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Abstract—State-of-the-art Face Recognition (FR) models perform well in constrained scenarios, but frequently fail in difficult real-world
scenarios, when no quality guarantees can be made for face samples. For this reason, Face Image Quality Assessment (FIQA)
techniques are often used by FR systems, to provide quality estimates of captured face samples. The quality estimate provided by
FIQA techniques can be used by the FR system to reject samples of low-quality, in turn improving the performance of the system and
reducing the number of critical false-match errors. However, despite steady improvements, ensuring a good trade-off between the
performance and computational complexity of FIQA methods across diverse face samples remains challenging. In this paper, we
present DifFIQA, a powerful unsupervised approach for quality assessment based on the popular denoising diffusion probabilistic
models (DDPMs) and the extended (eDifFIQA) approach. The main idea of the base DifFIQA approach is to utilize the forward and
backward processes of DDPMs to perturb facial images and quantify the impact of these perturbations on the corresponding image
embeddings for quality prediction. Because of the iterative nature of DDPMs the base DifFIQA approach is extremely computationally
expensive. Using eDifFIQA we are able to improve on both the performance and computational complexity of the base DifFIQA
approach, by employing label optimized knowledge distillation. In this process, quality information inferred by DifFIQA is distilled into a
quality-regression model. During the distillation process we use an additional source of quality information hidden in the relative
position of the embedding to further improve the predictive capabilities of the underlying regression model. By choosing different
feature extraction backbone models as the basis for the quality-regression eDifFIQA model, we are able to control the trade-off
between the predictive capabilities and computational complexity of the final model. We evaluate three eDifFIQA variants of varying
sizes in comprehensive experiments on 7 diverse datasets containing static-images and a separate video-based dataset, with 4 target
CNN-based FR models and 2 target Transformer-based FR models and against 10 state-of-the-art FIQA techniques, as well as against
the initial DifFIQA baseline and a simple regression-based predictor DifFIQA(R), distilled from DifFIQA without any additional
optimization. The results show that the proposed label optimized knowledge distillation improves on the performance and
computationally complexity of the base DifFIQA approach, and is able to achieve state-of-the-art performance in several distinct
experimental scenarios. Furthermore, we also show that the distilled model can be used directly for face recognition and leads to highly
competitive results.

Index Terms—Computer Vision, Face Recognition, Face Image Quality Assessment, Denoising Diffusion Probabilistic Models,
Knowledge Distillation, Label Optimization
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1 INTRODUCTION

The performance of Face Recognition (FR) system has improved
significantly over the recent years, with state-of-the-art models
achieving near-perfect results on various benchmarks with high- to
medium-quality images. However, this kind of performance does
not always carry-over to more challenging real-world scenarios,
such as surveillance or mobile applications [1], [2], [3], where the
image quality cannot be controlled, and the recognition models
are often confronted with lower quality images. Such low-quality
samples have an adverse effect on the performance of FR models
and can cause catastrophic false-match errors, leading to privacy
breaches or even monetary loss. A common solution to such
challenges, is to estimate the quality of the input face images
and reject or request recapture of those below a given quality
threshold. Through this procedure, the stability, and performance
of FR models can typically be significantly improved [4], [5], [6].
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Face Image Quality Assessment (FIQA) approaches are de-
signed to provide FR systems with estimates of the (biometric)
quality of the input face images. Here, the term quality is com-
monly defined as the utility of the given sample for face recog-
nition, as also described in the ISO/IEC 29794-1 standard [7]. In
other words, FIQA techniques do not focus explicitly on assessing
sample quality from the standpoint of human-perception. Instead,
they aim to quantify quality “through the eyes” of a FR model and
capture all image characteristics that can in some way impact the
face-recognition performance. Since visual image characteristics,
such as noise, lighting, and occlusions are known to negatively
affect FR models, such human-perceived quality factors often
exhibit a significant correlation with the utility of the images for
face recognition. As such, Face Image Quality (FIQ) can also
be seen as an extension of the perceivable (visual) quality that
encodes additional FR model specific/relevant information.

While general-purpose Image Quality Assessment (IQA) tech-
niques can be used for the assessment of face-image quality as well
[8], [9], their performance is often unsatisfactory and far behind
the current state-of-the-art (SOTA) in the FIQA area. Modern
FIQA techniques, on the other hand, have been shown to perform
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well across facial images with diverse quality characteristics and
in conjunction with a wide variety of conceptually distinct face
recognition models. Several different groups of techniques have
been proposed in the literature over the years. The largest of these
groups consists of supervised FIQA techniques that aim to learn
quality predictors by regressing to so-called pseudo-quality labels
[10], [11], [12], [13]. Here, the pseudo-quality labels are defined
in various ways, ranging from human annotations to labels derived
through face recognition experiments. Another group of tech-
niques focuses on unsupervised face image quality assessment.
Techniques from this group commonly quantify specific image
characteristics known to affect face recognition systems without
relying on explicit supervision [5], [14], [15], [16], [17]. The last
noteworthy group of techniques combines face recognition and
face image quality assessment into one coherent task [18], [19],
[20], [21], [22]. The main goal of these quality-aware FR models
is not necessarily quality assessment, instead quality estimates of
the input images are generated as a side product of the models’
design. Nonetheless, contemporary quality-aware models have
been demonstrated to yield state-of-the-art performance for the
FIQA task as well. While considerable progress has been made in
face image quality assessment over recent years, designing a FIQA
model that ensures a good trade-off between performance, space
and runtime efficiency, and that generalizes well across different
datasets and FR models remains challenging.

To address these challenges, we introduce in this paper a novel
FIQA technique, named DifFIQA (Diffusion-based Face Image
Quality Assessment), which exploits the capabilities of modern
Denoising Diffusion Probabilistic Models (DDPMs) for quality
assessment and is based on the following two key insights [5]:

• Perturbation robustness: Images of higher quality have
stable representations in the embedding space of the given FR
model and are less effected by the perturbations introduced
by the forward diffusion process compared to lower quality
images.

• Reconstruction quality: Higher-quality samples are easier
to reconstruct from partially corrupted (noisy) data with
incomplete identity information and exhibit less disparity
between the embeddings of the input and denoised samples
than low-quality images.

Based on the above observations, DifFIQA analyzes the em-
bedding stability of the given face images by perturbing them
through the forward as well as backward diffusion process and
then quantifies the results for quality estimation. While a pre-
liminary version of the DifFIQA approach was presented in [5],
we extend the initial approach in this paper by optimizing the
(space and runtime) efficiency of the model, while also further
improving performance. Specifically, we propose the Extended
DifFIQA model (eDifFIQA) that relies on a novel knowledge
distillation scheme that distills the quality information extracted
by DifFIQA into a quality-regression model that allows for quality
prediction with a single forward pass through the model, instead of
relying on the computationally heavy diffusion processes utilized
by DifFIQA. Because an arbitrary backbone can be used for the
regressor, the complexity of eDifFIQA can be controlled and
adjusted towards the desired performance-complexity trade-
off. Moreover, we infuse additional knowledge into the distilled
model, by accounting for the following aspect of face-image-
quality, often exploited by contemporary FIQA techniques [19],
[21], i.e.:

• Relative position in the embedding space: The embeddings
of high-quality face images are more likely to be located
close to the centroids of the corresponding identities (or class-
centers), whereas low-quality images typically fall into an
area of the embedding space that is further away from the
centroid of the given identity. During the distillation process,
this insight can be used as an additional source of information
when estimating the quality of training samples.

By accounting for the relative embedding-space position of the
face images during the distillation process, we are able to derive
a powerful lightweight quality predictor that inherits the well-
defined theoretical motivation of the teacher DifFIQA procedure,
while exhibiting highly desirable runtime characteristics.

We evaluate the proposed DifFIQA technique as well the
extended distilled version, eDifFIQA, through comprehensive ex-
periments on eight standard datasets, in comparison to ten state-
of-the-art FIQA techniques and across six of the strongest face
recognition models currently available. Our experimental results
show that both DifFIQA and eDifFIQA lead to highly competitive
performance, while the latter also allows for (space and runtime)
efficient quality predictions. In summary, we make the following
main contributions in this paper:

• We propose a novel technique, named DifFIQA, which lever-
ages the generative capabilities of modern DDPMs, for the
task of face image quality assessment. By exploring the per-
turbation robustness and reconstruction quality of the facial
images, DifFIQA is able to make use of both, the forward
(noising) and the backward (reconstruction) diffusion step,
and accurately assess the quality of the given input sample.

• We propose a dedicated optimization-based knowledge distil-
lation pipeline, named eDifFIQA (extended DiFIQA), which
improves on the performance and run-time capabilities of
DifFIQA, by using an additional source of quality informa-
tion in the form of the relative position of samples in the
embedding space.

2 RELATED WORK

In this section, we review relevant prior work with the goal of pro-
viding context and the necessary background for the contributions
presented in this paper. For a more comprehensive coverage of
the reviewed areas, the reader is referred to some of the excellent
surveys available in the literature, e.g., [4], [23].

2.1 Face Image Quality Assessment

Face Image Quality Assessment (FIQA) techniques aim at esti-
mating the (biometric) quality of the input face images. While
different definitions of quality can be found in the literature [4],
the majority of modern solutions in this area adopt the notion of
utility or fitness of the facial images for the recognition task as
the synonym for quality. As such, face image quality is most often
represented in the form of a single scalar score, where a lower
value reflects a lower quality. Because these scalar values encode
the overall quality characteristics of the images and not specific
aspects (e.g., sharpness, occlusion level, frontalness, etc.), they
are also often referred to as unified quality scores. Based on how
the quality scores are estimated, existing techniques can in general
be further partitioned into: (i) unsupervised (analytical) and (ii)
supervised (regression) methods.
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Fig. 1. Overview of the DifFIQA and eDifFIQA. The base approach of DifFIQA, consists of two main parts: the Diffusion Process and the Quality-
Score Calculation. The diffusion process uses a custom UNet model, to generate noisy and reconstructed images using the forward and backward
diffusion processes, respectively. To capture the effect of face pose on the quality estimation procedure, the process is repeated with a horizontally
flipped image. The Quality Score Calculation part estimates the quality of samples by producing and comparing the embeddings of the original
sample and the images generated by the diffusion part. To improve on the performance and computational complexity of the base DifFIQA approach,
eDifFIQA employs knowledge distillation and label optimization. Here, the quality label qx of a given training sample x produced by DifFIQA, is first
optimized using additional quality information derived from the relative position of the sample within the embedding space of the feature extraction
FR model. The quality information is then distilled into the model, consisting of a feature extraction FR backbone and an MLP quality-regression
head, by employing a representation consistency Lrc and quality Lq loss, both of which help to improve the predictive capabilities of the final trained
quality-regression model.

