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A B S T R A C T

The performance of state-of-the-art face recognition systems depends crucially on the availability of large-scale
training datasets. However, increasing privacy concerns nowadays accompany the collection and distribution
of biometric data, which has already resulted in the retraction of valuable face recognition datasets. The use
of synthetic data represents a potential solution, however, the generation of privacy-preserving facial images
useful for training recognition models is still an open problem. Generative methods also remain bound to the
visible spectrum, despite the benefits that multispectral data can provide. To address these issues, we present
a novel identity-conditioned generative framework capable of producing large-scale recognition datasets of
visible and near-infrared privacy-preserving face images. The framework relies on a novel identity-conditioned
dual-branch style-based generative adversarial network to enable the synthesis of aligned high-quality samples
of identities determined by features of a pretrained recognition model. In addition, the framework incorporates
a novel filter to prevent samples of privacy-breaching identities from reaching the generated datasets and
improve both identity separability and intra-identity diversity. Extensive experiments on six publicly available
datasets reveal that our framework achieves competitive synthesis capabilities while preserving the privacy of
real-world subjects. The synthesized datasets also facilitate training more powerful recognition models than
datasets generated by competing methods or even small-scale real-world datasets. Employing both visible
and near-infrared data for training also results in higher recognition accuracy on real-world visible spectrum
benchmarks. Therefore, training with multispectral data could potentially improve existing recognition systems
that utilize only the visible spectrum, without the need for additional sensors.
1. Introduction

Modern face recognition systems heavily rely on deep learning mod-
els and the availability of large-scale training datasets to achieve state-
of-the-art performance (Rot et al., 2019; Vitek et al., 2021; Batagelj
et al., 2021; Emeršič et al., 2021). In the past, such datasets were com-
monly acquired from online sources, social media and other web plat-
forms containing facial images captured in various settings. Nowadays,
however, the collection, distribution and use of biometric data is ac-
companied by ever-increasing privacy and ethical concerns (Jasserand,
2018; Meden et al., 2021) and is governed by privacy acts and data-
protection legislation, such as the General Data Protection Regulation
(GDPR) (Hoofnagle et al., 2019). The consequences of these devel-
opments are especially evident when discussing face image datasets
collected through web-scraping without proper consent. Upholding
proposed regulations for such datasets is not only impractical but near-
impossible, which has recently resulted in the retraction of several
valuable face recognition datasets in their entirety or in parts (Guo
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et al., 2016a; Bansal et al., 2017; Cao et al., 2018). Alternatively,
manually gathering the required large-scale datasets represents a labor-
intensive and time-consuming task (Vitek et al., 2020). Even then,
potential use cases of the gathered data must be clearly defined in the
consent agreement, which may limit future research.

To improve existing biometric solutions, researchers are also inves-
tigating the use of near-infrared and thermal data, which contain cues
not present in the commonly utilized visible spectrum (Bourlai, 2016;
Chambino et al., 2021; Rose et al., 2022; Martins et al., 2022). Merging
the different data sources and extending models to operate on multi-
spectral data therefore holds great potential for enhancing recognition
and segmentation performance. However, the availability of large-scale
multispectral datasets is rather limited (Sequeira et al., 2017; Panetta
et al., 2018). This is particularly true for data concurrently captured
across different spectra, as it necessitates custom setups of multiple
imaging sensors.
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To address the increasing privacy concerns as well as the lack
of large-scale biometric datasets, recent research is considering the
use of synthetic data (Boutros et al., 2023d,e; Joshi et al., 2024).
Such research efforts are primarily fueled by the advances in deep
generative models. In particular, Style-based Generative Adversarial
Networks (StyleGANs) (Karras et al., 2019, 2020b, 2021) and Diffusion
Models (DMs) (Ho et al., 2020; Dhariwal and Nichol, 2021; Rombach
et al., 2022), which have recently facilitated the generation of diverse
large-scale datasets of photorealistic images. These approaches have
also been extended to allow for conditioned data generation based
on the desired image features, thus enabling better control over the
synthesized images (Shoshan et al., 2021; Zhang et al., 2023a). By
exploiting these capabilities, researchers have also demonstrated the
possibility of identity conditioned generation of face images (Qiu et al.,
2021; Boutros et al., 2022, 2023c,b). The result is the creation of large-
scale synthetic datasets that can be used to train highly-accurate face
recognition models. Unfortunately, however, there still exists a perfor-
mance gap compared to models trained on real-world data. Though,
it is slowly being bridged by novel approaches that balance two im-
portant aspects of recognition datasets, i.e. identity separability and
intra-identity diversity (Boutros et al., 2023b).

