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Abstract— State-of-the-art face recognition models commonly
extract information-rich biometric templates from the input
images that are then used for comparison purposes and identity
inference. While these templates encode identity information
in a highly discriminative manner, they typically also capture
other potentially sensitive facial attributes, such as age, gender
or ethnicity. To address this issue, Soft-Biometric Privacy-
Enhancing Techniques (SB-PETs) were proposed in the litera-
ture that aim to suppress such attribute information, and, in
turn, alleviate the privacy risks associated with the extracted
biometric templates. While various SB-PETs were presented so
far, existing approaches do not provide dedicated mechanisms to
determine which soft-biometrics to exclude and which to retain.
In this paper, we address this gap and introduce ASPECD, a
modular framework designed to selectively suppress binary and
categorical soft-biometrics based on users’ privacy preferences.
ASPECD consists of multiple sequentially connected compo-
nents, each dedicated for privacy-enhancement of an individual
soft-biometric attribute. The proposed framework suppresses
attribute information using a Moment-based Disentanglement
process coupled with a centroid decoding procedure, ensuring
that the privacy-enhanced templates are directly comparable
to the templates in the original embedding space, regardless of
the soft-biometric modality being suppressed. To validate the
performance of ASPECD, we conduct experiments on a large-
scale face dataset and with five state-of-the-art face recogni-
tion models, demonstrating the effectiveness of the proposed
approach in suppressing single and multiple soft-biometric
attributes. Our approach achieves a competitive privacy-utility
trade-off compared to the state-of-the-art methods in scenarios
that involve enhancing privacy w.r.t. gender and ethnicity
attributes. Source code will be made publicly available.

I. INTRODUCTION

Face verification templates, extracted from input face
images through state-of-the-art (SOTA) convolutional neural
networks (CNNs) typically encode a wide variety of facial
attributes, ranging from identity to different soft-biometrics,
such as gender, age or ethnicity [5], [21], [27], [28], [32].
This characteristic represents a significant privacy risk, as
potentially sensitive soft-biometric information can easily be
extracted and exploited for purposes different from identity
recognition, e.g., discrimination, targeted marketing, or user
profiling [1], [6], [9], [14], [20]. Subjects, enrolled in a
biometric recognition system, should therefore ideally have
the ability to control which soft-biometric information can be
utilized during the recognition process and which excluded,
allowing them to (i) provide explicit consent on the use of
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Fig. 1. Illustration of the Moment-based Disentaglement (MoD)
process. In this paper, we present a novel approach towards suppressing soft-
biometric information in face verification templates (i.e., CNN embeddings),
called ASPECD, that relies on the MoD procedure to split the information
encoded in the original CNN embeddings into two distinct components,
where the first encodes only identity, but not the targeted soft-biometric
attribute, whereas the second encodes only attribute, but not identity infor-
mation. By manipulating the attribute part, ASPECD effectively suppresses
the selected soft-biometric information in the input templates, while making
it feasible to suppress multiple attributes one after the other during the
privacy-enhancement process.

specific soft-biometric information, and (ii) minimize the
associated privacy risks [17]–[19].

To address the privacy concerns related to the soft-
biometric information encoded in the embedding space of
modern CNN-based face recognition models, the research
community is increasingly looking into so-called Soft-
Biometric Privacy-Enhancing Techniques (SB-PETs) that
aim to remove (or suppress) sensitive information from face
verification templates/embeddings, while maintaining their
discriminative power and, in turn, high recognition perfor-
mance [14]. The interest in SB-PETs has additionally been
fueled by stricter privacy regulations, such as GDPR [8],
which stipulate that (i) the collection and processing of
personal data must be confined to what is strictly necessary,
and that (ii) people must provide explicit consent for each
specific purpose for which their data is to be utilized.

To avoid the computational burden of training face recog-
nition models from scratch, modern SB-PETs [2] largely
focus on privacy enhancements of face verification templates
generated by pretrained face recognition models. While many
methods have been proposed for the suppression of specific
(individual) soft-biometric attributes [2], [30] or the enhance-
ment of privacy in an unsupervised manner [29], [31], [33],
there is a significantly smaller number of solutions dedicated
to suppressing multiple soft-biometrics simultaneously [15].
Balancing privacy across multiple attributes poses a unique
challenge [4], [15], [19], as individual soft-biometrics make
varying contributions to the identity-related information,



each playing a distinct role in the recognition process [12],
[13], [35]. Furthermore, the intrinsic correlations among soft-
biometric attributes (e.g. beards reveal information about age
and gender), add another layer of complexity to this problem
by making it challenging to selectively remove or suppress
one attribute without affecting others [10], [22].

Motivated by the above discussion, we present in
this paper a novel state-of-the-art approach for pri-
vacy enhancement, capable of suppressing multiple (se-
lected) soft-biometric attributes in face recognition tem-
plates with minimal impact on verification performance. At
the core of the approach is an innovative Moment-based
Disentaglement (MoD) procedure that splits the original
templates/embeddings into two parts, where the first encodes
only identity information (in an attribute agnostic manner),
while the second part encodes only attribute information
(in an identity agnostic manner), as illustrated in Fig. 1.
The proposed MoD procedure is general, i.e., applicable to
binary as well as categorical attributes, and allows us to sep-
arate identity information required for recognition purposes
from potentially sensitive attribute information. To suppress
attribute information, we replace the identity-agnostic part
with an average attribute embedding, i.e., a centroid. Finally,
we combine the attribute-agnostic and (modified) identity-
agnostic representations and map them back into the initial
embedding space using a dedicated decoder, as presented
in Fig. 2. Because the attribute information in the decoded
templates now corresponds to the centroid of the identity-
agnostic embedding space, the original soft-biometric infor-
mation is no longer inferable. Consequently, privacy w.r.t.
the targeted attribute is enhanced in the decoded template.

To facilitate privacy enhancement for multiple attributes,
we use a sequential approach and apply the outlined pro-
cedure for different attributes one after the other, as also
illustrated in Fig. 2. This sequential approach has multiple
benefits: (i) it allows suppressing a single attribute at the
time, making the required disentanglement process easier to
formulate, (ii) it allows processing an arbitrary number of
attributes one after the other and adding novel components
into the overall pipeline, and (iii) it allows the user to
specify, which soft-biometric information to suppress and
which to retain, enabling him/her to provide explicit consent
on the use of his/her soft-biometrics during the recognition
process. The proposed framework, named Adaptable Soft-
biometric Privacy-Enhancement using Centroid Decoding
(ASPECD), is evaluated in rigorous experiments on a large-
scale face dataset with gender and ethnicity attributes and in
comparison to state-of-the-art techniques from the literature.
The experimental results show that ASPECD leads to com-
petitive performance w.r.t. privacy protection, while ensuring
reasonably minor degradations in recognition results. In
summary, we make the following contributions in this paper:

• We propose a novel framework, termed ASPECD, de-
signed to enhance privacy w.r.t. multiple soft-biometrics
within a unified and modular approach. Contrary to
previous work, ASPECD allows to selectively suppress
specific soft-biometric attributes, while retaining others.