Unsupervised methods try to estimate sample quality by observ-
ing the characteristics of the sample either in the image space or
in the latent/embedding space of a chosen recognition model. Be-
cause of this, such methods can be viewed as face-specific general
purpose Image Quality Assessment (IQA) techniques [24], [25],
[26]. Earlier methods from this group typically aim at assessing
the quality by estimating face- and image-specific characteristics
of the input images, such as illumination, pose, texture, occlusions,
etc. [16], [17], [27], [28]. However, such techniques do not achieve
competitive results when compared to modern FIQA methods.
Conversely, state-of-the-art unsupervised FIQA methods focus on
predicting unified quality scores and typically exploit the fact
that the stability of image representations in the latent/embedding
space is highly correlated with the quality of the input samples. To
probe the stability of the computed representations, perturbations
of the input samples or intermediate model representations are
typically induced and then quantified to measure quality. One of
the first methods using this approach, called SER-FIQ [14], for
example, relies on the use of dropout layers to generate perturba-
tions that can be evaluated for quality prediction. Another, more
recent method, named FaceQAN [15], uses adversarial methods to
generate perturbed samples, and consequently, to estimate quality
scores. While recent unsupervised techniques, have shown great
promise for the FIQA task, they are often computationally heavier
than representatives from the group of supervised methods and
due to their (recent) reliance on data perturbations may capture
only a partial view of the overall sample quality.

Supervised methods most commonly train quality-regression
models using pseudo quality labels as the targets for the re-
gression task. The main differences among existing solutions,
therefore, come from the pseudo-quality-label generation process.
Earlier works [29], for example, used human annotations to
generate quality labels. However, such approaches do not achieve
competitive performance from today’s perspective, as (human)
perceivable quality does not fully capture all factors and image
characteristics relevant for the utility of face images for recognition

– the common definition of face image quality. One of the first
approaches not relying on human annotations is FaceQnet [10],
[30]. The model computes quality labels by comparing the latent
representations (or embeddings) of all images of a given subject
to the subject’s highest quality image. In this case, the highest
quality image is determined by using third-party software. Similar
to FaceQnet, most newer techniques rely on comparison scores
to generate quality labels. PCNet [11], for instance, uses many
mated image pairs (pair of distinct images of the same individual),
while SDD-FIQA [13] uses both, non-mated (pair of distinct
images of different individuals) and mated pairs of images for
generation of pseudo quality labels. Notably, LightQNet [12] also
focuses on minimizing the complexity of the regression model
by employing a custom quality loss combined with a lightweight
network architecture. In general, supervised FIQA technique are
often computationally efficient and typically require only a single
forward pass through the prediction model to generate a quality
scores, but are strongly dependent on the label generation process
to ensure competitive performance.

2.2 Quality-Aware Face Recognition
Quality-Aware Face Recognition models are related to FIQA tech-
niques in the sense that they incorporate quality information in the
training process of face recognition models, which then commonly
acts, as a regularizer for the learning procedure. As a result of this
setup, such models often produce quality predictions in addition to
facial embeddings during runtime and exhibit improved reliability
and performance in challenging real-world scenarios [19], [22]. To
include quality in the learning process, techniques from this group
employ custom loss functions, which encompass both, identity
separability and sample quality information. The PFE approach
from [18], for instance, learns to predict the mean and variance
representation of the input images, where the mean represents the
sample embedding and the variance the uncertainty of the embed-
ding in the latent space. The sample quality can then be trivially
obtained from the uncertainty vector. The more recent technique,
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MagFace [19], extends the ArcFace [31] loss with a magnitude-
aware angular margin term that enables the model to distinguish
between samples of differing qualities using the magnitude of
the sample embedding. Another excellent technique, named CR-
FIQA [21], infers the quality by observing the ratio between the
distances of the sample to the positive class center and the nearest
negative class center. Quality scores produced by quality-aware
face recognition techniques (or, in other words, model-based FIQA
methods) are highly competitive due to the linkage between face
recognition models and the quality estimation process, but may
still lead to sub-optimal results if the quality/utility needs to be
estimated for FR models that are conceptually very different from
their own backbone architecture.

2.3 Our Contributions
The first contribution of this paper, the DifFIQA technique, can
be seen as an unsupervised technique that leverages the generative
capabilities of modern DDPMs in combination with a targeted FR
model. Thus, DifFIQA is in general designed towards a specific
FR model, but the quality scores (as we show later) also generalize
well across a wide variety of models, including transformer based
FR models that have so far not been studied widely in the context
of FIQA. From a conceptual point of view, DifFIQA is most
closely related to FaceQgen [32], where a generative (GAN-
based) model is used to improve the quality of input samples,
while the discriminative model tries to distinguish between gen-
uine and restored (high-quality) images. However, different from
FaceQgen, DifFIQA analyzes the results from the forward (i.e.,
noising/degradation) as well as backward (denoising/restoration)
diffusion processes for quality estimation. This dual approach to
quality estimation leads to highly competitive FIQA results, as we
demonstrate in the experimental section.

The second contribution of this work, the distilled eDiFIQA
model, on the other hand, can be seen as a supervised approach
that learns to predict quality from a teacher, while incorporating
ideas from quality-aware face recognition models, such as CR-
FIQA [21], [33]. Due to the feed-forward nature of eDiFIQA, the
model is computationally efficient, but also ensures a highly de-
sirable trade-off between performance, generalization capabilities
and space/runtime complexity. The distillation process in this work
is applied to DifFIQA, but is otherwise general and applicable to
any existing FIQA technique.

3 METHODOLOGY

The stability of the image representations in the embedding space
of modern FR models correlates heavily with the quality of the
input face images, as demonstrated by the success of various
recent FIQA techniques [14], [15]. One way to investigate this
stability is by inducing perturbations in the image space and
analyzing the impact of the perturbations in the embedding space
of the targeted FR model. This can, for example, be achieved
by using the forward and backward processes of modern diffusion
approaches where: the forward process adds some amount of noise
to the sample, and the backward process tries to remove the noise,
by reconstructing the original. One of our main contributions, the
DifFIQA technique, takes advantage of this insight, as shown in
Fig. 1, and adopts a custom DDPM model for the generation of
noisy and reconstructed images. The generated images are then
passed through a selected FR model to explore the impact of the
perturbations on the variability of the embedding corresponding

to the input image. While this process is typically effective,
it is also computationally expensive. We, therefore, introduce a
second contribution, the eDifFIQA technique, that distills the
knowledge from DifFIQA into a computationally efficient feed-
forward model for the FIQA task.

3.1 Preliminaries
To make the paper self-contained, we briefly present the main con-
cepts behind Denoising Diffusion Probabilistic Models (DDPMs),
with a focus on their application within our approach. More
information on the theoretical background and applications of
diffusion models can be found in [34].

In general, DDPMs represent a special type of generative
model that learns to model (image) data distributions through two
types of processes: a forward (noising) process and a backward
(denoising) process [34], [35]. The forward diffusion process
Fd iteratively adds noise to the given input image x0, by sampling
from a Gaussian distribution N (0, I). The result of this process
is a noisy sample xt, where t is the number of time steps chosen
from the sequence {0, 1, . . . , T}. The whole forward process Fd

can be presented as a Markov chain given by

q(xt|xt−1) = N (xt|xt−1

√
1− βt, βtI), (1)

where βt is a variance parameter that defines how much noise is
added to the sample at the time instance t of the forward process.
By making use of the reparameterization trick [36], [37], any
sample xt can be obtained directly from the input sample x0,
i.e.:

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I), (2)

where αt =
∏t

i=0(1− βi).
The backward diffusion process Bd, on the other hand,

attempts to iteratively denoise the generated noisy samples xt,
using a deep neural network model DΘ parameterized by Θ,
according to

p(xt−1|xt) = N (xt−1;µθ(xt, t), β̃tI), (3)

where t = T, . . . , 0, β̃t =
1−αt−1

1−αt
βt, and

µΘ(xt, t) =

√
αt−1βt

1− αt
x0 +

√
αt(1− αt−1)

1− αt
xt. (4)

The network is trained to optimize µθ , by minimizing the L2 loss

L2 = Et,x0
||DΘ(xt, t)− x0||2, (5)

where DΘ(xt, t) is the reconstructed and x0 the input image. In
the remainder of the paper, we drop the subscript Θ and use D
to denote the deep neural network, which is in our case is an
unconditional UNet model.

3.2 Overview of DifFIQA and eDifFIQA
Given an input face image x, the goal of DifFIQA is to predict
the quality score qx ∈ R by quantifying the impact of the forward
and backward diffusion processes of a custom DDPM model D on
the image representation ex in the embedding space of a given FR
model M . DifFIQA consists of two key components, dedicated
to: (i) image perturbation and (ii) quality-score calculation. The
image perturbation component relies on the forward diffusion
process to create a noisy image xt from the input sample x and
the backward process to generate the restored (denoised) image
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Fig. 2. Presentation of the extended DDPM learning scheme. Given
a training sample x and a time step t, the proposed approach generates
a time step dependent degraded image x′

t, by combining the original
image with a degraded image using the function Y . The image x′

t is then
used to generate a noisy sample using the standard forward diffusion
approach. A UNet model is then trained to reconstruct the input sample
in the backward process.

x̂. In the quality-score calculation step, the representations ex,
ext

, ex̂ corresponding to the input x, noisy xt and restored image
x̂, are calculated using the FR model M and then analyzed for
disparities to infer the final quality score qx of the input image
x. To also capture pose-related quality information, DifFIQA
repeats the entire process using a horizontally flipped version
xf of the input image x. To make DifFIQA applicable to real-
world scenarios, where computing resources are typically scarce,
we distill the model into eDifFIQA. As can be seen from Fig. 1,
the eDifFIQA model consists of a pretrained FR model Mr and a
quality-regression head MLP that is trained using pseudo-quality
labels produced by the original DifFIQA approach. However,
to further improve performance, these pseudo quality labels are
improved during training by incorporating information about the
relative position of the training samples within the embedding
space of the FR model M . During eDifFIQA training, a quality
loss term is used to ensure accurate quality label predictions, while
a representation-consistency loss is used to prevent large drifts of
the regression backbone Mr , in turn improving the accuracy of
the quality predictions.

