Fei et al.,

2021; Gong et al., 2019). A key challenge with these techniques is, therefore, to learn latent representations that

encode important image semantics and are uninformative with respect to low-level visual cues commonly shared by

the normal and anomalous data. Such semantics are of paramount importance for a successful description of normal

data, help to better normal image samples from anomalous ones, and address the over-generalization problem seen
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with reconstruction-oriented anomaly detection models.

Based on this insight, we propose in this paper a novel anomaly detection model, called ’Y-GAN,’ that aims to

address the above-mentioned challenges and explicitly separates useful image semantics from uninformative (noisy,

residual) data characteristics.. As illustrated in Fig. 1, Y-GAN is designed around a Y-shaped auto-encoder model that

encodes input images in two distinct latent representations. The first representation captures semantically meaningful

image cues useful for representing key properties of normal data, while the second encodes irrelevant, residual data

characteristics. This dual encoding is enabled by an effective disentanglement procedure that can be learned automat-

ically in a one-class learning setting, i.e., without the use of anomalous data. To control the information content in the

two latent representations, Y-GAN utilizes a latent classifier and trains it to discriminate between sub-classes/groups of

normal data. In other words, it exploits differences within the normal data to learn meaningful data semantics that can

later be used for anomaly detection. Additionally, a novel representation consistency mecahnism is introduced for the

training procedure of Y-GAN that ensures that the encoded information in the dual latent representations is mutually

exclusive. Using this approach, Y-GAN is able to learn highly descriptive data representations that facilitate effective

anomaly detection across a variety of problem settings. This includes object-level anomaly-detection problems, where

a group of object classes is considered normal, while an unseen group of objects is considered anomalous, but also

pixel-level anomaly detection tasks, where unusual/abnormal image regions are considered anomalous. The model is

evaluated in extensive experiments on four anomaly detection benchmarks and compared with several state-of-the-art

anomaly detection models presented recently in the literature. The results of the evaluations show that Y-GAN offers

significant performance improvements over all considered competing models.

In summary, our key contributions in this paper are:

• We propose Y-GAN, a novel anomaly detection method, that disentangles semantically-relevant image charac-

teristics from residual information for efficacious data representation and addresses some of the key challenges

associated with reconstructive anomaly-detection models, including over-generalization and the inability to fo-

cus on key data semantics that are relevant for the definition of normal data. As shown in the experimental

section, the model leads to state-of-the-art performance on several popular datasets, across a variety of anomaly

detection tasks.

• We introduce a novel disentanglement strategy that enforces representation consistency and allows Y-GAN to

exclude uninformative image information from the anomaly detection task in a one-class learning setting. We

note that the same strategy is also applicable to other problem domains in need of effective disentanglement.

• We show the benefit of the proposed dual data representation over several state-of-the-art anomaly detection

mechanisms by reporting superior results on multiple benchmarks and across different anomaly detection tasks.
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2. Background and Related Work

A considerable amount of research has been conducted in the field of anomaly detection over the years. While

early approaches considered statistical models (Yamanishi et al., 2004; Xu et al., 2012), one-class classifiers (Tax &

Duin, 2004; Lanckriet et al., 2003) or sparse representations (Lu et al., 2013; Zhao et al., 2011) for this task, more

recent solutions leverage advances in deep learning to learn powerful (one-class) anomaly detectors, e.g., Schlegl et al.

(2019); Abati et al. (2019); Ruff et al. (2018); Markovitz et al. (2020); Bergmann et al. (2020); Pang et al. (2020);

Zaheer et al. (2020); Bergman & Hoshen (2020). In this section, we present the most important background informa-

tion with respect to such one-class models to provide the necessary context for our work. For a more comprehensive

coverage of the area of anomaly detection and a broader discussion of existing solutions, the reader is referred to some

of the excellent surveys in this field, e.g., Perera et al. (2021); Chandola et al. (2009); Pang et al. (2021).

2.1. Reconstruction-based Anomaly Detection

Reconstruction-based models represent one of the most widely studied groups of anomaly detectors in the lit-

erature. Such models try to discriminate between normal and anomalous data by evaluating reconstruction errors

produced by generative networks trained exclusively on normal data. Schlegl et al. (2017), for example, proposed

to project probe samples into a GAN latent space learned in this manner in their AnoGAN model and generate

reconstructions from the computed latent representation for scoring. While this approach relied on two separate

steps (i.e., latent-space learning and reconstruction), later improvements, such as f-AnoGAN (Schlegl et al., 2019)

or EGBAD (Zenati et al., 2018), demonstrated the benefits of learning the latent representation jointly with the re-

constructive mapping. Akçay et al. (2019b) further enhanced the capability of reconstruction-based models with an

adversarial auto-encoder, called ’GANomaly.’ Different from previous work, the model derived an anomaly score by

comparing latent representations of original and reconstructed images to facilitate anomaly detection. Later, the same

authors introduced Skip-GANomaly (Akçay et al., 2019a) (GANomaly extension based on U-Net (Ronneberger et al.,

2015)) in an attempt to capture descriptive multi-scale information. In addition to the standard reconstruction based

criteria, Massoli et al. (2022) also proposed to explicitly optimize intermediate representations of each layer in the

anomaly detection model.

More recent work on reconstruction-based models capitalized on the importance of designing informative/discrim-

inating latent spaces that can widen the gap between reconstruction errors observed with normal and anomalous

data. Perera et al. (2019), for example, designed a constrained latent space for their OCGAN model, such that only

samples belonging to the class observed during training were reconstructed well, while anomalous samples were

not. Zhou et al. (2020) split images into two distinct parts (i.e., texture and structure) in their P-Net model. The

two parts were then encoded separately with the goal of making the generated representations more informative for

anomaly detection. The model was later extended in Zhou et al. (2021), with an additional module, that memorizes

the correspondence between the structure and its texture. Integrated memory modules were also utilized by Park et al.
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(2020) in their anomaly-detection approach, to lessen the representation capacity of their model for anomalous data

and further improve detection results. Conceptually similar solutions were presented in Gong et al. (2019); Yang et al.

(2021).

The Y-GAN model proposed in this paper, follows the general idea of reconstruction-based methods, but unlike

competing solutions encodes the input data in two distinct latent representations that allow for the separation of

relevant information from information irrelevant for the anomaly detection task. As we show in the following sections,

this separation of information is: (i) achieved without any assumptions regarding the source of relevant information

(e.g., texture, color, structure, etc.), (ii) is learned automatically in an end-to-end manner from normal data only, and

(iii) leads to significant performance improvements over existing reconstruction-based models on various anomaly

detection tasks.

2.2. Anomaly Detection with Proxy Tasks

To address some of the limitations of reconstruction-based anomaly detectors, another major group of existing

models uses proxy tasks when learning to discriminate between normal and anomalous data. The main idea behind

solutions from this group is that models trained on normal data will fare badly in the considered proxy task when

subjected to anomalous samples. Fei et al. (2021), for instance, explored image restoration in this context and showed

that differences in restoration performance can be used for anomaly detection. Noroozi & Favaro (2016) investi-

gated jigsaw solving as a proxy task, the solutions from Zavrtanik et al. (2021a); Haselmann et al. (2018); Collin

& Vleeschouwer (2021); Zavrtanik et al. (2021b) utilized image inpainting as the proxy for anomaly detection, and

the work from Bergman & Hoshen (2020); Hendrycks et al. (2019); Gidaris et al. (2018); Golan & El-Yaniv (2018)

investigated classification objectives defined over self-annotated recognition problems to facilitate anomaly detection.

The proposed Y-GAN is related to these models in that it also relies on a proxy classifier, which, however, aims at

distinguishing between different sub-groups of the normal data. By defining the proxy task as a classification problem

over normal data, Y-GAN is able to: (i) ensure a compact representation of the normal data in the model’s latent

space, and (ii) automatically learn semantically relevant information for the anomaly detection task. Both of these

characteristics are beneficial for anomaly detection performance, as we demonstrate in the experimental section.