It also facilitates suppressing multiple attributes, while
still ensuring competitive recognition performance.

• We introduce a moment-based disentanglement (MoD)
procedure that splits the initial CNN embeddings into
two parts by enforcing constraints on the distributions
of the data in the two novel embedding spaces through
statistical moment-based optimization objectives.

• We report a new state-of-the-art w.r.t. multi-attribute
soft-biometric privacy enhancement through compre-
hensive experimental evaluation with five prominent
face recognition CNNs: CosFace [36], FaceNet [25],
ArcFace [7], AdaFace [11], and MagFace [16] and
two targeted soft-biometric attributes, i.e., gender and
ethnicity using a large scale face dataset.

II. RELATED WORK

Privacy-enhancing techniques, designed to remove, con-
ceal or suppress soft-biometric information in face recogni-
tion templates, have recently gained considerable attention
within the biometrics community [2], [14], [21], [30], [33].
In general, existing techniques can be grouped according
to whether they target a single attribute, multiple attributes
simultaneously, or try to suppress soft-biometric information
without explicitly targeting selected attributes, i.e., in an
unsupervised manner. Details on the groups are given below.

Single-attribute suppression. In [30], Terhörst et al. in-
troduced an elimination technique, named Incremental Vari-
able Elimination (IVE), that removes components from face
recognition templates that contribute the most to the predic-
tion of a chosen attribute, e.g., age or gender. Morales et al.
[21] introduced a supervised model for privacy-enhancement,
termed SensitiveNet. The model uses a triplet loss to learn a
feature space with suppressed gender or age information and
thus, ensures an increased level of soft-biometrics privacy.
Most closely related to our work in terms of methodology
is the PFRNet approach introduced by Bortolato et al. in
[2], which also relies on a disentanglement scheme utilizing
a statistical-moment based approach. However, PFRNet is
only applicable to binary attributes, while our procedure
works with categorical variables and includes the PFRNet
disentanglement process as a special (simplified) case. Ad-
ditionally, ASPECD relies on a privacy mechanism build
around (ambiguous) centroid decoding, while PFRNet aims
to exclude attribute information from the matching procedure
of the recognition process. While all the techniques reviewed
above may potentially be extended for soft-biometric privacy
across multiple target attributes, the authors did not explore
the effect of the proposed procedures on multiple attributes
simultaneously and the impact of attribute correlations on
privacy enhancement, something we address with ASPECD.

Unsupervised attribute suppression. Terhörst et al. [31]
proposed a Cosine–Sensitive Noise (CSN) transformation,
where a specific type of noise is injected into the face rep-
resentations such that soft–biometric information is masked,
while identity information is not. The authors demonstrated
the feasibility of their approach on gender and age at-
tributes, with encouraging results. Similarly, in [33], the



Fig. 2. High–level overview of ASPECD, the proposed framework
for suppression of multiple soft-biometric attributes in face verification
templates. ASPECD is designed in a modular manner and consists of a
series of sequential modules that suppress a single attribute each in the
input template x and ultimately produces a privacy-enhanced template x′,
from which the preselected soft-biometrics (i.e., gender and ethnicity in the
depicted example) cannot be inferred reliably.

same authors presented an approach to soft-biometric privacy
enhancement that exploited a special type of template coding
with minimum information units. Although these approaches
might effectively suppress multiple attributes, they lack a
controllable mechanism to accommodate varying privacy
preferences, which we develop for ASPECD.

Multiple-attribute suppression. As can be seen from the
above discussions, various SB-PETs have been proposed
and deployed to suppress individual soft-biometric attributes
in face verification templates [2], [21], [30]. Nonetheless,
only limited work has been done on enhancing privacy
across multiple attributes simultaneously in a supervised
and controllable manner. One of the few exceptions is the
Multi-IVE technique, recently introduced by Melzi et al. in
[15]. Multi-IVE is an extension of the IVE technique [30]
with several enhancements. Instead of directly eliminating
components from a feature vector, Multi-IVE transforms
templates into a decorrelated subspace using either PCA
or ICA. Within this subspace, it estimates the importance
of various dimensions to identify the most informative
w.r.t. multiple soft-biometric attributes. Subsequently, it sets
the identified dimensions to zero and applies the inverse
operation (i.e., a reprojection) to obtain privacy-enhanced
templates in the original embedding space. While Multi-
IVE leads to competitive results, it still removes potentially
valuable information from the face templates (due to the
entanglement of identity and attributes) that may lead to sub-
optimal utility-privacy trade-offs. With ASPECD we address
this point through an effective disentanglement process and
a sequential treatment of soft-biometrics that can better deal
with the correlations among various attributes.

III. METHODOLOGY

In this section, we now present the main contributions
of this work, i.e.: the Adaptable Soft-biometric Privacy-
Enhancement with Centroid Decoding (ASPECD) and the
Moment-based Disentaglement (MoD) process that forms the
basis for suppression of various soft-biometric attributes.

A. High-level overview

A high-level overview of ASPECD is presented in Fig. 2.
As can be seen, the goal of ASPECD is to suppress multiple
selected attributes, which are typically encoded in face ver-
ification templates, so that a potential attacker is not able to
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Fig. 3. Visualization of an ASPECD module. Each ASPECD module
consists of a pair of encoders that maps the input face template to a pair
of latent representation that exclusively encode either identity or attribute
information. To achieve suppression of a soft-biometric attribute, a centroid
representation is swapped into the combined latent representation z = zid⊕
cat and then decoded into the privacy-enhanced template x′.

extract sensitive soft-biometric information from the privacy-
enhanced templates. The proposed framework consists of
multiple sequential modules, each optimized to target one
soft-biometric attribute (e.g. gender or ethnicity). Starting
with an input image I ∈ Rw×h and using a pretrained face-
recognition network ψ, a template x = ψ(I) ∈ Rd is com-
monly first extracted and then used for comparison purposes
in a typical recognition pipeline. This template is primarily
optimized for encoding identity, but, as demonstrated by
prior work [14], also implicitly captures various types of soft-
biometric information. The goal of ASPECD is, therefore,
to transform x into a privacy-enhanced version x′, from
which selected soft-biometrics (gender and/or ethnicity) can-
not be extracted reliably. The adaptable nature of ASPECD
allows defining user-specific privacy preferences, so that
the face template undergoes selective processing, with users
requesting more privacy triggering multiple modules, while
those desiring less privacy, activating fewer modules. Note
that Fig. 2 shows three distinct pathways that illustrate this
characteristic: (i) a red pathway for suppressing gender in-
formation only, (ii) a blue pathway for suppressing ethnicity
information only, and (iii) a black pathway for suppressing
both gender and ethnicity simultaneously. The sequential
order of these modules may vary based on the requirements
of the application at hand. In the following sections, we
elaborate on the technical details behind the architectural
design of the ASPECD modules (§III-B) and the MoD
procedure (§III-C) that jointly with the centroid decoding
process (§III-D) ensures effective attribute suppression.