3.3 Extended DDPM Training
The DDPM model used by DifFIQA, is based on the UNet ar-
chitecture [38] and extends the standard DDPM training paradigm
by: (i) incorporating time-dependent image degradations, and by
(ii) limiting the noise added by the forward diffusion step. Details
on the training process and our two extensions are given below.

Time-dependent image degradations. The training procedure
starts by first degrading the input sample x0 = x using a degrada-
tion function d(·), such that x′ = d(x). Here, the BSRGAN [39]
model is used to model the degradation process. The degraded
sample is then combined with the original input sample to produce
a time-dependent degraded image x′

t according to:

x′
t = Y (x0, x

′, t) = (1− α̈t)x0 + α̈tx
′, (6)

where α̈t is a time-dependent variable, calculated as sin( t
T · π

2 ),
that monotonically increases on the interval t ∈ [0, T ], such
that α̈t=0 = 0 and α̈t=T = 1, and Y (·) is the time-dependent
degradation process. In other words, at time step 0 only the non-
degraded image is considered, while at time step T only the
degraded image is considered. The training sample x′

t is then used
in the standard DDPM training scheme using the forward diffusion
step to apply noise to the sample and the backward step (Eq. (2))
to reconstruct the input sample x, as shown in Fig. 2. Note that

the (time-dependent) degradations allow the model to learn to
gradually reverse the degradations and, in turn, to construct higher
quality images during the backward diffusion process.

Noise limit. Diffusion models are often trained to reconstruct im-
ages from pure noise, guiding the generative (de-noising) process
via conditioning on the chosen image (or text). However, such
a setting is not relevant in the context of quality assessments,
as the generated (denoised) images have to exhibit a sufficient
correspondence with the input samples x. We, therefore, decide
to limit the time steps on which the DDPM model is trained on
t ∈ [1, T ′], where T ′ < T , which in turn decreases the amount of
noise in x′

t produced by the forward diffusion process and leads
to proper conditioning on the given input image x. The extended
training procedure then minimizes Eq. (5) until convergence.

3.4 Generating Noisy and Reconstructed Images
To estimate the quality of a given face image x, DifFIQA makes
use of the forward and backward diffusion processes of the trained
DDPM model. Because head pose is an important factor of face
quality, which the underlying DDPM cannot explicitly account for,
we extend our methodology, by first constructing a horizontally
flipped image xf that we utilize alongside the original image
x in the quality-score calculation step, similarly to [15]. The
main intuition behind this approach is to exploit the symmetry of
human faces, where large deviations from frontal pose induce large
disparities between the embeddings of the original and flipped
images that can be quantified during quality estimation. Thus,
for the given input face sample x, its flipped version xf and
a given time step t, we generate pairs of noisy (xt, x

f
t ) and

restored images (x̂t, x̂
f
t ) and use the generated data for quality-

score calculation.

3.5 Quality-Score Calculation
DifFIQA relies on the assumption that the embeddings of lower-
quality images are more sensitive to image perturbations intro-
duced by the forward and backward diffusion processes than
higher-quality images. To quantify this sensitivity, we calculate
the average cosine similarity between the embedding of the input
image x and all generated noisy and restored counterparts. Ad-
ditionally, since diffusion models rely on the (random) sampling
from a normal distribution, we repeat the whole process n times
and average the results, i.e.,

qx =
1

n|E|
n∑

i=1

∑
ey∈E

eTx · ey
∥ex∥ · ∥ey∥

, (7)

where E is a set of generated image embeddings, i.e, E =
{ext

, ex̂, exf , exf
t
, ex̂f }, computed with the FR model M as

ez = M(xz). In the above equation, the operator | · | denotes
the set cardinality, ∥ · ∥ the L2 norm nad qx stands for the unified
quality score of the input sample x, produced by DifFIQA.

3.6 Label Optimization & Knowledge Distillation
One of the main shortcomings of DifFIQA (and diffusion models
in general) is the high computational complexity compared to
other types of FIQA techniques. This complexity stems from the
iterative nature of the backward diffusion process, which requires
numerous forward passes through the generative network. Since
DifFIQA repeats this process n-times, this only exacerbates the
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Fig. 3. Overview of the distillation process, with added label opti-
mization. Prior to training, we first compute the embeddings ex of all
training samples x and the mean embedding eCi

of the highest quality
images for each identity Ci.

TABLE 1
Summary of the characteristics of the experimental datasets. We
evaluate eDifFIQA across eight diverse datasets with different sizes

and use-cases.

Dataset #Images #IDs #Comparisons Use Case
Mated Non-mated

LFW [40] 13,233 5,749 3,000 3,000
GeneralAdience [41] 19,370 2,284 20,000 20,000

IJB-C [42] 23,124†† 3,531 19,557 15,638,932

CALFW [43] 12,174 4,025 3,000 3,000 Cross-Age

CFP-FP [44] 7,000 500 3,500 3,500 Cross-Pose
CPLFW [45] 11,652 3,930 3,000 3,000

XQLFW [46] 13,233 5,749 3,000 3,000 Cross-Quality

YouTubeFaces [47] 3,425†† 1,595 3,024 5,860,576 Cross-Video
†† number of templates/videos, each containing several images

problem and adversely affects the applicability of the technique
in real-world applications. To address this issue, we distill the
knowledge encoded by DifFIQA into a regression model, while
simultaneously optimizing (improving) the initial quality labels
produced by DifFIQA, by infusing additional knowledge into the
distillation process, as illustrated in Fig. 3. Here, the additional
knowledge comes in the form of the relative position of the
embedding of the input sample x in comparison to the centroid
of the identity that x corresponds to.

Formally, this process can be described as follows. Con-
sider a dataset of N training images {xi}Ni=0 and let these N
images correspond to K distinct identities {C1, C2, . . . , CK}.
For the distillation process, we first compute the corresponding
embeddings {exi

}Ni=0 using the targeted FR model M , such that
ex = M(x), and then estimate mean representations (class-
centers/centroids) C of all K identities present among the training
samples. To ensure these centroids are indicative of good quality
samples, we make use of the quality labels produced by DifFIQA
and only use p-percent of the highest quality images in the dataset.
For each identity Ci, where i = {1, 2, . . . ,K}, we then construct
the mean representation, as follows:

eCi
=

1

|C(p)
i |

∑
xj∈C

(p)
i

e(p)xj
, (8)

where e
(p)
xj is the embedding of a sample from class Ci, and

the superscript (p) indicates that the samples correspond to top

p-percent of images in the training set. | · | again denotes the
cardinality operator.

Once all embeddings and average representations for all K
classes are computed, we distil the quality information from
DifFIQA into our eDifFIQA quality-regressor. The model com-
bines a pretrained backbone FR (for feature extraction) Mr with
an additional quality-regression head, implemented through an
MLP, for quality prediction. During training, we make use of
a representation consistency Lrc and a quality Lq loss. The
representation-consistency loss

Lrc = 1− êTx · ex
∥êx∥ · ∥ex∥

, (9)

encourages the model Mr to produce consistent representations
as the targeted FR model M , i.e., êx = Mr(x), and in a sense
adapts eDifFIQA to the characteristics of M . The quality loss, on
the other hand, is defined as

Lq = ∥q̂x − qox∥, (10)

where q̂x is the quality score predicted by the MLP and qox
the optimized quality label. The quality loss serves as the main
component of the distillation process and ensures that the DifFIQA
generated pseudo-quality labels are transferred to the regressor,
while also considering the relative position in the embedding
space. The optimization during the training is, hence, done using

qox = (qx − ϵ ·
êTx · e

C
(p)
i

∥êx∥ · ∥eC(p)
i

∥ ), (11)

where qx is the DifFIQA pseudo-quality label, eCi is the represen-
tation of the class-center of Ci that the input sample corresponds
to, and ϵ a hyperparameter of the eDifFIQA technique that
balances the impact of the pseudo-quality labels and the impact
of the relative-embedding space position. In practice, the above
equations suggests that samples further away from the class-
centers will be punished more heavily by the optimization step
and their pseudo-quality labels will be reduced by a larger amount
and vice versa. The final loss term is calculated as:

L = θ · Lrc + (1− θ) · Lq, (12)

where θ is a hyperparameter that determines how much weight is
put on either the representation-consistency or quality loss.

4 EXPERIMENTAL SETUP

In this section, we present the experimental setup used to evaluate
the proposed DifFIQA and eDifFIQA technique. Specifically,
we discuss the state-of-the-art (SOTA) competitors and datasets
utilized for the experiments, the evaluation methodology as well
as hyperparameter settings and experimental hardware adopted for
the evaluation.

4.1 Experimental Setting
We analyze the performance of DifFIQA and eDifFIQA in com-
parison to 10 state-of-the-art quality assessment methods: (i)
the unsupervised FaceQAN [15], SER-FIQ [14], and FaceQgen
[32] methods, (ii) the supervised FaceQnet [10], SDD-FIQA
[13], PCNet [11], and LightQnet [12] techniques, and (iii) the
model-based MagFace [19], PFE [18], and CR-FIQA [21] meth-
ods. We additionally implemented a simplified distilled model,
by simply regressing to the DifFIQA generated pseudo-quality
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Fig. 4. Comparison to the state-of-the-art with (non-interpolated) EDC curves and CNN-based face recognition models. The results are
presented for 7 datasets, 4 FR models and with 10 recent FIQA competitors. DifFIQA and eDifFIQA perform close-to or better than all other
methods included in the experiments in all configurations, i.e., with a large (L), medium (M) and small (S) regression backbone.

labels, without any label optimization. We refer to this models as
DifFIQA(R), similarly as in [5], and use it to study the impact
of the label optimization process throughout the experiments. We
test all methods on 8 commonly used benchmarks with vastly
different quality characteristics, as summarized in Table 1, i.e.:
Adience [41], Cross-Age Labeled Faces in the Wild (CALFW)
[43], Celebrities in Frontal-Profile in the Wild (CFP-FP) [44],
Cross-Pose Labeled Faces in the Wild (CPLFW) [45], large-
scale IARPA Janus Benchmark-C (IJB-C) [42], Labeled Faces

in the Wild (LFW) [40], Cross-Quality Labeled Faces in the
Wild (XQLFW) [46] and YouTubeFaces [47]. Because the per-
formance of FIQA techniques is dependent on the FR model used,
we investigate how well the techniques generalize over 4 state-of-
the-art CNN-based models, i.e.: AdaFace1 [22], ArcFace2 [31],

1https://github.com/mk-minchul/AdaFace
2https://github.com/deepinsight/insightface

https://github.com/mk-minchul/AdaFace
https://github.com/deepinsight/insightface
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Fig. 5. Comparison to the state-of-the-art with (non-interpolated)
EDC curves and Transformer-based face recognition models. Re-
sults are presented for 7 datasets, 2 FR models and with 12 recent FIQA
competitors. DifFIQA and eDifFIQA perform close-to or better than all
other methods included in the experiments.