2.3. Pre-trained Models for Anomaly Detection

In an effort to capture the most discriminating characteristics of the input data, many recent anomaly detection

techniques try to leverage the representational power of features extracted by pre-trained (large-scale) classification

models. Defard et al. (2021) and Rippel et al. (2020), for example, have shown that such features can be success-

fully used for explicitly modeling the distribution of normal samples. Anomalies are in this case detected as out-of-

distribution samples. Similar solutions based on shallower models have also been investigated in the literature, e.g.,

Cohen & Hoshen (2020); Roth et al. (2022). Reiss et al. (2021) proposed to fine-tune existing pretrained models using

normal training data and showed that such an approach leads to impressive anomaly detection performance. Mai
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Figure 2: Overview of the proposed Y-GAN model and training loss terms. The model consist of a Y-shaped auto-

encoder (illustrated on the right) with encoders, Es and Er, for dual data representation, a decoder D for image

reconstruction, a latent classifier C for data disentanglement, and an adversarial discriminator Ds, which ensures that

data reconstructions x̂ cannot be distinguished from the original input samples x. Using an effective disentanglement

procedure, Y-GAN aims to learn a semantically meaningful data representation in zs, that encodes only characteristics

relevant for representing normal data, while capturing irrelevant, residual data characteristics in zr.

et al. (2021) explored the use of knowledge distillation to limit the set of pretrained features considered when build-

ing anomaly detection models. Similar ideas have also been pursued in Bergmann et al. (2020); Wang et al. (2021a);

Salehi et al. (2021). Wang et al. (2021b) extended these studies by fine-tuning the distilled student network and further

improved the detection rates on several anomaly detection benchmarks. In contrast to the outlined solutions, Y-GAN

does not rely on pre-trained models for data representation, but instead learns discriminating encodings from scratch

by separating uninformative data characteristics from meaningful data semantics relevant with respect to the normal

training data. By doing so, it is able to selectively encode part of the characteristics that are relevant for discrimination

without the need for large-scale datasets and resource hungry (pre-trained) classification models.

3. Methodology

The main contribution of this work is a novel (powerful) anomaly detection model, called Y-GAN. In this section

we present the proposed model in detail and describe its main characteristics.

3.1. Proposed Model

Y-GAN, illustrated in Fig. 2, represents a generative adversarial network built around a Y-shaped auto-encoder.

The key idea behind Y-GAN is to split the latent space of the auto-encoder into two distinct parts by disentangling

informative image semantics (e.g., shapes, appearances, textures), relevant with respect to some normal training data

from uninformative, residual image information (e.g., noise, background, illumination changes). The goal of this

disentaglement process is to address some of the shortcoming of existing reconstruction-based models to anomaly

detection in images and (in a sense) enhance/improve the information content relevant for the detection of normal
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data by splitting away noisy residual information that may be present in both, normal as well as anomalous samples.

This separation of image content is achieved through an effective disentanglement procedure (facilitated by a latent

classifier) and allows our model to learn highly descriptive data representations for anomaly detection even in the

challenging one-class learning regime. Details on the individual components of Y-GAN are given below.

The Auto-Encoder Network. To be able to separate relevant image content from residual information, we design

a Y-shaped auto-encoder network and use it as the generator for Y-GAN. As illustrated in Fig. 2, this Y-shaped network

consist of two separate encoders and a single decoder. The two encoders are identical from an architectural point of

view, but have distinct parameters that can be learned independently one from the other. The first encoder Es maps

the input image x ∈ Rw×h into a semantically-relevant latent representation zs and the second Er maps x into the

dual, residual representation zr, i.e.:

zs = Es(x) ∈ Rd and zr = Er(x) ∈ Rd, (1)

where d stands for the dimensionality of zs and zr. The complete latent representation of x is computed as a concate-

nation of the two partial representations, i.e., z = zs ⊕ zr, and passed to the decoder D for reconstruction, i.e.,

x̂ = D(z) ∈ Rw×h. (2)

To ensure that all of the image content in x is captured by the concatenated representation z, we use a standard L1

reconstruction loss Lrec when learning the parameters of the auto-encoder (Isola et al., 2017):

Lrec = ∥x− x̂∥1 = ∥x−D
(
Es(x)⊕ Er(x)

)
∥1. (3)

Moreover, an adversarial loss term and additional learning objectives that control the information content in the latent

representations zs and zr are also utilized during training. We discuss these in the following sections.

The Discriminator. The expressive power of the latent representations, zs and zr, critically depends on the

fidelity of the image reconstructions x̂. To improve fidelity and ensure that the reconstructed samples follow the

distribution of the normal training data, we include a discriminator Ds in the training procedure of Y-GAN and use

an additional adversarial loss Ladv when learning the model. Following the recommendations from Salimans et al.

(2016), we update the weights of the auto-encoder, i.e., the generator of Y-GAN, based on the following feature-

matching objective that reduces training instability and avoids GAN over-training, i.e.:

Ladv = ∥f(x)− f(x̂)∥22, (4)

where f(·), in our case, denotes the activations of the last convolutional layer of Ds. Conversely, we encourage the

discriminator to distinguish between real and fake images by optimizing a standard binary cross-entropy loss:

Lbce = −
[
log(Ds(x)) + log(1−Ds(x̂))

]
. (5)

The Latent Classifier. The Y-shaped design of Y-GAN’s auto-encoder allows for the partitioning of the latent

space into two representations, zs and zr. We force these representations to encode mutually exclusive information
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by using a disentanglement procedure based on a latent classifier C. The goal of this classifier is two-fold: (i)

to encourage semantic information relevant for representing normal data to be encoded in zs and (ii) to force the

irrelevant residual information into the latent representation zr.

To be able to learn C, we assume that the normal training data can be partitioned into N sub-classes1. The

classifier is then trained to predict correct class labels from the latent representations zs and to misclassify input

samples x given their latent representation zr. This training procedure controls the information content in the dual

latent representations and helps to learn meaningful data characteristics for anomaly detection without examples of

anomalous data.

A cross-entropy loss is utilized to maximize the classification performance of C based on the semantically-relevant

latent representation zs, i.e.:

Ls = −
N∑
i=1

y(i) log(ŷs(i)), (6)

where y ∈ RN is the one-hot encoded ground truth label of x and ŷs = C(Es(x)) ∈ RN is the classifier prediction.

As can ne seen from the above formulation, the classifier C is trying to learn to classify the semantically-relevant

latent representations zs as accurately as possible. During the back-propagation procedure, the gradients from the

classification loss are propagated through the respective (semantically-relevant) encoder Es, which, as a result, is

updated to produce semantically-relevant latent representations zs that are as informative as possible for C.

While minimizing Ls forces the latent representation zs to be informative with respect to the classification of

the normal data, our goal is to achieve the opposite for zr. To this end, we transform zr with a gradient reversal

layer (Ganin & Lempitsky, 2015). This transformation layer R acts as an identity function in the forward pass through

the model, i.e., R(zr) = zr, but reverses the gradients from the subsequent layer during back-propagation, i.e.,

dR

dzr
= −λRI, (7)

where λR is a hyper-parameter and I ∈ Rd×d is an identity matrix. In other words, during training the encoder Er

is encouraged to produce residual representations that are as uninformative as possible for the classifier C. Thus, the

gradient reversal for the residual encoder Er ensures that the residual representations zr encode no useful semantic

information for classification. The minimization of relevant information content in zr is thus achieved through the

following objective:

Lr = −
N∑
i=1

y(i) log(ŷr(i)), (8)

where ŷr = C(R(Er(x))) ∈ RN .

Enforcing Representation Consistency. The loss functions in Eqs. (6) and (8) provide for a first level of dis-

entanglement, but do not completely prevent information leakage between the latent representations zs and zr. For

1Note that this is a reasonable assumption for many applications and holds for a wide variety of datasets and experimental protocols from the

literature (Perera et al., 2021; Ruff et al., 2021; Tang et al., 2019), including the ones used in this paper.

8



Figure 3: Illustration of the procedure used to enforce representation consistency. The input image is represented

in two latent spaces that need to encode mutually exclusive information. Y-GAN ensures that the representation in

the latent representation zs is independent of that in zr by encouraging the model to produce the same zs even when

changes in zr are introduced. Shown is an illustrative toy example involving digit shapes (assumed to be relevant) and

background textures (assumed to be irrelevant).

this purpose, we introduce a consistency loss (Lcon) that penalizes the encoder Es in case it extracts inconsistent

(semantically-relevant) information in zs, when changes in the residual representation zr are introduced. The overall

idea of this procedure is illustrated on the right part of Fig. 2 and using a simple visual example in Fig. 3.

To calculate Lcon, we first randomly shuffle the set of residual representation zr, generated from the samples in a

given training batch, so that each zs vector is concatenated with a z′r vector, belonging to a randomly chosen sample

from the batch. These artificially created concatenations are then passed to the decoder D, which generates hybrid

reconstructions x̂′, such that x̂′ = D(zs ⊕ z′r). Next, the reconstructed images are fed to the encoder Es, which is

expected to extract latent representations ẑ′s that are equivalent to the vector zs, initially used for the generation of the

hybrid reconstructions x̂′. An angular dissimilarity measure is used to penalize differences between zs and ẑ′s, i.e.:

Lcon = − zs · ẑ′s
∥zs∥ · ∥ẑ′s∥

. (9)

By minimizing Lcon, we encourage the encoder Es to extract image information that is invariant to the residual

data characteristics encoded in zr. Note that, Lcon is calculated and optimized for each batch in the training set

separately. The size of the training batches, therefore, has to be at least equal or greater than two, otherwise Lcon

has no effect. It also worth noting that Lcon does not control what is encoded in the latent representations zs and

zr but only ensures that the information in the two representations is mutually exclusive, or in other words, that the

representations are properly disentangled.