B. Design of ASPECD modules

ASPECD is a modular framework that can be imple-
mented with an arbitrary number of modules. Without loss
of generality, we limit the following discussions on two such
modules, one for suppressing gender and one for suppressing
ethnicity information, as also shown in Fig. 2.

Each ASPECD module is designed as an autoencoder
D(E(x)) = x′ that takes the original face template as input
and then produces a modified template x′ with suppressed
attribute information, as shown in Fig. 3. The autoencoder
consists of a two-path encoder E with two dedicated sub-
encoders: (1) Eia that maps x into identity-agnostic latent



TABLE I
SUMMARY OF TEST DATASET CONFIGURATION† .

Dataset #Images #Subj. #Mated #Non-mated #IDs (Gender) #IDs (Ethnicity)
f m A W I B LH

VGGFace2* 7,760 388 73,720 7,471,200 194 194 84 78 98 78 52
†Totals over all 4 test data splits; f – female, m – male, A – asian, W – white, I – indian, B – black, LH – latino-hispanic

space zat = Eia(x) (representing either gender or ethnicity
in this context), and (2) Eaa that maps the input template
into the attribute-agnostic identity space zid = Eaa(x).
During training, a single-path decoder D is also optimized
to reconstruct the concatenated latent representation z =
zid ⊕ zat into the template x′. The described module design
makes it possible to make attribute information in the recon-
structed template x′ ambiguous by manipulating the latent
representation that encodes only the targeted soft-biometrics,
i.e., zat. With ASPECD, we achieve this by swapping the
attribute representation zat with the centroid of the training
data in the identity-agnostic latent space cat before decoding
it into x′ = D(zid ⊕ cat), as we discuss in §III-D.

C. Moment-based Disentaglement (MoD) process

The key component of ASPECD is the disentanglement
procedure that splits the input face template x into two
latent representations, zat and zid. To facilitate the disen-
tanglement and enforce the desired characteristics on the
two latent spaces, we design a series of dedicated objective
functions/losses for the training procedure. The first is a self-
supervised reconstruction loss that ensures that all informa-
tion from the input side is also present on the output side
of the autoencoder. This loss hence allows us to control the
information flow through the two latent spaces, i.e.:

L0 = ||x−D(x) ◦ E(x)||L2
, (1)

where || · ||L2
is the L2 norm and ◦ is a composition

operator. Inspired by the success of PFRNet [2], we design
the optimization objectives for the disentaglement process
based on statisticial moments, but keep the process general,
so it is applicable to categorical attributes (e.g. ethnicity),
and not just binary ones as in [2]. To this end, we take into
account all possible binary pairs of probability distributions
associated with the given categorical attribute with n classes
c1, c2, . . . , cn. During disentaglement, the goal is to prevent
information about the categorical soft-biometrics from being
encoded in zid and to ensure that the distributions Q(zid, ci)
and Q(zid, cj) are as similar as possible for all non-identical
pairs (ci, cj), where i, j ∈ 1, 2, . . . , n and i ̸= j. To achieve
this, we define the Lα loss term as follows:

Lα =

n∑
i=1

n∑
j=1
j ̸=i

∣∣∣∣∣∣⟨zαid⟩ci − ⟨zαid⟩cj
∣∣∣∣∣∣
L2

, (2)

where ⟨zαid⟩ci is the α-order statistical moment of the class-
conditional distribution of the identity representation zid. The
loss, thus, forces the statistical moments of all identities
regardless of their attributes to be as close as possible.

Conversely, for the attribute distributions Q(zat, ci) and
Q(zat, cj), we aim to make them as discriminative as possi-
ble for each i and j, so that all attribute-related information
is ultimately encoded in zat, and not zid. During training, we
therefore sample batches from each pair of the distributions
Q(zat, ci) and Q(zat, cj) and compute β-order moments
from the sampled data. To maximize the discrimination
between the classes ci and cj , we then define Lβ as follows:

Lβ =

n∑
i=1

n∑
j=1
j ̸=i

exp

−

∣∣∣⟨zβat⟩ci − ⟨zβat⟩cj
∣∣∣2

2σ2
β

 , (3)

where σβ is an open hyper-parameter that defines the stan-
dard deviation of the Gaussian-shaped loss.

The overall MoD loss is finally defined as follows:

L = L0 +

αmax∑
α=1

λαLα +

βmax∑
β=1

λβLβ , (4)

where αmax and βmax denote the maximum order of the
moments used during the disentanglement, and λα and λβ
correspond to balancing weights.

D. Privacy Preservation using Centroid Decoding

Once the input template x is split into the latent represen-
tations zid and zat, we manipulate the attribute representation
zat to suppress soft-biometric information. Specifically, we
replace the attribute representation zat with the centroid of
the training data cat, as also shown in Fig. 3, and then decode
the identity representation and centroid into a reconstructed
template x′ = D(zid ⊕ cat) ∈ Rd with enhanced privacy.
Because all templates x′ are reconstructed with the same
attribute information, the original attributes are effectively
suppressed. With the decoding procedure, we maintain a
consistent length of the templates, ensuring |x| = |x′|, where
| · | is the cardinality operator. This enables us to directly
compare privacy-enhanced templates with different privacy-
preferences, as they all closely resemble the original space.
The entire procedure is visually illustrated in Fig. 3.

IV. EXPERIMENTS

A. Datasets and experimental setup

Datasets. For the experiments, we use the VGGFace2 [3]
dataset, beacuse it includes a variety of diverse demographic
groups. Specifically, we subsample the original VGGFace2
dataset to roughly balance the data across demographic
factors for both training and testing purposes and refer to
the data as VGGFace2*. To train all considered privacy-
enhancing techniques, we use the VGGFace2* training set
consisting of 64, 032 images across 717 identities, balanced



with respect to gender and representing 5 ethnic groups
(Asian, White, Indian, Black, and Latino-Hispanic). De-
tails on the testing data are provided in Table I. In the
Supplementary material, we provide a list of images from
the VGGFace2* dataset to ensure reproducibility and also
present results on an additional test dataset.

Verification templates. We select five SOTA pretrained and
publicly available face recognition models for the extraction
of face templates in the experiments. The models were opti-
mized using different loss functions, namely, CosFace [36],
ArcFace [7], AdaFace [11], MagFace [16], and FaceNet [25].
Prior to template extraction, face images were cropped and
aligned using MTCNN [37], and finally resized to 224×224
pixels to fit the models’ architectures. Additional details on
the models can be found in the Supplementary material.