Despite these incredible advancements, existing research has not
yet adequately explored the privacy of synthetic data. Generative mod-
els do not necessarily guarantee the preservation of privacy, since
the produced samples might still contain identities that match real-
world subjects used for training the data generators (Tinsley et al.,
2021). Solving such identity leakage is critical for ensuring privacy-
preservation in synthetic datasets, but has not been discussed widely
so far in the open literature (Singh et al., 2024). Additionally, de-
spite the potential of recent multispectral recognition approaches to
enhance the state-of-the-art, the generation of suitable multispectral
data has remained rather limited (Tomašević et al., 2022), apart from
cross-spectral image translation (Wu et al., 2019; Luo et al., 2022).

In this paper, we address the outlined privacy concerns and the
lack of multispectral recognition data by introducing a novel gener-
ative framework called ArcBiFaceGAN. Our framework extends the
existing StyleGAN-based methods for synthetic data generation (Karras
et al., 2020a; Boutros et al., 2022; Tomašević et al., 2022) and en-
ables the simultaneous synthesis of privacy-preserving visible (VIS) and
near-infrared (NIR) face images conditioned on identity features of a
pretrained recognition model, as seen in Fig. 1. This, in turn, facilitates
the creation of large-scale multispectral datasets with diverse and high-
quality samples of synthetic identities that can be used to train face
recognition models without breaching the privacy of real-world sub-
jects. To this end, ArcBiFaceGAN utilizes a novel identity-conditioned
Dual-Branch StyleGAN2 model to generate VIS-NIR image pairs of a
given input identity sampled from the latent space of the ArcFace
recognition model (Deng et al., 2019a). In addition, the framework
relies on an innovative Privacy and Diversity (PD) filter that ensures
the removal of privacy breaching identities, with the use of the above
recognition model (Deng et al., 2019a). It also improves both identity
separability and intra-identity diversity, by rejecting identities that
match previously generated identities and removing samples that are
too similar to previous samples of the same identity. We compare
the synthesis capabilities of our ArcBiFaceGAN framework with the
state-of-the-art, in terms of quality, diversity, identity separability, and
privacy through a series of experiments on the multispectral Tufts
Face Database (Panetta et al., 2018). Furthermore, we employ the
produced multispectral synthetic data to train a modern recognition
model and evaluate its performance on five state-of-the-art recogni-
tion benchmarks. Overall, we showcase that our framework achieves
highly competitive synthesis results and enables better recognition
performance than even real-world data, while preserving the privacy
2

of real-world subjects.
In summary, this paper makes the following contributions:

• We propose ArcBiFaceGAN, a potent framework for generating
large-scale multispectral datasets, suitable for training modern
recognition approaches in a privacy-aware manner.

• We present a novel identity-conditioned Dual-Branch StyleGAN2
model, capable of creating diverse and high-quality aligned visi-
ble and near-infrared image pairs of synthetic identities, based on
a small-scale dataset of poorly aligned training images.

• We introduce a novel Privacy and Diversity (PD) filter that en-
sures the removal of privacy-breaching synthetic samples while
improving both intra-identity diversity and identity separability
of samples.

• We demonstrate that recognition models trained on large-scale
synthetic datasets can surpass those trained on smaller real-world
datasets. In addition, we show that multispectral synthetic data
can even be used to improve the recognition performance on only
visible spectrum data.

2. Related work

This section provides an overview of existing research on image
generation and positions our contributions with respect to the state-
of-the-art approaches for generating biometric data suitable for recog-
nition tasks. For an in-depth discussion on synthetic data for face
recognition, the reader is referred to some of the recent surveys on this
topic (Boutros et al., 2023e; Joshi et al., 2024).

2.1. Image generation

Image synthesis techniques have undergone drastic evolution in
the past decade with the emergence of deep generative models. In
particular, Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014) were the first models to enable the creation of convincing and
hiqh-quality images. This was achieved by employing two distinct
neural networks; a generator, responsible for producing images, and
a discriminator, designed to identify synthetic images and in turn
guide the generator. In the following years, numerous enhancements
to GAN models were proposed, including the use of multiple discrim-
inators (Durugkar et al., 2017) and progressive architectures (Karras
et al., 2018) to improve the quality of produced images. Issues with
training stability were also addressed with novel regularization meth-
ods (Mescheder et al., 2018; Miyato et al., 2018) and custom distribu-
tion distance measures (Arjovsky et al., 2017; Gulrajani et al., 2017). In
addition, control over the image generation process was explored with
the use of class labeled inputs (Mirza and Osindero, 2014). However,
despite extensive analysis, the source of various stochastic features in
the generated images remained unknown and, hence, challenging to
control (Bau et al., 2019).