3.2. Y-GAN Training

Y-GAN is trained in an end-to-end fashion, using a multi-step procedure. For each training batch, the losses from

Eqs. (3) to (6) are calculated first. Next, the set of residual representations zr in the given batch is randomly shuffled

and processed, as described above for the calculation of the consistency loss Lcon in Eq. (9). Finally, the weights of

the generator (i.e., the Y-shaped auto-encoder) are updated, based on the combined objective LG , i.e.:

LG = λ1Lrec + λ2Ladv + λ3Ls + λ4Lr + λ5Lcon. (10)
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Figure 4: Graph illustrating the change of individual training loss components of Y-GAN during the optimization of

the model. The visualization was generated during the training of the model on the MNIST dataset.

(a) MNIST: Examples of the 10 digit categories in the dataset.

(b) FMNIST: Examples of the 10 fashion-item categories in the dataset

(c) CIFAR10: Examples of the 10 object categories in the dataset

Figure 5: Selected samples from the three standard anomaly detection benchmarks used in the experiments: (a)

MNIST (LeCun et al., 1998; LeCun et al.), (b) FMNIST (Xiao et al., 2017) and (c) CIFAR10 (Krizhevsky, 2009).

Each dataset consists of 10 different object classes.

Similarly, the weights of the adversarial discriminator Ds are updated based on the combined loss LD, i.e.:

LD = λ1Lrec + λ6Lbce (11)

The generator and discriminator are updated alternately for a fixed number of epochs during training. An example of

the model’s learning dynamics throughout the training phase is presented in Figure 4.

3.3. Anomaly Detection with Y-GAN

Similarly to Golan & El-Yaniv (2018), predictions of the latent classifier C are used to calculate anomaly scores.

Given a probe sample x, the latent representation zs = Es(x) is first computed and passed to the classifier C. Next,

the activations of the output layer of the classifier are normalized {pi(x)}Ni=1, so they behave like probabilities, i.e.,
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∑N
i=1 pi = 1. Finally, the highest of these ”probabilities” is used to compute the anomaly score s, i.e.:

s = 1−max(pi(x)), (12)

for the given test sample x. Due to the normalization procedure, the generated anomaly scores are bounded to s ∈

[0, 1], with 0 representing ideal normal data. Note that for the calculation of the anomaly scores only Es and C are

needed, which significantly shortens inference time.

4. Experimental Datasets and Setup

We evaluate Y-GAN in comprehensive experiments over four standard datasets used in the anomaly-detection

literature. In this section, we describe the selected datasets and discuss the experimental protocols used to evaluate the

proposed model. Finally, we also discuss implementation details related to Y-GAN, meant to foster reproducibility.

4.1. Datasets

We evaluate Y-GAN on three standard image-based anomaly detection benchmarks, i.e., MNIST (LeCun et al.,

1998; LeCun et al.), FMNIST (Xiao et al., 2017), and CIFAR10 (Krizhevsky, 2009), as well as the real-world PlantVil-

lage dataset from Hughes & Salathé (2015). A few example images from the four datasets are presented in Figs. 5

and 6. We provide details on the selected datasets below.

• MNIST contains 70, 000 grayscale images of handwritten digits, divided into 10 (approximately balanced) classes,

where each class represents one digit (0 through 9). The images ship with a resolution of 28× 28 pixels and exhibit

variations in terms of digit appearance (LeCun et al., 1998; LeCun et al.).

• FMNIST (Fashion MNIST) was developed as a more comprehensive alternative to MNIST. The dataset again

consists of 70, 000 grayscale images of size 28 × 28 pixels split into 10 balanced classes. However, FMNIST

exhibits a larger degree of appearance variability than MNIST. Images in FMNIST depict clothing items grouped

into different categories, i.e., T-shirts, trousers, pullovers, dresses, coats, sandals, shirts, sneakers, bags, and ankle

boots (Xiao et al., 2017).

• CIFAR10 contains 60, 000 color images of size 32 × 32 pixels representing animals and vehicles from 10 cate-

gories, i.e., airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, trucks. Different from MNIST or FMNIST,

images in CIFAR10 do not have a uniform background and exhibit considerable diversity in terms of appearance

even within the same category. These characteristics make it particularly challenging for anomaly detection tasks

(Krizhevsky, 2009).

• PlantVillage is a recent real-world dataset of leafs and contains 54, 305 color images of 256 × 256 pixels. Each

image represents a single leaf, photographed on a homogeneous background. Images are divided into 14 unbalanced

categories of different plant species, 9 of which contain both, healthy and ill leafs. 3 categories contain only healthy
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Figure 6: Selected samples from the real-world dataset PlantVillage (Hughes & Salathé, 2015). The dataset consists

of healthy and ill leafs of 14 different plant species. Anomalies usually represent changes in the leaf shape and color

or they appear as irregular pattern on the leaf’s surface. Anomalous samples are in this figure marked with red color.

samples, while the remaining 2 have no disease-free leafs. Plant diseases are usually manifested as changes in the

shape and the color of the leaf, but can also appear as a subtle pattern, that covers the leaf base, as shown in Fig. 6.

The selected datasets allow for the evaluation of anomaly detection models in different problem settings, i.e.: (i)

with anomalies representing homogeneous classes in MNIST, FMNIST and CIFAR10, and (ii) with challenging and

diverse real-world (spatially local) anomalies in the PlantVillage dataset. As we show in the results section, Y-GAN

achieves state-of-the-art performance for both types of problems.

4.2. Experimental Setup

All models evaluated in the experimental section are trained in a one-class learning setting, where no examples of

anomalous data are seen during training. Experiments on the MNIST, FMNIST, and CIFAR10 datasets are conducted

in accordance with the standard k-classes-out experimental setup (Akçay et al., 2019b; Zenati et al., 2018; Ruff et al.,

2021), where nine classes are defined as normal, while the 10th class is considered anomalous. We implement the

standard 80/20 split rule commonly used in the literature (Perera et al., 2019), where 80% of the normal data is

randomly selected for training, while the rest is combined with anomalous samples, forming a balanced testing set.

All experiments are repeated ten times, each time with a new class defined as anomalous. Images from CIFAR10

are used with the original resolution, while MNIST and FMNIST images are re-scaled to 32 × 32 pixels to fit the

Y-GAN’s architecture.

For the experiments with the PlantVillage dataset, we again follow the 80/20 split rule, by randomly selecting

80% of the normal data for training purposes. The rest of the normal data along with anomalous samples is used for

evaluation. However, because the number of training samples in PlantVillage is relatively small and not sufficient

for deep learning tasks, the training data is augmented. For pixel-level augmentations we use techniques such as

image sharpening, embossing, histogram manipulations and random changes of brightness and contrast. Additionally,

we also apply horizontal flipping and random affine transformations. By carefully adjusting parameter values of the
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augmentation operations we ensure that the original dataset is significantly enlarged without inducing anomaly-like

samples. Following prior work (Akçay et al., 2019b; Schlegl et al., 2017; Zaheer et al., 2020), we report the Area

Under the Receiver Operating Characteristic (ROC) curve (AUC) as a scalar performance score in the experiments.

In PlantVillage, we also report true positive (TPR) and true negative rates (TNR) for each class in the dataset. Both

metrics are calculated at the equal error rate (EER) point of the ROC curve generated for all training samples from the

dataset.

4.3. Implementation Details

Model Architecture. Y-GAN consists of five architectural building blocks, i.e., two encoders, Es and Er, a

decoder, D, a discriminator, Ds and a classifier, C. The first four components are designed after DCGAN (Radford

et al., 2016), whereas the topology of the classifier is determined experimentally.

The two encoders, Es and Er, consist of convolutional layers with stride 2. Each convolutional layer is followed

by a Leaky ReLU activation with negative slope 0.2 and a batch normalization layer. The two encoders have an

identical architecture and each map the input image x to a d = 100 dimensional latent vector. The upscaling in

the decoder D is performed with transposed convolutions with stride 2, each followed by ReLU activations and a

batch normalization layer. The last convolutional layer uses an tanh activation function for bounded support. The

disciminator Ds has the same architecture as Es and Er, up until the last convolutional layer, which is followed by

a standard sigmoid activation. The latent classifier C is a multi-layer perceptron (MLP) with one hidden layer and

30 hidden units. The size of the input layer is determined by the dimensionality of the latent representation, zs, and

the size of the output layer by the number of classes N of the (normal) training data. In our case N = 9 for the

experiments on MNIST, FMNIST, and CIFAR10, since there are 9 normal sub-classes defined by our experimental

protocol. For the PlantVillage N is set to N = 12, which is the number of non-anomalous plant categories in the

dataset2.