B. Performance measures

Verification performance. In the experiments, we first as-
sess the baseline verification performance on the unmodified
original test images. Here, we follow the international ISO
standard [26] and report the EER and FNMR at specific FMR
values, specifically at 10−2 and 10−3. To assess privacy-
enhancement, we recompute these performance indicators
on the templates with suppressed attributes and report their
relative change (RC), as advocated in [14].

Extractable Soft-Biometrics. To quantify the maximum
potential information leakage, i.e., the maximum amount of
attribute information that is inferable from the face templates,
we train different soft-biometric classification models (SVM,
MLP, and LR), which typically extract varying levels of soft-
biometric information from the original templates and their
privacy-enhanced versions. We then select the best perform-
ing model as the worst-case scenario in terms of information
leakage. Thus, for a chosen soft-biometric attribute a, we
report the highest AUCa, calculated as:

AUCa = max(AUCa,SVM, AUCa,MLP, AUCa,LR). (5)

In our specific case, a ∈ {gender, ethnicity}. We use the
notation AUCg for the maximal gender AUC and AUCe for
the maximal ethnicity AUC (Area Under the ROC Curve).

Suppression of soft-biometric information. In the context
of SB-PETs, the suppression rate (SR) is commonly used to
evaluate the effect of privacy-enhancement on soft-biometric
classifiers [2], [31]. To calculate the SR with respect to a
single attribute, we utilize the equation from [24]:

SRa =
−1

(AUCao − 0.5)
(AUCap −AUCao) ∈ [0, 1], (6)

where AUCao measures the performance of the attribute
classifier on the original (unmodified) templates, and AUCap

measures the performance after privacy enhancement. In the
case of non-binary attributes (i.e., ethnicity, in our experi-
ments), AUC scores are calculated using the one-versus-rest
approach using macro-averaging.

When considering the privacy enhancement of both gender
(g) and ethnicity (e), we compute the total SR, treating both

attributes as equally important, using the following equation:
SR = 0.5(SRg + SRe).

C. Experimental setup

We trained ASPCED and the competing models using
the VGGFace2* training set. To evaluate performance, we
partition the testing data of VGGFace2* into four folds,
ensuring that there is no overlap in IDs among the folds.
These folds are also designed to maintain a rough balance
with respect to ethnicity and gender. Finally, we conduct the
following investigations in the experimental part of the paper:

1) Baseline Performances: In this set of experiments, we
evaluate the verification performance on unmodified
face templates and assess the extent, to which soft-
biometrics can be extracted from these templates.

2) Privacy Enhancement of Individual Soft-Biometr-
ics: In the first set of experiments, we evaluate the
efficacy of ASPECD in scenarios, where a single
attribute (gender or ethnicity) is selected for suppres-
sion. We compare ASPECD with methods utilizing
single-attribute suppression (IVE and PFRNet) and an
unsupervised approach (CSN).

3) Privacy Enhancement of Multiple Soft-Biometrics:
Next, we enhance privacy w.r.t. two soft-biometric
attributes by sequentially applying two ASPECD com-
ponents. We evaluate this process in two different
configurations: (i) by first suppressing gender and
then ethnicity information, and (ii) vice versa, by first
suppressing ethnicity and then gender information.

4) Comparison to the State-of-the-Art: In this experi-
ment, we compare ASPECD with the state-of-the-art
in multiple-attribute suppression, i.e., Multi-IVE. To
facilitate a direct comparison, we set the operating
points of Multi-IVE to match ours. We individually
evaluate three scenarios - when matching the EER,
when matching AUCg and when matching AUCe.

D. Implementation details

Optimization of ASPECD components. To optimize both
ASPECD components, we use the same set of training
parameters across all template extractors for both targeted
soft-biometric attributes. We employ the Adam optimizer
with a learning rate of 0.001 and betas set to 0.9 and
0.999, along with an epsilon value of 1e− 8. The model is
trained using batches of 10, 000 verification templates until
convergence, typically occurring at around 500 epochs. We
use αmax = 2 and βmax = 2, as advocated in [2].

Compared methods. We conduct a comparative analysis
of ASPECD against IVE [30], PFRNet [2], CSN [31], and
Multi-IVE [15] ensuring that the parameters are appropri-
ately aligned with those used in the original publications.

V. RESULTS

A. Baseline results on unmodified templates

Baseline results are essential for evaluating the perfor-
mance of soft-biometric privacy-enhancing techniques and



TABLE II
BASELINE VERIFICATION PERFORMANCE ON VGGFACE2*.

Extractor EER (↓) FNMR@FMR10−2(↓) FNMR@FMR10−3(↓)

CosFace 0.010± 0.001 0.011± 0.002 0.027± 0.003
FaceNet 0.024± 0.001 0.048± 0.004 0.180± 0.011
ArcFace 0.034± 0.002 0.069± 0.008 0.198± 0.024
AdaFace 0.013± 0.000 0.014± 0.001 0.019± 0.002
MagFace 0.013± 0.002 0.013± 0.002 0.018± 0.002

TABLE III
BASELINE ATTRIBUTE-CLASSIFIER PERFORMANCE ON VGGFACE2*

Extractor Gender (AUCg) Ethnicity (AUCe)

CosFace 0.991± 0.006 0.947± 0.009
FaceNet 0.991± 0.003 0.938± 0.008
ArcFace 0.991± 0.005 0.928± 0.010
AdaFace 0.724± 0.058 0.738± 0.018
MagFace 0.912± 0.026 0.875± 0.019

evaluate the privacy-utility trade-off. In the first set of ex-
periments, we therefore explore the verification performance
and amount of extractable soft-biometric information using
the selected five face recognition models.

Baseline verification performance. Table II presents ver-
ification baselines for the five considered template ex-
tractors. The best performance in terms of EER and
FNMR@FMR10−2 is achieved with CosFace. AdaFace and
MagFace achieve similar performance, while MagFace is
the best performer in terms of FNMR@FMR10−3. ArcFace
exhibits the worst performance.

Baseline soft-biometric extraction. To assess the amount
of soft-biometric information in the initial templates, we
train gender and ethnicity classifiers on the training part of
VGGFace2* and then evaluate their performance on the cor-
responding test set. We report gender– and ethnicity-related
AUC values in Table III. AdaFace features consistently
demonstrate the lowest capacity for extracting gender and
ethnicity information, while the remaining models perform
similarly. Overall, these results show that all models are able
to extract a significant amount of soft-biometric information
from the raw, unprotected templates.