CosFace2 [48], and CurricularFace3 [49] and 2 state-of-the-art
Transformer-based models i.e.: SwinFace4 [50], and TransFace5

[51]. The CNN-based models use a ResNet100 backbone, while
the Transformer-based models use ViT5 and SwiN4 backbones.
The models are trained on the WebFace12M1, MS1MV32,5,4,
Glint360k2,5, and CASIA-WebFace3 datasets. The empirical val-

3https://github.com/HuangYG123/CurricularFace
4https://github.com/lxq1000/SwinFace
5https://github.com/DanJun6737/TransFace

idation with 12 SOTA competitors, over 8 datasets and with 6
face recognition models allows for a comprehensive evaluation of
the proposed eDifFIQA techniques and an in-depth analysis of its
main characteristics.

4.2 Experimental Methodology
Following standard evaluation methodology [7], [14], [15], [21],
[52], we use non-interpolated Error-versus-Discard Characteris-
tic (EDC) curves (often also referred to as Error-versus-Reject
Characteristic or ERC curves in the literature) and the conse-
quent pAUC (partial Area Under the Curve) values [7], [52] for
the evaluation. The EDC curves measure the False Non-Match
Rate (FNMR), given a predefined False Match Rate (FMR) (10−3

in our case), with increasing low-quality image discard (reject)
rates. In other words, EDC curves measure how the performance
of a given FR model improves when some percentage of the
lowest quality images is discarded. In real-world applications it
is often not feasible/practical to reject a large percentage of all
samples and we are, therefore, typically most interested in the
performance at the lower discard rates. For this reason, we report
the pAUC values, where only the results up to a predetermined
discard rate threshold (0.2 and 0.3) are considered. Furthermore,
for easier interpretation and comparison of scores over different
dataset, we normalize the calculated pAUC values using the
FNMR at 0% discard rate, with lower pAUC values indicating
better performance.

4.3 Implementation Details
The baseline DifFIQA technique uses a maximum of T = 1000
forward diffusion steps, but is trained only on the first T ′ = 100 to
ensure that the image generated by the forward diffusion process
is only partially noisy. This guarantees that both the noisy and
reconstructed images are properly conditioned on the identity
of the initial input image. The utilized UNet model consists of
four downsampling and upsampling modules, each decreasing
(increasing) the dimensions of the representations by a factor
of two. Training of the UNet model is done using the Adam
optimizer, with a learning rate of 8.0e−5 in combination with
an Exponential Moving Average (EMA) model, with a decay
rate of 0.995. During inference time, we use a much smaller
number of forward steps t = 5, to generate noisy and recon-
structed images. For the extended approach, we present three
separate models at three different scales. The largest (L) uses
the ResNet100 architecture (eDifFIQA(L)), the medium-sized
(M) uses the ResNet50 architecture (eDifFIQA(M)), and the
smallest (S) uses the ResNet18 architecture (eDifFIQA(S)). All
versions use a pretrained FR model trained using the CosFace
loss function combined with a quality regression MLP with 1024
hidden neurons. The quality-regression model is trained using the
Adam optimizer with a learning rate of 1e−3 for the MLP head
and a learning rate of 1e−4 for the feature extraction FR backbone,
on roughly two million images from the VGGFace2 [53] dataset.
We set p to 20%, meaning only the top twenty percent of all
images are used for the calculation of the mean representations of
each identity. We use a value of 0.5 for the hyperparameters ϵ and
θ. The hyperparameter ϵ controls how drastically the quality labels
change due to optimization, while the hyperparameter θ controls
the balance between the representation consistency and quality
loss terms. The values for both of the parameters were determined
by a small sensitivity analysis, presented later in Section 5.5. All

https://github.com/HuangYG123/CurricularFace
https://github.com/lxq1000/SwinFace
https://github.com/DanJun6737/TransFace
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TABLE 2
Comparison to the state-of-the-art using CNN-based face

recognition models. The table reports pAUC scores at a discard rate
of 0.3 and a FMR of 10−3. Average results across all datasets are

marked pAUC. The best result for each dataset is shown in bold, the
overall best result is colored green, the second best blue and the third
best red. The best result among the baselines and proposed methods

is marked with ∗.

AdaFace - pAUC@FMR=10−3(↓)

FIQA Model Adience CALFW CFP-FP CPLFW IJB-C LFW XQLFW pAUC

FaceQnet [10] 0.963 0.938 0.738 0.887 1.256 0.884 0.977 0.949
SDD-FIQA [13] 0.839 0.871 0.513 0.688 0.782 0.825 0.842 0.766
PFE [18] 0.833 0.890 0.581 0.681 0.868 0.771 0.798 0.775
PCNet [11] 1.005 0.979 0.851 0.898 0.788 0.661 0.987 0.881
MagFace [19] 0.860 0.866 0.537 0.664 0.883 0.666 0.913 0.770
LightQNet [12] 0.847 0.894 0.659 0.684 0.797 0.777 0.704 0.766
SER-FIQ [14] 0.807 0.892 0.486 0.626 0.762 0.935 0.654† 0.738
FaceQAN [15] 0.890 0.919 0.392 0.619 0.756 0.656 0.654 0.698
CR-FIQA [21] 0.844 0.851 0.404 0.588 0.750 0.707 0.685 0.690
FaceQgen [32] 0.858 0.970 0.739 0.694 0.853 0.834 0.736 0.812

DifFIQA [5] 0.864 0.905 0.426 0.656 0.761 0.730 0.627 0.710
DifFIQA(R) [5] 0.865 0.895 0.421 0.646 0.731* 0.708* 0.610* 0.697

eDifFIQA(S) 0.868 0.892 0.403 0.651 0.760 0.786 0.647 0.716
eDifFIQA(M) 0.871 0.834* 0.414 0.645* 0.747 0.728 0.620 0.694
eDifFIQA(L) 0.849* 0.854 0.399* 0.646 0.743 0.713 0.629 0.690

ArcFace - pAUC@FMR=10−3(↓)

FIQA Model Adience CALFW CFP-FP CPLFW IJB-C LFW XQLFW pAUC

FaceQnet [10] 0.943 0.955 0.702 0.878 1.224 0.884 0.899 0.926
SDD-FIQA [13] 0.783 0.901 0.497 0.734 0.720 0.808 0.774 0.745
PFE [18] 0.774 0.932 0.522 0.738 0.783 0.779 0.641 0.738
PCNet [11] 1.022 1.006 0.863 0.783 0.706 0.623 1.004 0.858
MagFace [19] 0.812 0.902 0.500 0.717 0.824 0.635 0.943 0.762
LightQNet [12] 0.789 0.913 0.582 0.752 0.721 0.745 0.621 0.732
SER-FIQ [14] 0.767 0.903 0.446 0.656 0.671 0.935 0.676† 0.722
FaceQAN [15] 0.824 0.941 0.347 0.677 0.673 0.624 0.667 0.679
CR-FIQA [21] 0.808 0.891 0.369 0.689 0.664 0.675 0.680 0.682
FaceQgen [32] 0.817 0.985 0.724 0.701 0.785 0.802 0.653 0.781

DifFIQA [5] 0.805 0.918 0.402 0.674 0.675 0.714 0.652 0.691
DifFIQA(R) [5] 0.801 0.898 0.408 0.646* 0.655* 0.708 0.653 0.681

eDifFIQA(S) 0.822 0.916 0.402 0.679 0.679 0.786 0.634* 0.703
eDifFIQA(M) 0.825 0.846* 0.386 0.669 0.663 0.712 0.671 0.682
eDifFIQA(L) 0.793* 0.872 0.376* 0.667 0.663 0.705* 0.672 0.678

CosFace - pAUC@FMR=10−3(↓)

FIQA Model Adience CALFW CFP-FP CPLFW IJB-C LFW XQLFW pAUC

FaceQnet [10] 0.952 0.955 0.690 0.879 1.317 0.884 0.899 0.939
SDD-FIQA [13] 0.825 0.901 0.491 0.735 0.741 0.808 0.774 0.753
PFE [18] 0.813 0.932 0.524 0.748 0.808 0.779 0.641 0.749
PCNet [11] 1.009 1.006 0.868 0.835 0.729 0.623 1.004 0.868
MagFace [19] 0.852 0.902 0.549 0.724 0.836 0.635 0.943 0.777
LightQNet [12] 0.835 0.913 0.612 0.753 0.750 0.745 0.621 0.747
SER-FIQ [14] 0.793 0.903 0.426 0.711 0.699 0.935 0.567 0.719
FaceQAN [15] 0.871 0.941 0.373 0.667 0.702 0.624 0.581 0.680
CR-FIQA [21] 0.835 0.891 0.361 0.681 0.696 0.675 0.631 0.681
FaceQgen [32] 0.847 0.985 0.784 0.702 0.794 0.802 0.653 0.795

DifFIQA [5] 0.841 0.918 0.402 0.671 0.707 0.714 0.561 0.688
DifFIQA(R) [5] 0.838 0.898 0.389 0.660 0.677* 0.708 0.556* 0.675

eDifFIQA(S) 0.854 0.916 0.364* 0.669 0.706 0.786 0.580 0.696
eDifFIQA(M) 0.851 0.846* 0.373 0.657 0.689 0.712 0.608 0.677
eDifFIQA(L) 0.828* 0.872 0.376 0.653* 0.690 0.705* 0.577 0.672