Training Setting. The learning objectives in Eqs. (10) and (11) are minimized using the Adam optimizer (Kingma

& Ba, 2015) with a learning rate of lr = 0.0002 and momentums β1 = 0.5 and β2 = 0.999 (Radford et al., 2016).

The weights in LG and LD are determined empirically through an optimization procedure on validation data. For

the experiments we use λ1 = λ5 = 50, and λ2 = λ3 = λ4 = λ6 = 1. While these weights are kept constant, the

weight associated with the gradient reversal layer is initialized to a value of λR = 0 and is then gradually increased

as the training progresses, as suggested in Ganin & Lempitsky (2015). All models are trained for 100 epochs on

MNIST, FMNIST, and CIFAR10 and for 200 epochs on PlantVillage, where less data data is available for the learning

procedure.

Implementation. Y-GAN is implemented in Python 3.7. using PyTorch 1.5. and CUDA 10.2. All source code,

model definitions, and trained weights are made publicly available to facilitate reproducibility from

https://github.com/MIvanovska/Y-GAN.

2Recall that 2 out of the total of 14 classes have only anomalous samples and are not considered during training.
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(a) Disentanglement analysis (b) t-SNE plots

Figure 7: Proof-of-concept study. Y-GAN is trained on normal data (digits 1 to 9) with the goal of flagging anomalous

data (digit 0). (a) Disentanglement results: the model learns to separate digits from background in the latent spaces zs

and zr. Shown are examples of hybrid reconstructions, where zs is taken from the examples on the top and zr from

the samples on the left. (b) t-SNE plots in 2D: normal data forms compact well-separated clusters in the semantically-

relevant latent space (marked zs) and overlaps considerably in the residual latent space (marked zr).

Using a personal desktop computer with an Intel® CoreTM i7-8700K CPU and an NVIDIA® GeForce RTX 2080 Ti

GPU, it takes around four hours to train Y-GAN on MNIST, FMNIST, and CIFAR10. For the higher resolution images

in PlantVillage, the training stage takes around five hours. Once the model is learned, a single image is processed in

around 2.6ms for the smallest 32× 32 images and 13.5ms for the largest 256× 256 images.

5. Proof-of-Concept Studies

To explore the characteristics of the dual latent-space representation and evaluate the effectiveness of the disen-

tanglement process performed by Y-GAN, we first conduct a number of proof-of-concept studies. To this end, we

generate a color version of MNIST (Color-MNIST hereafter) by inverting the thresholded black and white images

of the dataset and replacing the white background with one of the following colors: red, green, blue, cyan, yellow,

purple, violet, brown, dark green, or orange. We make sure all colors are represented equally in the generated dataset.

Next, we train Y-GAN on the constructed dataset by considering digits 1 to 9 as normal data, and 0 as anomalous. In

the test phase, we present the model with unseen samples and compute their latent representations, zs and zr. Finally,

we generate hybrid reconstructions by concatenating the latent vector zs taken from one test sample with the latent

vector zr of another randomly selected test sample and pass the concatenated vector through the decoder. The goal

of these experiments to illustrate what kind of information is encoded in the semantically-relevant and residual la-

tent representations, zs and zr, in a human-interpretable form. Example reconstructions produced with the described

process are shown in Fig. 7(a).

As can be seen, Y-GAN learns to disentangle data characteristics relevant for the digit representation task, from
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Figure 8: Disentanglement results on samples from two different CIFAR10 categories. The synthesized samples show

that the model learns to successfully disentangle semantically relevant from residual image characteristics. Each

object’s shape is inferred from the source image of the semantically-relevant vector zs (first row), while color and

style are inferred from the source images of zr (left most image in each example). Best viewed electronically.

characteristics that are irrelevant, i.e., background color in this toy example. Consequently, the replacement of the

original latent vector zr causes a change in the background color, which is now inherited, from the randomly selected

sample - shown on the left part of Fig. 7(a). Meanwhile, the shape of the digit in the original image is preserved well.

It is worth noting again that the semantic relevance, and in turn, the content encoded in zs is defined by the latent

classifier C and the learned classification task. Given that the goal of C in this experiments is to classify digits, zs

correctly encodes the shape of the digits, while the noisy residual information in the form of background colour is

encoded in zr.

Next, we use t-distributed Stochastic Neighbor Embeddings (t-SNE) (Van der Maaten & Hinton, 2008) to visualize

the distribution of the generated data in the dual latent spaces in Fig. 7(b). Here, 250 random samples of each of the

Color-MNIST digit classes are used for visualization. Note that for the semantically-relevant latent space, samples

corresponding to digits 1 to 9 form compact and well separated clusters (marked zs), while samples for the anomalous

0 are considerably less compact despite the fact that they come from a single (homogeneous) class. Nevertheless, they

do not overlap (significantly) with the normal data. In the residual latent space (marked zr), 10 clusters corresponding

to the background colors used in Color-MNIST can be identified in the t-SNE plot. However, each cluster contains

samples from all 10 digits, suggesting that this representation has limited discriminating power for anomaly detection.

To test the behavior of Y-GAN on more complex data, we repeat the same experiment using CIFAR10. Selected

synthesized samples and their respective source images are shown in Fig. 8. We again observe that Y-GAN learned

to successfully disentangle semantically relevant attributes from those that are irrelevant for representing classes in

the normal data. The shape of the objects and other visually important characteristics are obviously inferred from

the source image of the relevant latent vector zs, while background style and colors and inferred from the residual

latent vector zr. Different from the Color-MNIST example, where the digits represent homogeneous classes with

limited variability, the large intra-class variability of CIFAR10 images leads to lower quality reconstructions, which

is expected given Y-GAN’s learning objectives. Nevertheless, the results validate that meaningful separation of infor-

mation content is achieved in the latent space even with challenging input images.

Finally, we investigate the entanglement of extracted information in the latent space of Y-GAN, by generating

t-SNE embeddings of computed latent representations from MNIST, FMNIST and CIFAR10. Here, we first generate
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t-SNE embeddings of the concatenaned latent vectors zs and zr. We then repeat the t-SNE mapping procedure for

each latent encoding separately. The visualizations of these t-SNE embedding for the 10-class MNIST, FMNIST and

CIFAR10 datasets are shown in Figure 9. As can be seen, the joint concatenated representations (marked zs + zr)

contain poorly separated information, which is well split into noisy, uninformative residual representations in zr and

more structured, better separated representations in zs. These visualizaation point to the effectivness of the proposed

disentaglement scheme and feasbility of the anomaly detection process with Y-GAN.
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Figure 9: t-SNE embeddings generated for the concatenated representation zs + zr, as well as the separate embe-

dings, zs and zr, on the MNIST, FMNISTand CIFAR10 datasets. Note how the data in the semantically-relevant

representations is more structured and better separated with respect to the sub-classes of the normal data.

6. Results and Discussion

To illustrate the performance of Y-GAN, we report in this section results that: (i) compare Y-GAN to state-of-the-

art techniques from the literature, (ii) were generated through a comprehensive ablation study and demonstrate the

contribution of various components of Y-GAN, (iii) highlight some of the model’s characteristics, and (vi) investigate

the behavior of Y-GAN in a qualitative manner.

6.1. Quantitative Evaluation

We evaluate Y-GAN in comparative experiments with several state-of-the-art anomaly-detection models. Specifi-

cally, we compare against GANomaly (Akçay et al., 2019b), Skip-GANomaly (Akçay et al., 2019a), OCGAN (Perera

et al., 2019), f-AnoGAN (Schlegl et al., 2019), P-Net (Zhou et al., 2020, 2021), and MOCCA (Massoli et al., 2022)

which represent powerful reconstruction-based (RB) anomaly detection models and are Y-GAN’s main competitors.
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Model Type† 0 1 2 3 4 5 6 7 8 9 Mean ± Std

GANomaly (Akçay et al., 2019b) RB 0.899 0.701 0.954 0.820 0.829 0.891 0.875 0.735 0.926 0.667 0.830± 0.094

Skip-GANomaly (Akçay et al., 2019a) RB 0.845 0.919 0.754 0.734 0.530 0.573 0.761 0.532 0.765 0.637 0.705± 0.127

OCGAN (Perera et al., 2019) RB 0.958 0.934 0.959 0.969 0.929 0.920 0.904 0.775 0.970 0.732 0.905± 0.079

f-AnoGAN (Schlegl et al., 2019) RB 0.880 0.983 0.954 0.969 0.928 0.896 0.892 0.782 0.949 0.702 0.894± 0.084