B. Evaluation of Individual Privacy-Enhancing Components

In this section, we examine ASPECD’s performance when
focusing on the suppression of a single attribute, specifi-
cally either gender or ethnicity. We compare it with three
competing state-of-the-art methods: PFRNet, IVE, and CSN,
and results are presented in Table IV. When targeting only
gender, we observe that ASPECD’s performance is com-
parable to that of PFRNet. ASPECD outperforms CSN on
CosFace, ArcFace and MagFace. CSN achieves better SRg

on AdaFace with comparable verification performance. In
all verification scenarios, ASPECD outperforms IVE. IVE
outperforms ASPECD in terms of SRg in certain scenarios,
such as on CosFace and ArcFace; however, this leads to
significant degradation in verification performance, conse-
quently reducing IVE’s practical utility.

Shifting focus to experiments targeting only ethnicity, first

TABLE IV
COMPARISON OF SINGLE-ATTRIBUTE SUPPRESSION WITH

STATE-OF-THE-ART APPROACHES.

Extractor Approach
Targeting Gender Targeting Ethnicity

†(↓) SRg(↑) †(↓) SRe(↑)

CosFace

ASPECD (ours) 0.047 0.235 0.054 0.333
PFRNet [2] 0.048 0.186 n/a n/a
IVE [30] 0.292 0.459 0.176 0.385
CSN [31] 0.275 0.099 0.275 0.096

FaceNet

ASPECD (ours) 0.181 0.028 0.177 0.221
PFRNet [2] 0.203 0.042 n/a n/a
IVE [30] 0.302 0.030 0.239 0.055
CSN [31] 0.393 0.078 0.393 0.128

ArcFace

ASPECD (ours) 0.265 0.161 0.253 0.325
PFRNet [2] 0.278 0.154 n/a n/a
IVE [30] 0.421 0.287 0.338 0.384
CSN [31] 0.449 0.153 0.449 0.258

AdaFace

ASPECD (ours) 0.033 0.093 0.031 0.424
PFRNet [2] 0.036 0.050 n/a n/a
IVE [30] 0.050 0.301 0.031 0.583
CSN [31] 0.045 0.419 0.045 0.530

MagFace

ASPECD (ours) 0.024 0.497 0.023 0.604
PFRNet [2] 0.024 0.472 n/a n/a
IVE [30] 0.034 0.568 0.024 0.659
CSN [31] 0.033 0.060 0.045 0.530

† = FNMR@FMR10−3

note that PFRNet cannot be evaluated as it does not support
categorically defined attributes. In this set of experiments,
ASPECD generally outperforms IVE and CSN in verification
performance across all scenarios. Exceptions are AdaFace
and MagFace, where it performs comparably to IVE. Note
however that this often comes at the expense of slightly lower
SRe. On FaceNet, ASPECD outperforms IVE and CSN in
terms of both, verification performance and SRe.

C. Sequential Execution Testing

When enhancing multiple soft-biometrics, different se-
quences of ASPECD modules are theoretically available.
In this section, we investigate whether and to what extent
the order of ASPECD modules influences the overall perfor-
mance. Considering gender and ethnicity, we evaluate both
available sequential executions: E→G, where the ethnicity
component E precedes the gender module G, and G→E,
where the G precedes the E module. From the results in
Table V, we can draw the following conclusions. First,
we observe that the attribute that is targeted first is more
substantially suppressed than the second attribute in the
sequence, a pattern that remains consistent across all face
recognition models considered. Furthermore, variations are
noted among extractors in their encoding of gender and
ethnicity. For example, MagFace shows a higher correlation
in this regard compared to CosFace. Additionally, in all
instances, the sequence G→E consistently leads to greater
degradations in verification performance, suggesting that
with certain sequences it is more challenging to effectively
disentangle identity information from attribute information
using our MoD procedure.

D. Visual analysis

To get an in-depth understanding of the privacy en-
hancement process, we visualize the different feature spaces



TABLE V
COMPARISON OF SEQUENTIAL EXECUTIONS E→G AND G→E IN TERMS

OF SUPPRESSION RATE (SR) AND RELATIVE CHANGES OF GENDER

AUC, ETHNICITY AUC, AND FNMR@FMR10−2 .

Sequence Extractor Gender△(↓) Ethnicity△(↓) SR(↑) ▽(↓)

E→G

CosFace −9.7% −21.2% 0.323 141.8%
FaceNet −3.0% −14.9% 0.189 59.4%
ArcFace −5.6% −20.0% 0.273 107.0%
AdaFace −4.4% −23.0% 0.432 97.9%
MagFace −26.9% −27.6% 0.619 56.2%

G→E

CosFace −21.5% −9.6% 0.319 1454.5%
FaceNet −10.5% −9.4% 0.207 662.3%
ArcFace −17.0% −15.6% 0.341 631.6%
AdaFace −23.7% −19.0% 0.701 1128.6%
MagFace −31.0% −27.7% 0.665 474.6%

△ – Relative Change in AUC
▽ – Relative Change in FNMR@FMR10−2

involved in ASPCED using t-distributed Stochastic Neighbor
Embedding (t-SNE). In Fig. 4, we present t-SNE projec-
tions [34] of E→G, offering insights into the clustering of
demographic groups in (i) the unmodified templates x, (ii)
the privacy-enhanced templates x′, (iii) the identity-agnostic
attributes embedding spaces belonging to either zate or zatg .

Focusing on x in the first row with respect to gender,
we observe distinct patterns. In the case of CosFace and
ArcFace, the gender attribute can be visually separated quite
easily, while for AdaFace, the classes are mixed, indicating
more challenging separability. This aligns with the results
when training soft-biometric classifiers. On the other hand,
MagFace shows a more clustered female group in the center,
with mixed features around. In the last row, where we
examine zate and ideally expect to see separated clusters,
the observations differ. CosFace and FaceNet exhibit well-
separated clusters, with red and blue mixed in the middle.
For ArcFace, yellow and green are somewhat separated at the
borders, while other colors mix in the center. For AdaFace
and MagFace, we hardly discern any distinct patterns.

In general, we observe that the identity-agnostic embed-
ding spaces offer solid attribute separation across all models,
suggesting that modest of the attribute information is indeed
encoded in this space as intended by the MoD procedure.
Similarly, we see that the attributes in the privacy-enhanced
spaces x′ overlap more and are, therefore, more difficult to
infer than from the initial representations x.

E. Comparison to SOTA

In this section, we conduct a comparative analysis between
ASPECD and the state-of-the-art Multi-IVE method for
enhancing privacy w.r.t. both gender and ethnicity. To ensure
a fair comparison, we evaluate it under three scenarios by
setting matching operating points.