CurricularFace - pAUC@FMR=10−3(↓)

FIQA Model Adience CALFW CFP-FP CPLFW IJB-C LFW XQLFW pAUC

FaceQnet [10] 0.921 0.947 0.602 0.867 1.248 0.908 0.984 0.925
SDD-FIQA [13] 0.776 0.900 0.409 0.696 0.721 0.821 0.817 0.734
PFE [18] 0.759 0.923 0.420 0.691 0.784 0.785 0.835 0.742
PCNet [11] 1.004 0.996 0.880 0.899 0.710 0.656 0.938 0.869
MagFace [19] 0.793 0.892 0.472 0.689 0.821 0.661 0.862 0.741
LightQNet [12] 0.769 0.910 0.463 0.704 0.713 0.767 0.739 0.724
SER-FIQ [14] 0.750 0.883 0.383 0.625 0.661 0.942 0.721† 0.709
FaceQAN [15] 0.811 0.931 0.342 0.637 0.669 0.644 0.835 0.696
CR-FIQA [21] 0.797 0.877 0.313 0.615 0.664 0.693 0.789 0.678
FaceQgen [32] 0.815 0.974 0.661 0.698 0.783 0.845 0.750 0.790

DifFIQA [5] 0.806 0.905 0.384 0.669 0.672 0.730 0.761* 0.704
DifFIQA(R) [5] 0.788 0.892 0.358 0.650* 0.644* 0.724 0.785 0.692

eDifFIQA(S) 0.802 0.919 0.330 0.664 0.671 0.806 0.803 0.714
eDifFIQA(M) 0.799 0.835* 0.326* 0.664 0.650 0.741 0.775 0.684
eDifFIQA(L) 0.773* 0.869 0.330 0.664 0.652 0.721* 0.804 0.688
†-SER-FIQ was used to create XQLFW.

experiments were conducted on a desktop PC with an Intel i9-
10900KF CPU, 64 GB of RAM and an Nvidia 3090 GPU.

5 RESULTS AND DISCUSSIONS

We evaluate the proposed FIQA models in comprehensive ex-
periments that: (i) compare DifFIQA and eDifFIQA to a broad
range of conceptually distinct state-of-the-art FIQA techniques,
(ii) investigate the space and runtime complexity of the proposed

TABLE 3
Comparison to the state-of-the-art using Transformer-based face
recognition models. The table reports pAUC scores at a discard rate

of 0.3 and a FMR of 10−3. Average results across all datasets are
marked pAUC. The best result for each dataset is shown in bold, the
overall best result is colored green, the second best blue and the third
best red. The best result among the baselines and proposed methods

is marked with ∗.

SwinFace - pAUC@FMR=10−3(↓)

FIQA Model Adience CALFW CFP-FP CPLFW IJB-C LFW XQLFW pAUC

FaceQnet [10] 0.919 0.937 0.640 0.833 1.241 0.914 0.927 0.916
SDD-FIQA [13] 0.811 0.862 0.448 0.650 0.728 0.827 0.872 0.743
PFE [18] 0.800 0.877 0.456 0.688 0.792 0.805 0.672 0.727
PCNet [11] 0.987 0.935 0.937 0.955 0.729 0.642 0.649 0.833
MagFace [19] 0.828 0.854 0.450 0.735 0.827 0.654 0.943 0.756
LightQNet [12] 0.819 0.860 0.475 0.759 0.732 0.769 0.666 0.726
SER-FIQ [14] 0.778 0.862 0.393 0.720 0.691 0.960 0.657† 0.723
FaceQAN [15] 0.863 0.921 0.335 0.685 0.692 0.643 0.623 0.680
CR-FIQA [21] 0.807 0.813 0.335 0.708 0.675 0.696 0.640 0.668
FaceQgen [32] 0.819 0.972 0.639 0.769 0.805 0.821 0.745 0.796

DifFIQA [5] 0.833 0.873 0.380 0.689 0.694 0.737 0.604 0.687
DifFIQA(R) [5] 0.836 0.859 0.378 0.689 0.664* 0.731 0.567* 0.675

eDifFIQA(S) 0.847 0.886 0.365 0.689 0.684 0.812 0.585 0.696
eDifFIQA(M) 0.842 0.794* 0.341* 0.680 0.672 0.735 0.618 0.669
eDifFIQA(L) 0.823* 0.836 0.349 0.671* 0.669 0.727* 0.576 0.664

TransFace - pAUC@FMR=10−3(↓)

FIQA Model Adience CALFW CFP-FP CPLFW IJB-C LFW XQLFW pAUC

FaceQnet [10] 0.938 0.964 0.753 0.889 1.291 0.898 1.007 0.963
SDD-FIQA [13] 0.837 0.905 0.545 0.694 0.809 0.840 0.819 0.778
PFE [18] 0.834 0.930 0.546 0.711 0.879 0.810 0.798 0.787
PCNet [11] 0.998 1.003 0.837 1.010 0.804 0.661 0.654 0.853
MagFace [19] 0.867 0.898 0.512 0.682 0.930 0.673 0.935 0.786
LightQNet [12] 0.847 0.916 0.665 0.697 0.817 0.784 0.634 0.766
SER-FIQ [14] 0.784 0.901 0.430 0.647 0.773 0.935 0.585† 0.722
FaceQAN [15] 0.890 0.942 0.377 0.599 0.774 0.663 0.558 0.686
CR-FIQA [21] 0.832 0.887 0.379 0.614 0.765 0.714 0.580 0.681
FaceQgen [32] 0.858 0.985 0.761 0.699 0.877 0.834 0.739 0.822

DifFIQA [5] 0.863 0.917 0.405 0.597 0.782 0.736 0.529 0.690
DifFIQA(R) [5] 0.856 0.901 0.394 0.579 0.744* 0.722* 0.523* 0.674

eDifFIQA(S) 0.867 0.917 0.446 0.591 0.770 0.825 0.558 0.711
eDifFIQA(M) 0.861 0.849* 0.384 0.577 0.759 0.750 0.553 0.676
eDifFIQA(L) 0.836* 0.872 0.374* 0.575* 0.755 0.735 0.528 0.668
†SER-FIQ was used to create XQLFW.

approached, (iii) explore the applicability of the methods for
predicting the quality of video frames instead of static images, (iv)
analyze the robustness of the models to face misalignment, (v)
ablate various model components to study their impact, and (vi)
qualitatively evaluate different aspects of the proposed DifFIQA
and eDifFIQA techniques.

5.1 Comparison with the State-of-the-Art.
Prior studies on face image quality assessment focused primarily
on exploring the performance of FIQA methods with CNN-based
face recognition techniques. However, Transformer-based models
have recently been shown to lead to highly competitive perfor-
mance in face recognition as well, but the behavior of such models
with modern FIQA solutions has, to the best of our knowledge, not
been studied in the literature before. Here, we therefore split our
analysis into two parts and separately discuss results for CNN
and Transformer-based face recognition models. For this series of
experiment, we use the seven datasets that contain static images.

Analysis on CNN-Based Face Recognition Models. In Figure 4,
we show the EDC curves of all CNN-based models and benchmark
datasets, while the corresponding pAUC scores, calculated at a
discard rate of 30%, are shown in Table 2. Additional results
for a discard ratio of 20% are included in the supplementary
material. From the reported results we make two key observations:
(i) the proposed label-optimized knowledge distillation improves
on the results over the two baseline approaches, i.e., DifFIQA
and DifFIQA(R), and (ii) one of the tested eDifFIQA techniques
consistently performs the best across all the tested state-of-the-art
methods, achieving the best or second-best (average) pAUC result
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TABLE 4
Space and Runtime complexity of the diffusion-based FIQA methods. The reported results (in ms) were computed over the XQLFW dataset

and the same experimental hardware. The lower row shows the parameter count (×106)

.

FIQA model Baseline methods [5] eDifFIQA variants

DifFIQA DifFIQA(R) eDifFIQA(S) eDifFIQA(M) eDifFIQA(L)

Runtime (µ± σ) [in ms] 1074.62± 11.45 1.24± 0.36 0.36± 0.77 0.63± 0.75 1.09± 0.77
# Parameters (106) 142.87 + 65.15† 65.15 24.55 44.11 65.68
†The sum refers to the number of parameters of the generative UNet model and the recognition model.

with all targeted CNN-based models. The proposed eDifFIQA in
general outperforms the baseline diffusion-based FIQA methods
on all datasets and with all face recognition model, except on
the IJB-C and XQLFW benchmarks, where we observe a minute
decrease in performance. Nonetheless, the proposed models still
convincingly outperform all other competitors on this two datasets
as well. When comparing results across different face recognition
models, we see a slightly weaker (but still competitive) average
performance in comparison to other FIQA techniques with the
CurricularFace model. Interestingly, this is also the worst perform-
ing FR model according to our verification experiments (shown in
the supplementary material) and this fact likely also contributes to
the observed results.
Analysis on Transformer-Based Models. In Figure 5, we show
the EDC curves on the two Transformer-based face recognition
models and all benchmark datasets, while the corresponding
pAUC scores calculated at a discard rate of 30% are shown in
Table 3. Additional results for a discard ratio of 20% are included
in the supplementary material. The results convey a similar story
as the results reported for the CNN-based models. The proposed
eDifFIQA models achieve the best and third best results on
both Transformer models, outperforming all other state-of-the-
art FIQA techniques. Among the different eDifFIQA models,
the largest model performs the best, followed in order by the
medium and then the small model. These results are in line
with expectation, as the larger backbones have more capacity to
capture the various quality characteristics of the different input
face images. However, the medium-sized and small models still
lead to competitive performance. Additionally, we also observe
that the results improve when compared to the baselines (DifFIQA
and DifFIQA(R)), however there once again appears to be slight
decrease on the IJB-C and XQLFW benchmark datasets, where
the baseline diffussion-based FIQA models have a slight edge.