P-Net (Zhou et al., 2020) RB 0.788 0.608 0.678 0.553 0.528 0.467 0.612 0.526 0.618 0.474 0.585± 0.093

MOCCA (Massoli et al., 2022) RB 0.709 0.668 0.727 0.637 0.647 0.656 0.633 0.617 0.609 0.526 0.643± 0.053

ARNet (Fei et al., 2021) PT 0.879 0.798 0.880 0.752 0.767 0.816 0.940 0.636 0.811 0.685 0.796± 0.087

Patch SVDD (Yi & Yoon, 2020) PT 0.774 0.709 0.849 0.646 0.570 0.656 0.730 0.515 0.573 0.609 0.663± 0.098

PaDiM (Defard et al., 2021) PC 0.551 0.670 0.828 0.647 0.608 0.690 0.820 0.779 0.610 0.561 0.676± 0.097

CS-Flow (Rudolph et al., 2022) PC 0.940 0.983 0.945 0.898 0.976 0.958 0.961 0.967 0.966 0.918 0.951± 0.025

Y-GAN [Ours] RB* 0.993 0.993 0.984 0.989 0.984 0.986 0.985 0.980 0.988 0.987 0.987± 0.004

† RB - reconstruction based, PT - proxy task-based, PC - utilizing pre-trained classification models ; RB* - reconstruction-based but with a latent proxy task

Table 1: MNIST results in terms of AUC scores. The best model in each column is marked blue, the runner-up red.

Model Type† T-shirt Trousers Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle boot Mean ± Std

GANomaly (Akçay et al., 2019b) RB 0.607 0.936 0.600 0.767 0.678 0.973 0.533 0.895 0.961 0.867 0.782± 0.158

Skip-GANomaly (Akçay et al., 2019a) RB 0.615 0.639 0.698 0.523 0.632 0.816 0.612 0.683 0.780 0.722 0.672± 0.082

OCGAN (Perera et al., 2019) RB 0.681 0.912 0.643 0.680 0.615 0.942 0.563 0.679 0.959 0.844 0.752± 0.140

f-AnoGAN (Schlegl et al., 2019) RB 0.642 0.875 0.758 0.656 0.671 0.889 0.690 0.852 0.945 0.911 0.789± 0.112

P-Net (Zhou et al., 2020) RB 0.590 0.586 0.566 0.564 0.694 0.340 0.473 0.542 0.720 0.714 0.579± 0.110

MOCCA (Massoli et al., 2022) RB 0.598 0.773 0.622 0.505 0.465 0.873 0.603 0.513 0.869 0.617 0.644± 0.139

ARNet (Fei et al., 2021) PT 0.647 0.966 0.749 0.773 0.740 0.877 0.687 0.751 0.973 0.896 0.808± 0.112

Patch SVDD (Yi & Yoon, 2020) PT 0.742 0.572 0.661 0.597 0.536 0.727 0.674 0.577 0.876 0.763 0.673± 0.101

PaDiM (Defard et al., 2021) PC 0.729 0.676 0.475 0.642 0.497 0.821 0.502 0.615 0.915 0.794 0.667± 0.142

CS-Flow (Rudolph et al., 2022) PC 0.813 0.988 0.698 0.836 0.687 0.947 0.666 0.777 0.980 0.853 0.825± 0.114

Y-GAN [Ours] RB* 0.912 0.915 0.904 0.949 0.880 0.957 0.877 0.903 0.982 0.975 0.925± 0.036

† RB - reconstruction-based, PT - proxy task-based, PC - utilizing pre-trained classification models ; RB* - reconstruction-based but with a latent proxy task

Table 2: FMNIST results in terms of AUC scores. The best model in each column is marked blue, the runner-up red.

Model Type† Airplane Car Bird Cat Deer Dog Frog Horse Ship Truck Mean ± Std

GANomaly (Akçay et al., 2019b) RB 0.655 0.705 0.420 0.580 0.359 0.588 0.515 0.571 0.630 0.712 0.574± 0.109

Skip-GANomaly (Akçay et al., 2019a) RB 0.581 0.718 0.494 0.487 0.518 0.480 0.722 0.559 0.554 0.701 0.581± 0.092

OCGAN (Perera et al., 2019) RB 0.548 0.731 0.386 0.582 0.348 0.597 0.422 0.626 0.488 0.713 0.544± 0.125

f-AnoGAN (Schlegl et al., 2019) RB 0.578 0.692 0.564 0.555 0.459 0.580 0.591 0.643 0.610 0.682 0.595± 0.064

P-Net (Zhou et al., 2020) RB 0.582 0.671 0.455 0.611 0.476 0.596 0.602 0.538 0.523 0.629 0.563± 0.065

MOCCA (Massoli et al., 2022) RB 0.671 0.500 0.631 0.502 0.521 0.547 0.518 0.474 0.531 0.451 0.535± 0.064

ARNet (Fei et al., 2021) PT 0.598 0.635 0.466 0.706 0.435 0.697 0.512 0.662 0.630 0.727 0.607± 0.098

Patch SVDD (Yi & Yoon, 2020) PT 0.517 0.542 0.505 0.548 0.493 0.567 0.529 0.538 0.511 0.542 0.529± 0.021

PaDiM (Defard et al., 2021) PC 0.542 0.668 0.502 0.546 0.335 0.612 0.433 0.549 0.386 0.625 0.520± 0.102

CS-Flow (Rudolph et al., 2022) PC 0.670 0.698 0.692 0.747 0.675 0.741 0.658 0.712 0.690 0.671 0.695± 0.028

Y-GAN [Ours] RB* 0.729 0.767 0.749 0.768 0.759 0.764 0.778 0.780 0.722 0.811 0.763± 0.024

† RB - reconstruction-based, PT - proxy task-based, PC - utilizing pre-trained classification models ; RB* - reconstruction-based but with a latent proxy task

Table 3: CIFAR10 results in terms of AUC scores. The best model in each column is marked blue, the runner-up red.

Additionally, we also include the recent ARNet (Fei et al., 2021) and Patch SVDD (Yi & Yoon, 2020) approaches

as representatives of proxy-task (PT) models, and PaDiM (Defard et al., 2021) and CS-Flow (Rudolph et al., 2022)
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as an example of solutions utilizing pre-trained classification (PC) models in the evaluation. For a fair compari-

son, the official GitHub implementations are used for the experiments (where available) together with the advocated

hyper-parameters to ensure optimal performance.

MNIST. The MNIST results, reported in Table 1, show that Y-GAN significantly outperforms all evaluated base-

lines. It improves on the mean AUC score of the runner-up CS-Flow by 5% and on the standard deviation (computed

over all runs) by a factor of 6. Compared to the competing models, Y-GAN ensures the most consistent results, re-

gardless of which class is considered anomalous. This can be seen particularly well from the results for digits 7 and

9, where almost all tested models exhibit a drop in AUC scores, while Y-GAN retains performance similar to other

settings.

FMNIST. Compared to MNIST, the AUC scores obtained on FMNIST are lower for all tested models due to the

larger image diversity in this dataset, as summarized in Table 2. The proposed Y-GAN achieves a mean AUC score of

0.925, compared to 0.825 for CS-Flow, 0.808 for ARNet and 0.789 for f-AnoGAN which are the next three models (in

this order) in terms of performance. A performance improvement of more than 11% over the second best performing

model, CS-Flow, points to the descriptiveness of the representation learnt by Y-GAN in the semantically-relevant

latent space. Y-GAN again achieves the most consistent results across different experimental runs.

CIFAR10. Images in CIFAR10 were captured in unconstrained settings, which makes this dataset extremely

challenging, as evidenced by the results in Table 3. Almost all competing models result in mean AUC scores close

to (or below) 0.6, which speaks of the difficulty of learning meaningful representations on CIFAR10. The only

competitive model, that has significantly higher performence is again CS-Flow, with an AUC score of 0.695. Still the

dual representation strategy of Y-GAN, improves on this runner-up by more than 9%, yielding a mean AUC score of

0.763. The proposed model also convincingly outperforms all competing models in all 10 experimental runs.

PlantVillage. Results for the PlantVillage dataset are reported in Table 4. As can be seen, Y-GAN is again the top

performer with an AUC of 0.962, outperforming the state-of-the-art runner-up CS-Flow by more than 6%. Y-GAN

exceeds the detection accuracy of other models with respect to normal and anomalous samples and generates fewer

misses on average as shown by the TPR and TNR scores. However, we also observe that the (global) calibration of

the models results in unbalanced TPR and TNR values for certain classes (e.g., Corn, Grape, Potato). Despite these

calibration issues, Y-GAN performs best on average, even if the individual TPR and TNR scores are considered. We

attribute this performance to the implemented dual data representation strategy, that allows for excluding irrelevant

data characteristics when deciding whether a sample is anomalous or not.