Matching EER. From the results in Table VI, we see that
in terms of suppressing attributes, ASPECD outperforms
Multi-IVE on all extractors, except on CosFace. On Cos-
Face at a matched EER of 0.062, Multi-IVE outperforms
ASPECD with a SR = 0.483, while ASPECD scores a SR
of 0.323. This disparity in performance is mainly due to
the substantial impact on gender AUCg , where Multi-IVE
exhibits a −31.2% relative change (RC) reduction compared

CosFace FaceNet ArcFace AdaFace MagFace

x
x
′

z a
t g

x
x
′

z a
t e

Fig. 4. Visual analysis using t-SNE projections. The first three rows
focus on the gender attribute, where blue represents male and red female
samples. The last three rows focus on ethnicity, with each color representing
a different ethnicity. The red color corresponds to White, orange to Black,
yellow to Indian, green to Asian, and blue to Latino-Hispanic. The first
and fourth (and second and fifth) rows represent the same data, color-coded
based on the considered soft-biometric. The third and sixth row show the
embedding space for encoding gender and ethnicity, respectively.

to our method’s −9.7% RC. However, the verification pro-
cess is significantly stronger affected by Multi-IVE than by
ASPECD. Additionally, ASPECD outperforms Multi-IVE in
terms of ethnicity suppression, achieving a -21% RC com-
pared to Multi-IVE’s -17.7% RC. On FaceNet, ASPECD out-
performs Multi-IVE in both, gender and ethnicity suppres-
sion. For AdaFace, which initially exhibited a considerably
lower starting ethnicity AUCe, ASPECD reduces it to near
random performance of 0.568, lower than Multi-IVE’s value
of 0.635. ASPECD also achieves a higher suppression of
gender with a lower AUCg . For MagFace ASPECD achieves
a higher suppression of ethnicity (-26.9% RC compared to
Multi-IVE’s -9.7% RC) and exhibits a higher suppression of
gender (-27.6% RC compared to MultiIVE’s -22.8%).

Matching gender AUCg . From the results in Table VII,
we observe that for CosFace at a fixed gender AUC of
0.888, ASPECD significantly outperforms Multi-IVE in
terms of ethnicity suppression (−21.2% RC vs. −8.3%
RC). However, this comes at the expense of a much
higher drop in verification performance (141.8% increase
in FNMR@FMR10−2 for ASPECD compared to 65.5% for
Multi-IVE). For all the other extractors, ASPECD consis-
tently achieves lower degradations in verification perfor-
mance and higher ethnicity suppression rates. For MagFace,
both gender and ethnicity are suppressed to a similar extent.

Matching ethnicity AUCe. The results reported in Ta-
ble VIII show that ASPECD outperforms Multi-IVE in terms
of FNMR@FMR10−2 with all face recognition models,
primarily due to ASPECD’s retention of more identity-



TABLE VI
ASPECD VS. MULTI-IVE AT MATCHED EER ON VGGFACE2*

Extractor EER Approach
Gender AUCg (↓) Ethnicity AUCe (↓) FNMR@FMR10−2 (↓) SR (↑)

Orig. Priv. enh. RC Orig. Priv. enh. RC Orig. Priv. enh. RC

CosFace 0.062 ASPECD (ours) 0.991 0.895 −9.7% 0.947 0.746 −21.2% 0.011 0.027 141.8% 0.323
Multi-IVE 0.682 −31.2% 0.780 −17.7% 0.206 1776.4% 0.483

FaceNet 0.035 ASPECD (ours) 0.991 0.962 −3.0% 0.938 0.798 −14.9% 0.048 0.076 59.4% 0.189
Multi-IVE 0.984 −0.7% 0.838 −10.7% 0.090 87.5% 0.062

ArcFace 0.059 ASPECD (ours) 0.991 0.936 −5.6% 0.928 0.743 −20.0% 0.069 0.143 107.0% 0.273
Multi-IVE 0.943 −4.9% 0.784 −15.5% 0.167 142.5% 0.149

AdaFace 0.024 ASPECD (ours) 0.705 0.674 −4.4% 0.738 0.568 −23.0% 0.014 0.028 97.9% 0.432
Multi-IVE 0.718 1.8% 0.635 −14.0% 0.031 122.1% 0.211

MagFace 0.018 ASPECD (ours) 0.912 0.667 −26.9% 0.875 0.634 −27.6% 0.013 0.020 53.8% 0.619
Multi-IVE 0.824 −9.7% 0.675 −22.8% 0.020 53.8% 0.047

TABLE VII
ASPECD VS. MULTI-IVE AT MATCHED GENDER AUCg ON VGGFACE2*.

Extractor Gender AUCg Approach
EER (↓) Ethnicity AUCe (↓) FNMR@FMR10−2 (↓) SR (↑)

Orig. Priv. enh. RC Orig. Priv. enh. RC Orig. Priv. enh. RC

CosFace 0.888 ASPECD (ours) 0.010 0.020 98.0% 0.947 0.746 −21.2% 0.011 0.027 141.8% 0.323
Multi-IVE 0.015 51.0% 0.868 −8.3% 0.018 65.5% 0.167

FaceNet 0.958 ASPECD (ours) 0.024 0.036 52.1% 0.938 0.798 −14.9% 0.048 0.076 59.4% 0.189
Multi-IVE 0.067 177.9% 0.794 −15.3% 0.243 406.5% 0.145

ArcFace 0.927 ASPECD (ours) 0.034 0.060 75.6% 0.928 0.743 −20.0% 0.069 0.143 107.0% 0.273
Multi-IVE 0.063 84.4% 0.775 −16.4% 0.172 149.4% 0.178

AdaFace 0.673 ASPECD (ours) 0.013 0.023 80.0% 0.738 0.568 −23.0% 0.014 0.028 97.9% 0.432
Multi-IVE 0.048 268.5% 0.61 −17.3% 0.102 632.1% 0.365

MagFace 0.663 ASPECD (ours) 0.013 0.018 40.0% 0.875 0.634 −27.6% 0.013 0.020 56.2% 0.619
Multi-IVE 0.129 893.8% 0.648 −25.9% 0.498 3729.2% 0.400

TABLE VIII
ASPECD VS. MULTI-IVE AT MATCHED ETHNICITY AUCe ON VGGFACE2*.