5.2 Space & Runtime Complexity Analysis
Next, we analyze the space and runtime complexity of the pro-
posed eDifFIQA approach from two aspects: (i) in comparison
to the baseline difussion-based DifFIQA and DifFIQA(R) tech-
niques, and (ii) in comparison to the state-of-the-art competitors.
Analysis of Diffusion-based FIQA methods. In Table 4, we
report the time (in ms) needed to process a single input image
and estimate the quality score on our experimental hardware and
the parameter count of the models involved in the computations.
The runtime for this experiment was estimated over the XQLFW
dataset. As expected, we observe that the two models of com-
parable size, i.e., DifFIQA(R) and eDifFIQA(L), exhibit similar
runtimes, while the lowest runtime is achieved with eDifFIQA(S),
which decreased the runtime of the baseline DifFIQA by at least
three orders of magnitude. While a speed-up of a factor of close
to 1000× over the initial DifFIQA approach is already observed
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Fig. 6. Complexity analysis between the baseline methods and eD-
ifFIQA. We compare the trade-off between performance and complexity
of the baseline and extended methods. Performance is measured using
the average pAUC values over all datasets when using the AdaFace FR
model, while the complexity is measured using FLOPS.

with the larger distilled models, DifFIQA(R) and eDifFIQA(L),
the change to a smaller regression backbone further improves on
this result by a factor of close to 3×.

To get better insight into what this reduced runtime means with
respect to performance, we show in Figure 6 the trade-off between
the model complexity (measured using FLOPS) and performance
measured using pAUC, for both of the baseline methods and the
three versions of eDifFIQA. The pAUC presented was calculated
on the AdaFace model, as the average pAUC of all used datasets.
Note, that lower pAUC values represent better performance. From
the presented results, we can observe an increase in performance
when using the extended pipeline. Looking at models of similar
complexity such as DifFIQA(R) and eDifFIQA(L) we also ob-
serve a noticeable increase in performance of 0.1. Interestingly,
the least complex eDifFIQA(S) shows only a small decrease
(less than 0.1) in performance when compared to the baseline
DifFIQA approach, yet is notably less complex. These results
and observations showcase the strength of our proposed label-
optimized knowledge distillation.

Comparison to the State-Of-The-Art. Table 5 shows the runtime
complexity of the competing FIQA methods. We note at this point
that the runtime analysis is only a rough approximation of the
actual runtime of methods and is highly dependent on hardware
and software specifications of the target machine. For this reason,
we compare only the order of magnitudes of the actual runtimes.
We see that most methods achieve a runtime between 1− 10ms,
with two notable exceptions i.e.: SER-FIQ and FaceQAN, which
use several passes through a targeted FR model to estimate quality
and therefore require a longer execution time. Comparing these
results to the runtime assessment of DifFIQA and eDifFIQA, it is
clear that the baseline DifFIQA has by far the longest runtime, due
to the complexity of the generative model and the use of several
runs to compute the final score, while our smallest presented
model, eDifFIQA(S), is among the fastest methods. The medium-
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TABLE 5
Runtime complexity of state-of-the-art methods. The reported results (in ms) were computed over the XQLFW dataset and the same

experimental hardware.

FIQA model FaceQnet [10] SDD-FIQA [13] PFE [18] PCNet [11] MagFace [19] LightQNet [12] SER-FIQ [14] FaceQAN [15] CR-FIQA [21] FaceQgen [32]

Runtime (µ± σ) 1.95± 0.90 0.62± 0.36 5.67± 0.79 2.16± 0.74 1.08± 0.36 1.51± 0.99 112.93± 33.81 334.13± 118.79 1.10± 0.74 1.97± 0.28

sized model, eDifFIQA(M), also leads to a runtime performance
that is on par with the fastest of the tested competitors.

5.3 Video Recognition Experiments
The vast majority of FIQA techniques presented in the literature
are predominantly targeting static images, while video data is only
rarely considered. In the next series of experiments, we therefore
simulate real-world scenarios in which the system is given several
frames (or a video) of an individual with the task of first ranking
the frames based on quality and then performing face recognition.
Based on this task, we design two distinct FIQA application
scenarios for the experiments, i.e.,

• Best-Frame Scenario: In the best-frame scenario, each given
video is subjected to the selected FIQA techniques and the
goal is to identify the highest quality frame in the given
sequence. Performance evaluation (i.e., verification experi-
ments) are then conducted with the highest quality frame.

• Quality-Weighted Scenario: In the quality-weighted sce-
nario each frame in the video sequence is again first assigned
a quality score using the given FIQA approach, but then
a weighted representation is constructed for each video by
utilizing the computed quality scores as weights for the
combined representation.

Below we evaluate all considered FIQA techniques in the two
outlined scenarios.

Analysis of Best-Frame Experiments. In Table 6, we show
the results of the best-frame experiments and report the True
Acceptance Rate calculated at two separate False Acceptance
Rates, i.e.: 1e−3 and 1e−4 for all CNN-based and Transformer-
based FR models. We observe that the baseline DifFIQA and
extended eDifFIQA models outperform all other methods in most
of the experiments. Interestingly, when comparing results between
the baseline and eDifFIQA methods, we notice a clear divide
when using different FR models. For the ArcFace and CosFace
model the DifFIQA(R) method seems to slightly outperform the
eDifFIQA techniques, while for all other FR models the eDifFIQA
clearly outperforms the baseline approaches.

Analysis of Quality-Weighted Experiments. Table 7 presents
the results of the quality-weighted experiment. Note, that this
scenario is similar to the IJB-C Mixed Verification protocol, for
which we show results in the supplementary material. As with
the best-frame scenario, we report the True Acceptance Rate
calculated at two separate False Acceptance Rates, i.e.: 1e−3 and
1e−4 for all CNN-based and Transformer-based FR models. It is
interesting to observe that the performance of the two baselines
diffusion models, DifFIQA and DifFIQA(R), and all eDifFIQA-
model variants is still the highest among all tested techniques
on average, but the performance gap is considerable smaller
than in the case of the best-frame experiments, described above.
Another interesting observation is that the smallest of the three
proposed models in some-cases performs better than the two larger
models, such as when using the AdaFace model, suggesting that

for quality-based template generation, lightweight models may
provide a good trade-off between performance and complexity.

5.4 Alignment Sensitivity Experiments

Modern FR models still require proper alignment of the input
face images to ensure the best possible performance. Here, the
alignment process is commonly done by matching the key-points
of the eyes, nose, and mouth to predetermined points on the
images. The accuracy of alignment is heavily dependent on the
capabilities of the underlying face and key-point detection method
and since FR models are trained on images aligned using a specific
face (key-point) detector, their performance often decreases when
a different detector is used. Because FIQA techniques are closely
related to the FR models, they face similar issues and, among
other, are also expected to be sensitive to miss-alignment.

To evaluate the sensitivity of FIQA techniques to the align-
ment of the input face samples, we perform experiments on
images aligned using four different face (key-point) detectors i.e.:
RetinaFace [54] (ResNet100 & MobileNet), MTCNN [55] and
DLib [56]. We run the standard evaluation protocol for FIQA
techniques over images aligned with the help of each of the
three detector separately and report the average pAUC values,
calculated at a discard rate of 30%, over all experiments. The
results are shown in Table 8 for CNN-based FR models and in
Table 9 for Transformer-based FR models. Additional results for a
discard rate of 20% and all FIQA techniques are presented in the
supplementary material.

From the reported results, we observe that the behavior of the
tested techniques closely matched the behavior observed during
the state-of-the-art comparison in Section 5.1. The eDifFIQA
methods outperform all other FIQA techniques on most of the
tested FR models, only falling behind the excellent CR-FIQA
approach with the ArcFace and CurricularFace models. When
comparing eDifFIQA to the initial DifFIQA and DifFIQA(R) ap-
proaches, we see that the extended approach achieves better results
overall, while only occasionally performing worse, such as on the
Adience and XQLFW datasets. Interestingly, LightQNet seems to
be the most affected by miss-alignment as its performance drops
significantly, when compared to the results, with proper alignment
in Section 5.1.

5.5 Ablation study

In this section, we explore how the values of the two hyperparame-
ters (ϵ, θ), included in the extended approach, influence the perfor-
mance of the eDifFIQA models. To limit the scale of our analysis,
we investigate the effects of each hyperparameter independently
of one another. The hyperparameter ϵ controls the degree of
change of the quality labels during optimization, we perform
experiments with four different values of, ϵ i.e.: 0.1, 0.2, 0.5, 1.0.
The hyperparameter θ, on the other hand, represents the weight
factor when combining the representation consistency and quality
loss terms. The representation consistency term is weighted using
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TABLE 6
Best-Frame video experiment. The table reports the True Acceptance Rate (TAR) at two different False Acceptance Rates of 1e−3 and 1e−4.

The overall best result is colored green, the second best blue and the third best red. The best result among the baselines and proposed methods
is marked with ∗.

FIQA Model
CNN-Based Models - TAR@FAR(↑) Transformer-Based Models - TAR@FAR(↑)

AdaFace ArcFace CosFace CurricularFace SwinFace TransFace

FAR=1e−3 FAR=1e−4 FAR=1e−3 FAR=1e−4 FAR=1e−3 FAR=1e−4 FAR=1e−3 FAR=1e−4 FAR=1e−3 FAR=1e−4 FAR=1e−3 FAR=1e−4

FaceQnet [10] 85.020 81.151 83.862 79.101 84.987 81.382 83.366 77.811 83.929 80.093 86.310 84.061
SDD-FIQA [13] 88.393 84.689 87.202 82.771 88.558 84.888 86.640 81.779 87.202 83.829 89.451 87.202
PFE [18] 88.856 85.417 87.500 83.366 89.021 85.615 86.839 82.705 87.765 84.226 89.583 87.632
PCNet [11] 88.690 85.681 87.566 83.532 88.591 85.714 87.070 82.407 88.459 84.358 89.749 87.963
MagFace [19] 87.798 84.656 86.409 82.407 87.731 84.656 85.615 81.085 86.310 82.870 88.492 86.772
LightQNet [12] 89.054 85.813 87.731 83.962 88.955 86.045 87.302 83.399 87.798 83.796 89.980 88.228
SER-FIQ [14] 88.161 85.020 87.103 82.606 88.393 84.888 86.276 81.548 87.434 82.804 89.352 87.401
FaceQAN [15] 88.657 86.111 87.599 83.565 88.724 85.847 87.136 83.466 87.897 84.425 89.451 87.599
CR-FIQA [21] 88.624 85.483 87.698 84.160 88.558 85.747 87.235 82.804 87.798 84.094 89.517 87.335
FaceQgen [32] 86.343 82.374 85.119 80.589 87.136 83.300 84.392 79.001 85.615 80.721 88.062 85.648

DifFIQA [5] 88.690 85.813 87.368 84.028 88.724 86.243 87.302 82.970 87.897 84.259 89.385 87.864
DifFIQA(R) [5] 89.187 85.780 88.558* 84.590* 89.385* 86.442* 87.599 83.896 88.492 85.119 90.013 88.327

eDifFIQA(S) 89.484* 86.409* 88.128 84.028 89.087 85.946 87.963* 83.796 88.459 84.788 90.410* 88.624
eDifFIQA(M) 89.187 85.946 87.765 84.458 89.220 86.078 87.632 83.499 88.360 84.854 89.881 88.228
eDifFIQA(L) 89.120 86.210 88.261 84.292 89.021 86.442 87.864 84.259* 88.757* 85.218* 89.980 88.724*

TABLE 7
Quality-Weighted video experiment. The table reports the True Acceptance Rate (TAR) at two different False Acceptance Rates of 1e−3 and
1e−4. The overall best result is colored green, the second best blue and the third best red. The best result among the baselines and proposed

methods is marked with ∗.