Cross-dataset analysis. If we look at the result across all experimental datasets, it is worth noting that Y-GAN is

the clear top performer on all four datasets, whereas CS-Flow is consistently the runner-up. These two models appear

to be the most robust to various data characteristics and perform well across the different anomaly detection tasks.

Other models favor certain data characteristics and detection problems. OCGAN, for example, is very competitive on

the MNIST dataset, but less so on the more challenging CIFAR10 and PlantVillage datasets. Similarly, f-AnoGAN

produces among the highest detection scores with the k-classes-out datasets, i.e., MNIST, FMNIST and CIFAR10,
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Model Type† Error Apple Blueberry Cherry Corn Grape Orange Peach Pepper Potato Raspberry Soybean Squash Strawberry Tomato AUC

TNR 0.228 0.482 0.953 0.644 0.941 / 0.375 0.635 0.968 0.853 0.911 / 0.750 0.680
GANomaly (Akçay et al., 2019b) RB

TPR 0.630 / 0.436 0.826 0.864 0.926 0.784 0.790 0.601 / / 0.214 0.711 0.656
0.781

TNR 0.675 0.847 0.842 0.253 0.929 / 0.222 0.774 0.742 0.867 0.876 / 0.880 0.085
Skip-GANomaly (Akçay et al., 2019a) RB

TPR 0.632 / 0.832 0.989 0.309 0.843 0.917 0.578 0.569 / / 0.969 0.390 0.656
0.746

TNR 0.584 0.266 0.877 0.605 0.882 / 0.111 0.338 0.484 0.640 0.763 / 0.315 0.389
OCGAN (Perera et al., 2019) RB

TPR 0.562 / 0.216 0.758 0.793 0.426 0.598 0.943 0.736 / / 0.201 0.886 0.547
0.608

TNR 0.375 0.645 0.579 0.224 0.847 / 0.486 0.625 0.581 0.840 0.767 / 0.587 0.260
f-AnoGAN (Schlegl et al., 2019) RB

TPR 0.592 / 0.465 0.772 0.282 0.574 0.655 0.541 0.474 / / 0.845 0.192 0.631
0.623

TNR 0.495 0.532 0.520 0.528 0.529 / 0.444 0.530 0.613 0.467 0.526 / 0.533 0.489
P-Net (Zhou et al., 2020) RB

TPR 0.508 / 0.520 0.517 0.519 0.511 0.532 0.524 0.505 / / 0.525 0.526 0.517
0.524

TNR 0.371 0.571 0.596 0.103 0.671 / 0.986 0.645 0.839 0.840 0.586 / 0.250 0.922
MOCCA (Massoli et al., 2022) PC

TPR 0.394 / 0.603 0.583 0.450 0.382 0.641 0.567 0.533 / / 0.456 0.925 0.591
0.635

TNR 0.608 0.698 0.889 0.116 0.824 / 0.000 0.767 0.774 0.813 0.846 / 0.511 0.633
ARNet (Fei et al., 2021) PT

TPR 0.586 / 0.669 0.979 0.928 0.237 0.909 0.782 0.760 / / 0.835 0.905 0.672
0.736

TNR 0.672 0.299 0.708 0.682 0.929 / 0.375 0.578 0.774 0.707 0.730 / 0.326 0.404
Patch SVDD (Yi & Yoon, 2020) PT

TPR 0.512 / 0.339 0.772 0.746 0.512 0.659 0.857 0.687 / / 0.335 0.933 0.593
0.670

TNR 0.605 0.751 0.409 0.176 0.529 / 0.111 0.507 0.645 0.867 0.796 / 0.674 0.580
PaDiM (Defard et al., 2021) PC

TPR 0.736 / 0.526 0.966 0.878 0.120 0.928 0.887 0.754 / / 0.882 0.835 0.556
0.671

TNR 0.745 0.714 0.906 0.785 0.824 / 0.778 0.834 0.871 0.800 0.887 / 0.674 0.831
CS-Flow (Rudolph et al., 2022) PC

TPR 0.819 / 0.737 0.986 0.908 0.903 0.881 0.794 0.882 / / 0.928 0.914 0.764
0.905

Y-GAN [Ours] RB*
TNR 0.833 0.993 0.965 1.000 0.847 / 0.847 0.770 0.677 0.893 0.945 / 0.772 0.950

0.962
TPR 0.802 / 0.909 0.800 0.943 0.964 0.934 0.795 0.932 / / 0.946 0.722 0.926

† RB - reconstruction-based, PT - proxy task-based, PC - utilizing pre-trained classification models ; RB* - reconstruction based but with a latent proxy task

Table 4: PlantVillage results in terms of per-class TPR and TNR scores and mean AUC values over all classes. The

best model in each column and for each performance score is marked blue, the runner-up is marked red. The TPR and

TNR scores were computed at a (global) decision threshold defined by the equal error rate (EER) on the training data

of all classes. Note that the two scores are not necessarily well calibrated for category in the dataset – see results for

Corn, Grape, or Potato leaves.

but is much less sucessfuly with the pixel-level anomalies present in the PlantVilage dataset. This suggests that the

anomaly detection mechnisms in many of the competing models are quite specific and suited best for certain problems,

while the dual data representation scheme of Y-GAN is applicable equally well to different types of anomaly detectiont

tasks and across a variety of datasets.

6.2. Time complexity analysis.

In the next series of experiments, we explore the computational complexity of Y-GAN and the 10 competing

models by measuring the inference time needed for the processing of an image of size 32 × 32 pixels. Here, we run

the anomaly detection task over 100 images and then report the average time as a results. To ensure a fair comparison,

all experiments are conducted on the same hardware (a desktop PC with an i7-8700K CPU and a GeForce RTX 2080

Ti GPU) and the official code repositories of the models. To illustrate the trade-off between run-time performance and

accuracy, we also report the average AUC performance of the models across three experimental datasets that contain

images of size 32 × 32 pixels, i.e. MNIST, FMNIST, and CIFAR10. As can be seen from Figure 10, MOCCA has

the shortest (average) inference time of only 0.15 ms per image, but the average AUC score achieved by this model

is among the lowest. The runner-up in terms of speed, GANomaly, has an inference time of 0.56 ms and a very
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Figure 10: Computational complexity of Y-GAN and the competing models, along with their respective AUC scores

and number of parameters. The reported inference time of the individual models represents the (average) processing

time needed for one image of size 32× 32. The AUC score is calculated as the average performance, achieved across

three experimental datasets, i.e. MNIST, FMNIST, CIFAR10. Y-GAN, as the best performing model in terms of

average anomaly detection accuracy, is observed to also have a very competitive inference time of only 2.6 ms per

image on average.

competitive performance score, similar to those of ARNet and OCGAN, which take 5.1 ms and 12.1 ms, respectively.

Y-GAN is among the top 5 fastest models, with a processing time of 2.6 ms per image (with non-optimized code). At

the same time, we observe that the average AUC score of Y-GAN is at least 18% higher than any of the faster models.

For comparison, CS-Flow, the second-best performing model, has an inference time of 12.7 ms, which is more than

4.5× longer than Y-GAN.

6.3. Ablation Study

To demonstrate the importance of different components of Y-GAN, we perform a two-part ablation study, where

we first remove various parts of the learning objective LG , and then ablate parts of the model architecture.

Impact of Loss Terms. For the first part of the ablation study, three Y-GAN variants are trained with different

versions of the generator loss LG : (i) LG without the consistency loss Lcon (A1), (ii) LG without the (gradient

reversal) residual information loss Lr (A2), and (iii) LG without both Lcon and Lr (A3). The results in Table 5

show that the removal of both loss terms causes a considerable drop in the AUC scores on FMNIST, CIFAR10,

and PlantVillage. Compared to MNIST, where a smaller drop is observed, these three datasets contain a greater

amount of residual, semantically-irrelevant information (e.g., various clothing prints, background style, etc.). In such

cases, both disentanglement terms, Lcon and Lr, play a significant role in the extraction of semantically-relevant
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Ablation study MNIST FMNIST CIFAR10 PlantVillage

Complete Y-GAN 0.987 0.925 0.763 0.962

A1: LG w/o Lcon 0.987 0.890 0.745 0.918

A2: LG w/o Lr 0.980 0.832 0.682 0.865

A3: LG w/o Lr and Lcon 0.962 0.823 0.660 0.861

Table 5: Y-GAN ablation study on the impact of the learning objectives used. Results are reported in the form of AUC

scores.

information. Although the two losses are complementary, Lr results in a slightly greater performance drop than Lcon

when removed from the training objective. These results suggest that all loss terms are important and contribute to

the performance of Y-GAN.