Extractor Ethnicity AUCe Approach
EER (↓) Gender AUCg (↓) FNMR@FMR10−2 (↓) SR (↑)

Orig. Priv. enh. RC Orig. Priv. enh. RC Orig. Priv. enh. RC

CosFace 0.769 ASPECD (ours) 0.010 0.020 98.0% 0.991 0.895 −9.7% 0.011 0.027 141.8% 0.323
Multi-IVE 0.072 623.0% 0.682 −31.2% 0.265 2310.0% 0.496

FaceNet 0.794 ASPECD (ours) 0.024 0.036 52.1% 0.991 0.962 −3.0% 0.048 0.076 59.4% 0.189
Multi-IVE 0.067 177.9% 0.958 −3.3% 0.243 406.5% 0.145

ArcFace 0.744 ASPECD (ours) 0.034 0.06 75.6% 0.991 0.936 −5.6% 0.069 0.143 107.0% 0.273
Multi-IVE 0.142 319.1% 0.887 −10.5% 0.613 787.8% 0.262

AdaFace 0.562 ASPECD (ours) 0.013 0.023 80.0% 0.705 0.674 −4.4% 0.014 0.028 97.9% 0.432
Multi-IVE 0.114 780.0% 0.549 −22.2% 0.416 2874.3% 0.739

MagFace 0.633 ASPECD (ours) 0.013 0.018 40.0% 0.912 0.667 −26.9% 0.013 0.020 56.2% 0.619
Multi-IVE 0.210 1519.2% 0.612 −32.9% 0.879 6660.8% 0.525

related information. On the other hand, Multi-IVE con-
sistently excels in gender suppression. Nevertheless, this
advantage in gender suppression is offset by a significant
loss in verification performance.

VI. CONCLUSIONS

In this paper, we introduced ASPECD, a novel framework
for the suppression of multiple soft-biometric attributes in
face verification templates that includes a control mecha-
nism to determine which soft-biometrics in the templates
to exclude and which to retain. ASPECD was evaluated

in comprehensive experiments with five state-of-the-art tem-
plate extractors, achieving competitive results in both single-
and multi-attribute privacy-enhancement settings. The ex-
perimental results showed that ASPECD exhibits significant
capacity for suppressing multiple-attributes in face templates
across a variety of face recognition models, and that it
compares favorably against the state-of-the-art. As part of our
future work, we plan to explore unsupervised versions of our
disentanglement procedure to account for different types of
sensitive information in one single step, where only identity
supervision is used to drive the disentanglement process.
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APPENDIX

In the main part of the paper, we conducted comprehensive
experiments with ASPECD to demonstrate its effectiveness
in privacy enhancement. In this Supplementary material, we
provide additional results that further showcase the capa-
bilities of ASPECD. Specifically, we: (i) evaluate individ-
ual components for suppressing either ethnicity or gender,
(ii) evaluate ASPECD on the additional BFW dataset, (iii)
investigate the types of errors caused by ASPECD using
confusion matrices, and (iv) provide links to the used models
and repositories for reproducibility reasons.

A. In-detail analysis of ASPECD components

In the main paper, we reported results from tests on both
individual and sequential configurations of ASPECD. Here,
we provide additional results for individual components (G
and E), evaluated separately.

Module E. When using only module E, which focuses solely
on privacy-enhancement of ethnicity, we obtain the results
reported in Table IX. In Table X we provide corresponding,
in-depth results for the verification experiments.

TABLE IX
ASPECD TARGETING ONLY ETHNICITY (COMPONENT E).

Extractor
Gender AUC (↓) Ethnicity AUC (↓) Verification AUC (↑)

SR (↑)
Orig. Priv. enh. RC Orig. Priv. enh. RC Orig. Priv. enh. RC

CosFace 0.991 0.983 −0.8% 0.947 0.798 −15.7% 0.999 0.997 −0.2% 0.175
FaceNet 0.991 0.986 −0.5% 0.938 0.841 −10.3% 0.996 0.994 −0.2% 0.116
ArcFace 0.991 0.965 −2.7% 0.928 0.789 −15.0% 0.993 0.988 −0.6% 0.189
AdaFace 0.724 0.705 −2.7% 0.738 0.637 −13.7% 0.996 0.994 −0.3% 0.166
MagFace 0.912 0.665 −27.0% 0.875 0.648 −25.9% 0.996 0.995 −0.1% 0.601

TABLE X
ASPECD TARGETING ONLY ETHNICITY (COMPONENT E) WITH THE

FOCUS ON VERIFICATION PERFORMANCE.

Extractor EER (↓) FNMR@FMR10−2 (↓) FNMR@FMR10−3 (↓)
Orig. Priv. enh. RC Orig. Priv. enh. RC Orig. Priv. enh. RC

CosFace 0.010 0.016 60.0% 0.011 0.019 77.3% 0.027 0.054 99.6%
FaceNet 0.024 0.029 22.1% 0.048 0.057 18.8% 0.180 0.177 −1.4%
ArcFace 0.034 0.048 42.4% 0.069 0.109 58.0% 0.198 0.253 27.6%
AdaFace 0.013 0.020 56.9% 0.014 0.022 58.6% 0.019 0.031 63.7%
MagFace 0.013 0.017 27.7% 0.013 0.018 37.7% 0.018 0.024 30.6%

The impact of privacy-enhancement on ethnicity AUC
varies depending on the chosen template extractor. The RC
ranges from a decrease of −10.3% for FaceNet features to a
decrease of up to −25.9% for MagFace features. Note that,
as desired, the non targeted gender exhibits proportionally
smaller changes in AUC. For example, there is a minor
decrease of only 0.5% in RC for FaceNet and a decrease
of −0.9% for CosFace. MagFace stands as an exception
in this context, where the relative drop in gender AUC
is even greater than that of ethnicity AUC, amounting
to -27% in RC. The trend of correlated drops of gender
AUC and ethnicity AUC in scores concerning MagFace
templates is consistent and emerges in later analyses as
well. This suggests that gender and ethnicity attributes are
highly correlated and hard to separate, making MagFace
suitable for cases where both, gender and ethnicity need

to be privacy-enhanced. Turning our attention to Table X,
the highest relative drop in verification performance occurs
on CosFace features (e.g. 60% RC in EER), however the
absolute EER of 0.016 and FNMR@FMR10−2 of 0.019 are
still among the lowest. While ArcFace achieved ethnicity
AUC RC of −15%, a value similar to CosFace’s ethnicity
AUC RC of −15.7, both absolute FNMR@FMR scores are
approximately 5 times higher in comparison to CosFace.
On AdaFace, a relatively low starting ethnicity AUC of
0.738 was additionally reduced to 0.637 without significant
effect on gender AUC and promising verification perfor-
mance in terms of absolute FNMR@FMR scores (e.g. 0.031
FNMR@FMR10−3 is second-lowest score). In summary,
when considering extractors other than MagFace, we can
effectively target only ethnicity with less significant impact
on gender, while the effect on verification performance varies
among template extractors.

Module G. The results of targeting only gender using
ASPECD are presented in Table XI, while Table XII pro-
vides corresponding in-detail verification performance. When
focusing solely on gender, the drops in gender AUC are
higher than drops in ethnicity AUC. As desired, they are
also notably higher in comparison to gender AUC values
presented in Table IX, where only ethnicity was targeted.
This holds true for all compared template extractors. On
MagFace templates, we again observe substantial reductions
in both gender AUC and ethnicity AUC. Regarding templates
other than MagFace, targeting gender causes varying levels
of reduction in ethnicity AUC. We observe that reductions
of ethnicity AUC in this experiment are higher compared
to reductions of gender AUC in the previous experiment,
where only ethnicity was targeted. Moreover, the verification
performance is more impacted when targeting gender (e.g.
EERs for FaceNet and ArcFace become higher than 0.1).