FIQA Model
CNN-Based Models - TAR@FAR(↑) Transformer-Based Models - TAR@FAR(↑)

AdaFace ArcFace CosFace CurricularFace SwinFace TransFace

FAR=1e−3 FAR=1e−4 FAR=1e−3 FAR=1e−4 FAR=1e−3 FAR=1e−4 FAR=1e−3 FAR=1e−4 FAR=1e−3 FAR=1e−4 FAR=1e−3 FAR=1e−4

FaceQnet [10] 91.071 88.955 90.212 88.161 90.675 88.790 89.782 87.169 90.443 87.864 91.534 90.013
SDD-FIQA [13] 91.468 88.988 90.476 88.558 90.807 89.087 90.046 87.302 90.873 88.194 91.667 90.179
PFE [18] 91.534 89.054 90.575 88.525 90.939 88.922 90.079 87.169 90.906 88.228 91.700 90.245
PCNet [11] 91.567 89.021 90.608 88.624 90.939 89.021 90.112 87.202 90.939 88.360 91.733 90.410
MagFace [19] 91.369 88.889 90.476 88.360 90.807 88.955 90.013 87.037 90.774 87.996 91.667 90.212
LightQNet [12] 88.657 85.780 87.599 85.185 88.294 85.847 87.235 83.730 87.831 85.185 88.889 87.401
SER-FIQ [14] 91.567 89.087 90.509 88.459 91.038 89.021 90.212 87.632 90.774 88.360 91.799 90.542
FaceQAN [15] 91.501 89.087 90.476 88.558 90.906 89.187 90.212 87.533 90.807 88.459 91.733 90.245
CR-FIQA [21] 91.336 88.955 90.344 88.492 90.807 88.955 90.013 87.169 90.741 88.228 91.634 90.212
FaceQgen [32] 91.336 88.889 90.344 88.360 90.840 88.922 89.947 87.070 90.675 88.029 91.534 90.146

DifFIQA [5] 91.336 89.054 90.542* 88.558 90.840 88.988 90.046 87.235 90.741 88.327 91.634 90.179
DifFIQA(R) [5] 91.336 89.021 90.509 88.492 90.807 89.054 90.046 87.335 90.774 88.327 91.634 90.245

eDifFIQA(S) 91.601* 89.220* 90.476 88.558 90.972 89.220* 90.212* 87.731* 90.840* 88.591 91.766* 90.344*
eDifFIQA(M) 91.501 89.153 90.542 88.525 91.038* 89.153 90.179 87.698 90.873 88.492* 91.733 90.344
eDifFIQA(L) 91.601 89.153 90.509 88.624* 90.939 89.087 90.212 87.500 90.873 88.426 91.667 90.245
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Fig. 7. Quality-score distributions. Comparison of the distributions of quality scores produced by the proposed eDifFIQA models in comparison
with the baseline of DifFIQA.

θ, while the quality term is weighted using (1 − θ). We show
results for three different values of, θ i.e.: 0.1, 0.5 and 0.9. The
experiments are performed using the AdaFace FR model over all

benchmark datasets and the results are reported in Table 10.
As can be seen from the results, both hyperparameters have a

clear impact on the performance of the final eDifFIQA model. The
best performance is achieved when θ and ϵ equal 0.5, with minor
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TABLE 8
Alignment sensitivity experiments using CNN-based FR models.
The table reports pAUC scores at a discard rate of 0.3 and a FMR of
10−3. Average results across all datasets are marked pAUC. The best

result for each dataset is shown in bold, the overall best result is
colored green, the second best blue and the third best red. The best
result among the baselines and proposed methods is marked with ∗.

AdaFace - pAUC@FMR=10−3(↓)

FIQA Model Adience CALFW CFP-FP CPLFW LFW XQLFW pAUC

FaceQnet [10] 1.023 0.992 0.970 0.970 0.987 1.004 0.991
SDD-FIQA [13] 0.722 0.824 0.480 0.731 0.641 0.796 0.699
PFE [18] 0.733 0.838 0.482 0.777 0.603 0.748 0.697
PCNet [11] 0.918 0.962 0.855 0.951 0.968 0.969 0.937
MagFace [19] 0.747 0.816 0.573 0.722 0.730 0.866 0.742
LightQNet [12] 1.015 0.965 1.033 1.018 1.041 0.987 1.010
SER-FIQ [14] 0.689 0.866 0.357 0.685 0.704 0.576† 0.646
FaceQAN [15] 0.748 0.899 0.442 0.681 0.593 0.589 0.659
CR-FIQA [21] 0.719 0.795 0.340 0.647 0.562 0.595 0.610
FaceQgen [32] 1.014 0.959 1.020 0.970 0.959 0.986 0.985

DifFIQA [5] 0.751 0.893 0.425 0.756 0.725 0.619 0.695
DifFIQA(R) [5] 0.701∗ 0.890 0.346 0.654 0.609 0.536∗ 0.623

eDifFIQA(S) 0.727 0.856 0.356 0.665 0.599 0.611 0.636
eDifFIQA(M) 0.741 0.773∗ 0.341 0.652 0.559 0.583 0.608
eDifFIQA(L) 0.713 0.822 0.334∗ 0.645 * 0.525∗ 0.539 0.596

ArcFace - pAUC@FMR=10−3(↓)

FIQA Model Adience CALFW CFP-FP CPLFW LFW XQLFW pAUC

FaceQnet [10] 1.006 0.956 0.968 0.973 1.028 1.004 0.989
SDD-FIQA [13] 0.650 0.778 0.485 0.739 0.663 0.807 0.687
PFE [18] 0.655 0.772 0.486 0.748 0.619 0.721 0.667
PCNet [11] 0.905 0.937 0.887 0.941 0.953 0.976 0.933
MagFace [19] 0.680 0.736 0.523 0.700 0.696 0.887 0.704
LightQNet [12] 0.985 1.035 1.040 1.122 1.016 0.991 1.032
SER-FIQ [14] 0.635 0.843 0.353 0.672 0.686 0.633† 0.637
FaceQAN [15] 0.681 0.774 0.482 0.674 0.584 0.651 0.641
CR-FIQA [21] 0.663 0.673 0.349 0.643 0.553 0.632 0.585
FaceQgen [32] 0.999 0.969 1.005 1.011 0.949 0.964 0.983

DifFIQA [5] 0.661 0.808 0.514 0.808 0.693 0.742 0.704
DifFIQA(R) [5] 0.632∗ 0.830 0.335 0.632 * 0.611 0.597∗ 0.606

eDifFIQA(S) 0.665 0.773 0.361 0.664 0.618 0.647 0.621
eDifFIQA(M) 0.683 0.694 * 0.333 0.651 0.578 0.630 0.595
eDifFIQA(L) 0.644 0.750 0.330 * 0.645 0.535∗ 0.616 0.587

CosFace - pAUC@FMR=10−3(↓)

FIQA Model Adience CALFW CFP-FP CPLFW LFW XQLFW pAUC

FaceQnet [10] 1.017 0.996 0.962 0.917 1.016 0.991 0.983
SDD-FIQA [13] 0.690 0.817 0.465 0.682 0.666 0.709 0.672
PFE [18] 0.702 0.829 0.471 0.754 0.653 0.658 0.678
PCNet [11] 0.921 0.973 0.875 0.863 0.969 0.952 0.925
MagFace [19] 0.723 0.812 0.580 0.664 0.741 0.814 0.723
LightQNet [12] 0.999 0.994 1.061 1.181 1.041 0.980 1.043
SER-FIQ [14] 0.666 0.865 0.327 0.629 0.724 0.522† 0.622
FaceQAN [15] 0.726 0.889 0.425 0.663 0.616 0.530 0.642
CR-FIQA [21] 0.690 0.781 0.317 0.608 0.590 0.547 0.589
FaceQgen [32] 1.009 0.986 1.004 1.017 0.961 0.947 0.987

DifFIQA [5] 0.717 0.881 0.397 0.738 0.757 0.625 0.686
DifFIQA(R) [5] 0.675∗ 0.859 0.317 0.639 0.639 0.494∗ 0.604

eDifFIQA(S) 0.695 0.844 0.316 0.633 0.630 0.546 0.611
eDifFIQA(M) 0.710 0.758∗ 0.310 0.625 * 0.583 0.559 0.591
eDifFIQA(L) 0.683 0.795 0.308∗ 0.635 0.561∗ 0.515 0.583

CurricularFace - pAUC@FMR=10−3(↓)

FIQA Model Adience CALFW CFP-FP CPLFW LFW XQLFW pAUC

FaceQnet [10] 0.996 0.956 0.976 0.973 1.028 1.001 0.988
SDD-FIQA [13] 0.652 0.797 0.467 0.700 0.632 0.755 0.667
PFE [18] 0.651 0.808 0.450 0.718 0.584 0.785 0.666
PCNet [11] 0.905 0.965 0.904 0.953 0.945 0.965 0.940
MagFace [19] 0.677 0.785 0.518 0.689 0.693 0.865 0.705
LightQNet [12] 0.980 1.037 1.062 1.050 0.991 0.986 1.017
SER-FIQ [14] 0.633 0.841 0.365 0.655 0.677 0.665† 0.639
FaceQAN [15] 0.676 0.905 0.461 0.680 0.563 0.669 0.659
CR-FIQA [21] 0.660 0.753 0.333 0.631 0.541 0.693 0.602
FaceQgen [32] 0.989 0.951 1.004 1.009 0.961 0.969 0.981

DifFIQA [5] 0.670 0.898 0.496 0.805 0.700 0.760 0.721
DifFIQA(R) [5] 0.632∗ 0.900 0.350 0.650 0.576 0.683 0.632

eDifFIQA(S) 0.658 0.827 0.358 0.651 0.579 0.704 0.630
eDifFIQA(M) 0.675 0.765 * 0.338 0.652 0.527 0.658∗ 0.603
eDifFIQA(L) 0.639 0.811 0.331∗ 0.636 * 0.509∗ 0.695 0.603
†SER-FIQ was used to create XQLFW.

performance drops for other values of the two hyperparameters.
Interestingly, the second-best result is achieved when changing the
hyperparameter θ to focus more on the representation consistency
term of the loss function, clearly showing the importance of
identity information (and consistency) in the quality prediction
process.