Impact of Architecture. Y-GAN is designed as an autoencoder with two/dual encoders, one decoder, a latent

classifier and a discriminator. Six versions of the model are implemented to highlight the importance of the design

choices made around this topology: (i) a model without the dual encoders (a single encoder E is used), where the

generated latent representation z = E(x) ∈ R2d is split into two equally-sized vectors, zs ∈ Rd and zr ∈ Rd,

on top of which LG (10) is applied (B1), (ii) the model from B1, but with a wider encoder, where the number of

filters in each layer have been doubled, so the encoder has approximately the same number of parameters as Er and

Es together (B2), (iii) the model from B1, but with a deeper encoder, where the number of layers at each stage

has been doubled, so the encoder again has approximately the same number of parameters as Er and Es together

(B3), (iv) the model from B1 but with a single (entangled) latent representation - no zr and associated losses (Lr,

Lcon) are used (B4), (v) the model from B4 but without the classifier C, i.e., an auto-encoder with a reconstruction-

based anomaly score (B5), and (vi) the proposed Y-GAN model without the adversarial discriminator Ds, i.e., a dual

encoder generator trained without Ladv (B6). The results in Table 5 suggest that the removal of the dual encoder

increasingly impacts results, as the complexity of the data (from an anomaly detection point of view) increases, that

is, the biggest performance drop is observed on the most challenging data, i.e., PlantVillage. The results in B1,

thus, suggest that the Y-shaped architecture with the two encoders contributes to a more effective disentanglement of

semantically-relevant and residual information, compared to the use of a single encoder. It can also be seen (from B4)

that using a single entangled latent space representation is detrimental for the performance of the anomaly detection

task, especially for the more challenging CIFAR10 and PlantVillage datasets. The disentanglement of irrelevant

information and its removal from the decision-making process is, hence, critical for the success of Y-GAN. From the

results in B2 and B3, we also observe that a simple increase in model complexity (in terms of parameters) does not

impact performance in a consistent and meaningful way. While results are improved slightly on PlantVillage through

the heavier models in B2 and B3 compared to the single-encoder setting in B1, we see performance degradations on the

remaining three datasets. Y-GAN, on the other hand, is always the top performaned due to its effective disentaglement

strategy. The exclusion of the classifier also causes a large decrease in the overall anomaly detection accuracy across
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Ablation study MNIST FMNIST CIFAR10 PlantVillage

Complete Y-GAN 0.987 0.925 0.763 0.962

B1: Y-GAN w/o dual encoders 0.979 0.881 0.734 0.915

B2: B1 with doubled filters 0.968 0.872 0.698 0.932

B3: B1 with doubled layers 0.973 0.876 0.707 0.935

B4: B1 w/o zr 0.956 0.810 0.659 0.807

B5: B1 w/o zr and C 0.640 0.689 0.531 0.610

B6: Y-GAN w/o Ds 0.982 0.896 0.719 0.921

Table 6: Y-GAN ablation study on the impact of the architectural components. Results are reported in the form of

AUC scores.

all datasets, suggesting that steered representation learning is key for Y-GAN - see B5 results. Finally, training the

originally proposed Y-GAN auto-encoder without the adversarial discriminator, seems to have the least significant

impact on the overall detection accuracy, in comparison to other Y-GAN components (B6). Nevertheless, it does

contribute to the quality of the generated image reconstructions, which can further affect the performance of the

disentanglement process in more complex images, e.g., in CIFAR10 and PlantVillage.

6.4. Model Characteristics

Next, we illustrate some of the characteristics of Y-GAN through a series of additional experiments that target: (i)

the application of the proposed model in practical scenarios with (unlabeled normal) training data, where the number

of sub-classes N and the corresponding (sub)class assignments may not be available and need to be defined automati-

cally, and (ii) the definition of the anomaly score through the latent classifier C, as opposed to other alternatives used

in the literature.

Unlabeled Normal Data. Y-GAN assumes that the (normal) training data comes from multiple sub-classes/groups

and that labels for these sub-classes are readily available. This assumption allows for the inclusion of the latent

classifier C in the training process, which was shown to be critical for the overall performance of Y-GAN. Here,

we show that it is possible to relax this assumption and train Y-GAN with unlabeled training data in a completely

unsupervised manner. To this end, we run a (unsupervised) clustering procedure over the unlabeled training data

and use the generated cluster assignments as pseudo (sub-class) labels that can be utilized when learning Y-GAN.

Specifically, we first compute feature representations from the training images used in the given experimental run

with the EfficientNet-B4 (Tan & Le, 2019) model, pre-trained on ImageNet. Given input images x, the model then

generates 1792-dimensional representations for the experiments. For efficiency reasons, we reduce the dimensionality

of these representations to 100 using Principal Component Analysis (PCA) (Turk & Pentland, 1991) and cluster the

data with k-means. We then determine the optimal number of clusters (i.e., the number of subclasses N) based on

the average silhouette method (Kaufman & Rousseeuw, 2009). Finally, we utilize the generated cluster assignments
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Model MNIST FMNIST CIFAR10 PlantVillage

Y-GAN (ground truth labels) 0.987 0.925 0.763 0.962

Y-GAN* (pseudo labels) 0.964 0.892 0.733 0.846

Table 7: Mean AUC scores generated with Y-GAN models trained with: (i) manually assigned ground truth labels

on the sub-class structure of the normal training data, and (ii) pseudo labels generated through a k-means clustering

procedure in an unsupervised manner. Note that even in a completely unsupervised setting, where (noisy) pseudo

labels are inferred directly from the normal training data, Y-GAN generates state-of-the-art results that are highly

competitive in comparison to the baseline models on all four experimental datasets.

as pseudo labels for Y-GAN training. We note that this procedure is completely unsupervised and does not rely on

any kind of prior annotations of human intervention. The term pseudo labels is, hence, used to refer to automatically

generated cluster assignments for the training procedure.

• K–Classes–Out Results. On MNIST, FMNIST, and CIFAR10, the clustering procedure identifies either 9 or 10

clusters, i.e., N = 9 or N = 10, in any given experimental run (N = 9 classes are in fact represented). An analysis

of the generated clusters shows that 95% of MNIST samples in each cluster share the same ground truth. This

percentage is bit lower in FMNIST and CIFAR10, where it equals 91% and 87%, respectively. This suggests that

the clustering reasonably well approximates the actual data classes, but also that part of the data is not assigned

correct class labels. A comparison between Y-GAN trained with the ground truth labels and the pseudo labels

generated with the clustering procedure in an unsupervised fashion (denoted as Y-GAN*) is presented in Table 7.

As can be seen, the pseudo labels result in slight performance degradations compared to the original Y-GAN.

However, the Y-GAN* model achieves competitive results on all three datasets and still yields highly encouraging

results compared to the baselines evaluated in Tables 1, 2 and 3. The presented results suggest that learning data

representations through a latent (proxy) classifier that considers differences between different sub-classes of normal

training data is beneficial for performance, even if the sub-classes are not necessarily homogeneous and contain

label noise.

• PlantVillage Results. For this dataset, 12 distinct clusters are identified by k-means, i.e., N=12, which is corre-

sponds to the number of original categories that include non-anomalous/normal samples. However, the partitioning

of the PlantVillage data is in this case less accurate in comparison to the k-classes-out datasets, due to similarities

between objects from different classes. After the clustering process, only 80% of PlantVillage images representing

the same plant species share the same ground truth label. Although such noisy pseudo labels decrease the anomaly

detection performance by approximately 12%, Y-GAN* learned without any human supervision still leads to highly

competitive performance compared to the competing models from Table 4. Overall, these results support the ob-

servation that a well-performing Y-GAN model can be trained even without access to (manually generated) ground
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Figure 11: Score analysis on the CIFAR10 and PlantVillage datasets. Various anomaly scores, defined in the image

space (sx), over the latent representations (sz, szs), or based on the sub-class structure of the normal data (szp, szw, sc,

and s), are explored to better understand the expressive power of different representations generated within Y-GAN.

Note that the proposed anomaly score achieves the strongest performance on both datasets.

truth class labels for the normal training data.

Anomaly Score Analysis. The proposed Y-GAN employs a unique anomaly scoring method for the detection

of anomalous data, derived from the output of the latent classifier C. Our approach therefore differs from previous

methodologies, which often rely on metrics like the disparity between input images and their reconstructions, or utilize

Lp norms across latent representations, as seen in works like Perera et al. (2019) and Akçay et al. (2019a), among

others. In this section, we compare the proposed anomaly scoring method used in Y-GAN to several other commonly

used alternatives. These experiments are meant to provide additional insight into the model and the characteristics

of various generated data representations. The analysis is performed using the datasets CIFAR10 and PlantVillage,

chosen due to their greater complexity in comparison to the other two datasets utilized in other experiments. To this

end, we implement 6 different alternative anomaly scores, defined as follows:

• Image score, sx:

sx(x, x̂) = ||x− x̂||22, (13)

where the anomaly score is computed-based on the reconstruction quality. Here, x is the input image and x̂ is the

reconstruction generated by Y-GAN.