TABLE XI
ASPECD TARGETING ONLY GENDER (COMPONENT G).

Extractor
AUCg (↓) AUCe (↓) Verification AUC (↑)

SR (↑)
Orig. Priv. enh. RC Orig. Priv. enh. RC Orig. Priv. enh. RC

CosFace 0.991 0.778 −21.5% 0.947 0.890 −6.1% 0.999 0.988 −1.1% 0.281
FaceNet 0.991 0.914 −7.8% 0.938 0.873 −6.9% 0.996 0.960 −3.6% 0.153
ArcFace 0.991 0.851 −14.1% 0.928 0.812 −12.5% 0.993 0.928 −6.6% 0.279
AdaFace 0.705 0.554 −21.4% 0.738 0.610 −17.3% 0.996 0.983 −1.3% 0.636
MagFace 0.912 0.635 −30.4% 0.875 0.657 −24.9% 0.996 0.990 −0.6% 0.627

TABLE XII
ASPECD TARGETING ONLY GENDER (VERIFICATION).

Extractor EER (↓) FNMR@FMR10−2 (↓) FNMR@FMR10−3 (↓)
Orig. Priv. enh. RC Orig. Priv. enh. RC Orig. Priv. enh. RC

CosFace 0.010 0.051 408.0% 0.011 0.126 1041.8% 0.027 0.278 930.7%
FaceNet 0.024 0.105 335.8% 0.048 0.324 574.4% 0.180 0.557 209.6%
ArcFace 0.034 0.147 331.8% 0.069 0.459 565.8% 0.198 0.676 241.5%
AdaFace 0.013 0.054 314.6% 0.014 0.116 728.6% 0.019 0.240 1162.1%
MagFace 0.013 0.033 151.5% 0.013 0.049 277.7% 0.018 0.106 488.9%

B. Evaluation on the BFW dataset

In this section, we present an extended evaluation of
ASPECD, applying it to the BFW dataset [23], following
the same methodology as used for the VGGFace2* dataset
in the main paper. Table XIII details the baseline verifi-
cation performance, while Table XIV outlines the baseline



performance for soft-biometric attribute extraction. It’s worth
reiterating that VGGFace2* considers 5 different ethnic
groups, while BFW only considers 4, making it a somewhat
easier classification task due to fewer classes.

TABLE XIII
BASELINE VERIFICATION PERFORMANCE ON THE BFW DATASET.

Extractor Verification AUC (↑) EER (↓) FNMR@FMR10−2(↓) FNMR@FMR10−3(↓)

CosFace 0.992± 0.001 0.040± 0.004 0.085± 0.009 0.209± 0.010
FaceNet 0.975± 0.001 0.078± 0.001 0.311± 0.008 0.605± 0.010
ArcFace 0.955± 0.002 0.108± 0.004 0.402± 0.013 0.920± 0.032
AdaFace 0.975± 0.004 0.059± 0.008 0.079± 0.012 0.102± 0.014
MagFace 0.977± 0.004 0.057± 0.008 0.077± 0.013 0.099± 0.015

TABLE XIV
BASELINE PERFORMANCE OF SOFT-BIOMETRIC CLASSIFIERS ON THE

BFW DATASET IN TERMS OF AUC.

Extractor Gender AUC Ethnicity AUC

CosFace 0.987± 0.003 0.989± 0.003
FaceNet 0.967± 0.005 0.978± 0.004
ArcFace 0.975± 0.003 0.972± 0.004
AdaFace 0.633± 0.029 0.666± 0.025
MagFace 0.852± 0.021 0.878± 0.006

C. Examining Privacy-Enhancement Induced Errors

The objective of privacy enhancement is to reduce the
effectiveness of soft-biometric classifiers. In this section, we
investigate the types of misclassifications that occur as a
consequence of privacy enhancement. In Fig. 5, we examine
the impact of E→G by analyzing the resulting misclassifica-
tions through confusion matrices for both considered testsets,
VGGFace2* and BFW.

Specifically, our analysis examines CosFace (rows 1 and 2)
with less correlated gender and ethnicity, and MagFace (rows
3 and 4) with a high correlation. Note that the VGGFace2*
train and test sets involve 5 ethnicities, whereas BFW only
encompasses 4, rendering it a comparatively simpler classi-
fication problem. For both datasets, we observe that while
diagonals are clearly discernible for original templates, they
are notably less discernible for privacy-enhanced templates,
demonstrating the effectiveness of privacy enhancement.

D. Reproducibility

All of our experiments are reproducible, as we used
publicly available datasets and official repositories for
all models used in the experiments. We also note at
this point that further details on the models, such as the
choice of backbone, the selection of training datasets and
hyperparameter settings can be found from the links posted
below.

Template extractors:

• AdaFace: https://github.com/mk-minchul
/AdaFace

• ArcFace & FaceNet-512: https://github.com/s
erengil/deepface/
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Fig. 5. Confusion matrices computed over the two test datasets. The
confusion matrices show the effect of ASPECD’s privacy enhancement,
specifically of model E→G, on ethnicity (columns 1 and 3) and gender
(columns 2 and 4) classification. We consider two extractors: MagFace in
rows 1 and 2, and CosFace in rows 3 and 4, on two datasets, VGGFace2*
(columns 1 and 2) and BFW (columns 3 and 4).

• CosFace: https://github.com/MuggleWang/
CosFace_pytorch

• MagFace: https://github.com/IrvingMeng/
MagFace

Compared state-of-the-art methods:

• Multi-IVE: https://github.com/otroshi/m
ulti-ive

• IVE and CSN: https://github.com/pterhoe
r/PrivacyPreservingFaceRecognition

List of VGGFace2* dataset images:
https://github.com/to_come_after_review

We also plan to make the code for ASPECD publicly
available after the review.

https://github.com/mk-minchul/AdaFace
https://github.com/mk-minchul/AdaFace
https://github.com/serengil/deepface/
https://github.com/serengil/deepface/
https://github.com/MuggleWang/CosFace_pytorch
https://github.com/MuggleWang/CosFace_pytorch
https://github.com/IrvingMeng/MagFace
https://github.com/IrvingMeng/MagFace
https://github.com/otroshi/multi-ive
https://github.com/otroshi/multi-ive
https://github.com/pterhoer/PrivacyPreservingFaceRecognition
https://github.com/pterhoer/PrivacyPreservingFaceRecognition
https://github.com/to_come_after_review