TABLE 9
Alignment sensitivity experiments using Transformer-based FR

models. The table reports pAUC scores at a discard rate of 0.3 and a
FMR of 10−3. Average results across all datasets are marked pAUC.

The best result for each dataset is shown in bold, the overall best result
is colored green, the second best blue and the third best red. The best
result among the baselines and proposed methods is marked with ∗.

SwinFace - pAUC@FMR=10−3(↓)

FIQA Model Adience CALFW CFP-FP CPLFW LFW XQLFW pAUC

FaceQnet [10] 0.997 0.885 0.955 0.996 1.015 0.972 0.970
SDD-FIQA [13] 0.675 0.795 0.482 0.757 0.659 0.797 0.694
PFE [18] 0.687 0.794 0.487 0.761 0.590 0.688 0.668
PCNet [11] 0.901 0.952 0.904 0.928 0.963 0.979 0.938
MagFace [19] 0.699 0.761 0.538 0.770 0.676 0.868 0.719
LightQNet [12] 0.985 0.995 1.006 1.004 0.987 0.993 0.995
SER-FIQ [14] 0.647 0.838 0.373 0.732 0.689 0.635† 0.652
FaceQAN [15] 0.722 0.822 0.465 0.727 0.561 0.605 0.650
CR-FIQA [21] 0.678 0.719 0.361 0.714 0.516 0.598 0.598
FaceQgen [32] 0.999 0.938 1.014 0.978 0.958 0.988 0.979

DifFIQA [5] 0.663 * 0.785 0.552 0.814 0.693 0.651 0.693
DifFIQA(R) [5] 0.672 0.820 0.362 0.699∗ 0.588 0.571∗ 0.619

eDifFIQA(S) 0.688 0.767 0.376 0.724 0.585 0.609 0.625
eDifFIQA(M) 0.704 0.708∗ 0.353 0.712 0.558 0.615 0.608
eDifFIQA(L) 0.676 0.739 0.352 * 0.705 0.517 * 0.578 0.595

TransFace - pAUC@FMR=10−3(↓)

FIQA Model Adience CALFW CFP-FP CPLFW LFW XQLFW pAUC

FaceQnet [10] 1.016 0.986 0.943 0.968 1.038 0.992 0.991
SDD-FIQA [13] 0.706 0.810 0.465 0.660 0.645 0.761 0.674
PFE [18] 0.729 0.823 0.488 0.733 0.631 0.734 0.689
PCNet [11] 0.920 0.967 0.884 0.957 0.969 0.952 0.942
MagFace [19] 0.736 0.794 0.583 0.644 0.726 0.872 0.726
LightQNet [12] 1.008 0.970 1.030 2.472 1.020 0.992 1.249
SER-FIQ [14] 0.662 0.880 0.331 0.613 0.712 0.522† 0.620
FaceQAN [15] 0.739 0.905 0.437 0.595 0.602 0.534 0.635
CR-FIQA [21] 0.697 0.782 0.328 0.570 0.572 0.503 0.575
FaceQgen [32] 1.009 0.979 1.013 1.239 0.960 0.962 1.027

DifFIQA [5] 0.708 0.880 0.407 0.684 0.737 0.588 0.667
DifFIQA(R) [5] 0.686 * 0.852 0.329 0.584 0.613 0.458∗ 0.587

eDifFIQA(S) 0.719 0.829 0.333 0.583 0.598 0.530 0.599
eDifFIQA(M) 0.722 0.752∗ 0.318 0.581 0.557 0.480 0.568
eDifFIQA(L) 0.692 0.775 0.308∗ 0.578 * 0.533∗ 0.468 0.559
†SER-FIQ was used to create XQLFW.

TABLE 10
Ablation study. We explore the sensitivity of the proposed eDifFIQA

technique to the two hyperparameters ϵ and θ and compare the results
to the baseline methods of DifFIQA and DifFIQA(R) using the AdaFace
FR model. The best performing method for each dataset is presented
in bold, the overall best result is colored green, the second best blue

and the third best red.

Adience CALFW CFP-FP CPLFW IJB-C LFW XQLFW pAUC

eD
ifF

IQ
A

θ
=

0
.5

ϵ = 0.1 0.876 0.919 0.452 0.693 0.778 0.690 0.699 0.730
ϵ = 0.2 0.873 0.884 0.448 0.690 0.771 0.750 0.698 0.731
ϵ = 0.5 0.871 0.872 0.438 0.687 0.766 0.735 0.690 0.723
ϵ = 1.0 0.905 0.852 0.428 0.676 0.792 0.712 0.766 0.733

ϵ
=

0
.5 θ = 0.1 0.871 0.875 0.438 0.690 0.772 0.811 0.714 0.739

θ = 0.5 0.871 0.872 0.438 0.687 0.766 0.735 0.690 0.723
θ = 0.9 0.864 0.885 0.446 0.687 0.774 0.711 0.711 0.725

DifFIQA 0.881 0.922 0.460 0.695 0.785 0.754 0.701 0.743
DifFIQA(R) 0.879 0.901 0.460 0.690 0.759 0.737 0.701 0.732

5.6 Qualitative Evaluation

Last but not least, we present a qualitative evaluation of the pro-
posed eDifFIQA approach in a comparitive analysis with DifFIQA
and DifFIQA(R).

Analysis of Quality Score Distributions. We first look at how the
quality-optimized knowledge distillation changes the distribution
of quality scores on the seven different experimental datasets. The
results of the analysis in Fig. 7 show that the distributions of
the extended models are significantly different from the baseline
DifFIQA approach. The baseline approach has a very limited
range of predicted quality scores mostly limited to [0.6, 1.0],
This does not cause issues for most quality-based tasks, since
we are mostly interested in the ranking of the image qualities.
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TABLE 11
Illustration of the quality scores produced by the proposed FIQA techniques. The scores are compared between the baseline DifFIQA and

proposed eDifFIQA techniques.

DifFIQA [5] 0.071 0.561 0.657 0.726 0.775 0.815 0.847 0.867 0.884 0.936
DifFIQA(R) [5] 0.007 0.448 0.452 0.659 0.684 0.760 0.837 0.845 0.845 0.942

eDifFIQA(S) 0.032 0.095 0.068 0.365 0.413 0.453 0.666 0.728 0.828 0.897
eDifFIQA(M) 0.000 0.176 0.056 0.469 0.539 0.575 0.734 0.775 0.826 0.870
eDifFIQA(L) 0.036 0.264 0.236 0.440 0.500 0.585 0.768 0.790 0.824 0.913

However, in the case where quality scores are used as weights to
calculate average representations, like in the experiment shown in
Section 5.3, we can observe a notable drop in performance when
compared to other methods. The reason is that images of relatively
low quality still obtain a relatively high quality score and in the
end contribute significantly to the average representation. From
this standpoint the distributions of the extended approach, can be
seen as much more valuable as the range of quality scores is much
wider. The benefits of this can also be seen from the results in
Section 5.3, where the extended version outperforms the baseline.

Analysis of Image Rankings. In Table 11, we analyze the
differences in quality scores per chosen images. The presented
images are all part of the XQLFW dataset, and have been chosen
by maximizing the differences in quality scores for the baseline
DifFIQA approach. The chosen images are ranked by their re-
spective quality scores, alongside the images we also report the
quality scores calculated using both the baselines and all proposed
eDifFIQA variants. The reported results tell a similar story as the
results of the quality score distribution analysis. The quality scores
of all eDifFIQA methods cover a wider range of values and are
better distributed over the whole range of [0, 1]. The ranking is
for the most part consistent between all presented methods, with
some individual changes in the ranking.

6 CONCLUSION

We have presented DifFIQA, a novel unsupervised FIQA tech-
nique based on denoising diffusion probabilistic models and the
extended eDifFIQA supervised approach. The base DifFIQA uses
the forward and backward processes of diffusion models to esti-
mate the quality of input samples. A common issue of diffusion
models and consequentially of DifFIQA is their relatively high
computational complexity, stemming from the iterative nature
of the forward and backward diffusion processes. The extended
approach improves on the high computational complexity of
DifFIQA, as well as its performance, by employing a knowl-
edge distillation process. In this process quality labels extracted
using DifFIQA are first optimized using additional sources of
quality information and then used in the knowledge distillation
process. During the distillation process a model consisting of a
feature extraction backbone and a quality-regression MLP head is
trained to predict the optimized quality scores. By training models
with varying sizes of the feature extraction backbones we are
able to control the performance/complexity trade-off in the final
trained eDifFIQA model. Through comprehensive experiments
on multiple datasets, we showed that the extended eDifFIQA
models outperform the baseline DifFIQA techniques and achieve
state-of-the-art performance in almost all tested scenarios. The

optimization is shown to not only improve the predictive capa-
bilites of the end model but also improve the characteristics of
the quality distributions produced by the model. We presented
three variants of eDifFIQA based on different sizes of ResNet
backbones, and shown that using ResNet18 significantly lowers
the runtime, without a significant decrease in performance. As
part of our future work, we plan to further extend the model
toward non-scalar quality predictions and explicit identification
of the main image characteristics governing the predicted quality
score.
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