• Latent score, sz:

sz(z, ẑ) = ||z − ẑ||22, (14)

where the anomaly score is computed in the latent space using the combined latent representations z = Es(x) ⊕

Er(x) and ẑ = Es(x̂)⊕ Er(x̂). ⊕ is a concatenation operator.

• Semantic latent score, szs:

szs(zs, ẑs) = ||zs − ẑs||22, (15)
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where the score is computer-based on the semantic latent space representation only, i.e., zs = Es(x) and ẑs =

Es(x̂).

• Prototype-based semantic latent score with ground truth labels, szp:

szp(zs, z
(Ci)
s ) = min

i
||zs − z(Ci)

s ||22, (16)

where the (semantically-meaningful) latent probe vector zs is compared to the prototypes z(Ci)
s = 1/|Ci|

∑
zs∈Ci

zs,

computed for the N sub-classes of the normal training data {Ci}Ni=1 and the minimum distance is used as the

anomaly score. | · | is the cardinality of the class.

• Prototype-based semantic latent score with pseudo class labels, szw:

szw(zs, z
(C∗

i )
s ) = min

i
||zs − z

(C∗
i )

s ||22, (17)

where the latent probe vector zs is compared to the class prototypes z(C
∗
i )

s = 1/|C∗
i |
∑

zs∈C∗
i
zs, computed for the

N sub-classes of the normal training data {C∗
i }Ni=1 defined through k-means clustering. The minimum distance

over all class protoypes is used as the anomaly score.

• Classifier uncertainty, sc:

sc = −
∑
i

pi log pi, (18)

where p = [p1, p2, . . . , pN ] ∈ RN is the probability distribution for the N sub-classes of the normal data computed

by subjecting the output of the latent classifier C to a softmax function given an input probe sample x.

We note that all latent representations used in the above definitions of latent scores are normalized to unit norm

prior to score calculation. The results, presented in Fig. 11, show that a simple reconstruction-based score (sx)

results in modest performance in both datasets. The latent space score sz is slightly more informative on CIFAR10,

but generates weaker results on image from PlantVillage. If the residual latent space is removed from the decision

making process, we observe additional improvements on both datasets. Thus, the anomaly score defined in the

semantically meaningful latent space szs already ensures better results on CIFAR10 than all of the competing state-

of-the-art models evaluated in Table 3 and yields comparable detection results as a large portion of the tested models

on PlantVillage. If anomaly scores are defined by also considering the sub–classes present in the (normal) training

data (i.e., szp, szw, sc, and the proposed Y-GAN score s), we see another significant jump in AUC results on both

datasets, which suggest that the structure (or distribution) of the normal data is an important source of information

that can be exploited to improve anomaly detection performance.

Sensitivity Analysis. In all experiments presented so far, Y-GAN was trained with default values for the balancing

parameters in Eqs. (10) and (11), i.e., λ1 = λ5 = 50, and λ2 = λ3 = λ4 = λ6 = 1. In this section, we now conduct

a sensitivity analysis to explore how changes from these default values (during training) affect the performance of the
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Figure 12: Impact of changes in λ values (from Eqs. (10) and (11)) on the overall anomaly detection performance on

MNIST, FMNIST and CIFAR10. The results are reported in terms of mean AUC scores.

model. To this end, we change a single parameter at the time, train the proposed model and then run experiments on

the MNIST, FMNIS and CIFAR10 datasets. From Figure 12 it can be seen that any change from the default setting

typically leads to weaker performance. Especially detremental appears to be the increase in the importance of the

gradient reversal loss in relation to the reconstruction and classification losses. Because the model focuses mostly on

inducing missclassifciations through zr, instead of ensuring proper information encoding through the reconstruction

and classificaiton losses, the trained model does not ensure competitive performance on any of the three datasets.

Similarly, disrupting the balance of the loss terms through other modifications, in general, also does not help with

performance. Overall, these results suggest that suitable balance needs to be ensured between the different learning

objectives to ensure optimal results with Y-GAN.

6.5. Visual/Qualitative Evaluation

Grad-CAM Visualizations. To gain better insight into the behavior of the proposed Y-GAN model, we use Grad-

CAM visualizations (Selvaraju et al., 2017), to find out which image regions are most informative with respect to

the anomaly detection task. Grad-CAM heatmaps are calculated using the gradients of the latent (proxy) classifier

C, utilized for the computation of the anomaly classification scores. Examples of correctly classified normal and

anomalous samples (marked red) with their corresponding Grad-CAM heatmaps laid on top are shown in Figure 13.

As can be seen, in datasets with homogeneous backgrounds and small intra-class variability, such as MNIST and

FMNIST, the model tends to focus on the global appearance of the objects, i.e. their overall shape. Conversely,

detection on datasets with more complex visual data (such as CIFAR10) is primarily based on local and distinctive
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Figure 13: Selected images of correctly detected normal and anomalous samples (marked with red boxes) with their

corresponding Grad-CAM visualizations (Selvaraju et al., 2017) laid on top. As can be seen from the Grad-CAM

heatmaps, the model focuses on the global appearance of objects coming from low intra-class variability, such as

MNIST and FMNIST, while local and distinctive spatial characteristics are more informative in samples from CI-

FAR10. On PlantVillage, on the other hand, Y-GAN appears to be simultaneously focusing on both, global and local

object characteristics, due to the large intra-class variability of non-anomalous samples.

(a) Anomaly: Digit 4 (b) Anomaly: Pullover (c) Anomaly: Horse

Figure 14: Examples of edge cases with the k-classes-out datasets (MNIST, FMNIST, CIFAR10). Undetected normal

samples in the top two rows exhibit visual similarities with the anomalous class or are poor representatives of normal

data. Similarly, the appearance of undetected anomalous samples in the bottom row (red) is close to the appearance

of classes in the normal data.

object and texture characteristics. Different from MNIST, FMNIST, and CIFAR10, PlantVillage exhibits relatively

large intra-class variability in terms of the size, shape, illumination, and orientation of the leaves in the images.

Anomalies in this dataset can appear either as inconsistencies in the overall shape and color or impact the texture of

the leaves at an arbitrary spatial location in this dataset. Therefore, both global and local image characteristics appear

to play an important role in the detection of anomalous leaves, as seen in Figure 13. Interestingly, Y-GAN is able to

adapt to the anomaly detection task and learn descriptive and informative features from the input data regardless of

whether these features correspond to global or local (or both) image characteristics.

Visual Evaluation. To better understand why the model fails to classify certain normal and anomalous samples,
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Figure 15: Sample images of undetected normal and anomalous samples (marked red) from the PlantVillage dataset.

Misclassifications among non-anomalous data samples occur due to uncommon leaf shapes, holes in healthy leaves,

and unusual positions/orientations. Within anomalous samples, problems appear due to subtle, often unnoticeable

changes in leaf color or local textures.

we perform an additional visual inspection of edge cases from all four experimental datasets. In Figure 14 we show

selected edge samples from the k-classes out datasets MNIST, FMNIST, and CIFAR10. As can be seen, the unde-

tected normal samples represent objects with uncommon appearance, that differs from the rest of the non-anomalous

data samples in terms of object structure and texture, i.e., oddly-shaped digits for MNIST, ambiguous fashion classes

for FMNIST, and unusual object appearances for CIFAR10. Difficult anomalous samples, conversely, often resemble

certain classes from the normal data or exhibit ambiguous appearance. Fig. 15 presents edge cases for the PlanVil-

lage dataset. Here, severely folded healthy leaves and distorted leaf shapes are often detected as anomalous. Similar

outcomes are also observed with leaves with holes, although such holes do not necessarily indicate an illness. Shad-

ows darkening various parts of non-anomalous leaves can also trick the model into misclassifying normal samples.

Conversely, undetected anomalies typically represent subtle, unnoticeable changes in the leaf color or local textures.

7. Conclusion

The paper introduced a reconstruction-oriented auto-encoder based anomaly detection model, called Y-GAN.

Different from competing approaches, Y-GAN learns to disentangle image characteristics that are relevant for repre-

senting normal data from irrelevant residual data characteristics and derives anomaly scores from selectively encoded

image information. The model was shown to significantly outperform several state-of-the-art anomaly detection mod-

els on the MNIST, FMNIST, CIFAR10 and PlantVillage datasets and provide the most consistent performance across

different anomaly detection tasks among all tested models. As part of our future work, we plan to extend the model,

so it allows for additional functionality, such as anomaly localization/segmentation, which is of interest for various
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anomaly detection tasks.
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