Overall, the generator continued to function as a black box and
the GAN architecture remained fairly unchanged, until the introduc-
tion of the Style-based GAN model (i.e. StyleGAN) by Karras et al.
(2019). To achieve a level of image quality similar to real-world images
and improve control over the synthesis process, the authors proposed
separating the generator into a mapping and a synthesis network.
The first determines the image style and passes this information to
the latter network, which generates the corresponding image. Never-
theless, the images generated by StyleGAN (Karras et al., 2019) still
contained noticeable artifacts, e.g. blob-like shapes. To address these
issues, Karras et al. (2020b) proposed an improved model (StyleGAN2),
which contained redesigned building blocks in the synthesis network
and utilized additional skip connections. In addition, the authors re-
solved the issue of textures sticking to image coordinates rather than
underlying surfaces, which enabled the generation of smooth image
sequences (Karras et al., 2021). Notably, Karras et al. (2020a) also in-

troduced a novel Adaptive Discriminator Augmentation (ADA) method
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Fig. 1. Samples generated by our ArcBiFaceGAN framework. The framework enables the synthesis of diverse high-quality aligned visible (VIS) and near-infrared (NIR) images
of new synthetic identities that do not breach the privacy of real-world subjects.
that applies various augmentations to images before they are passed
to the discriminator network. This drastically lowered the amount
of training data required to learn the model, whilst preventing the
augmentations from leaking to the generator and affecting the image
quality. These enhancements allowed for a wide variety of new practi-
cal use cases in various fields, e.g. image-based biometrics, with scarce
large-scale datasets.

Recently, however, the synthesis capabilities of GAN-based ap-
proaches have been rivaled by the development of novel diffusion
models (Dhariwal and Nichol, 2021). At their core, diffusion models
learn to reverse a process that gradually degrades the training data
with noise at different scales (Sohl-Dickstein et al., 2015). Initially,
these models were applied directly to data in the pixel space, how-
ever, their performance was significantly improved, both in terms of
speed and quality, by instead utilizing a lower-dimensionality latent
space of a pretrained autoencoder (Rombach et al., 2022). Combin-
ing diffusion models with external text encoders has also enabled
guided image generation, conditioned on text prompts (Saharia et al.,
2022), which has garnered incredible success in both industry and
research (Croitoru et al., 2023). Control over the generation process
has also been improved by conditioning pretrained diffusion models
on a variety of spatial-based inputs, e.g. segmentation masks, hand-
drawn sketches, depth maps, edge maps and even pose skeletons via
an external trainable copy of the model (Zhang et al., 2023b). These
capabilities have been expanded to facilitate simultaneous prompting
based on encoded text and image features with the use of a decoupled
cross-attention mechanism (Ye et al., 2023). In addition, fine-tuning
approaches have been introduced that can add new concepts to pre-
trained diffusion models based on a limited amount of input data.
Namely, DreamBooth (Ruiz et al., 2023) has been extensively utilized
to generate synthetic images of desired real-world subjects. However, it
often struggles with identity consistency when generating new images
of real-world identities. Nevertheless, in comparison to GAN-based
approaches, current diffusion models still suffer from slow inference
speeds and their application in low-data regimes has mostly remained
limited to fine-tuning (Moon et al., 2022).

Additionally, most generative models have remained tied solely
to data in the visible spectrum (Tomašević et al., 2022), despite the
benefits that multispectral data can provide in a variety of tasks and
the overall need for larger multispectral datasets (Bourlai, 2016). To
address this, we build in this work on the StyleGAN2-ADA (Karras
et al., 2020a) model and extend it for the creation of multispectral
identity-conditioned facial images.

2.2. Synthesis of biometric recognition datasets

The utilization of synthetic data for training powerful deep learning
models has become a focal point in the field of biometrics in recent
years. This interest is fueled by ever-increasing privacy and copyright-
related concerns regarding the use and sharing of real-world biometric
data (Jasserand, 2018). This is especially evident when discussing face
recognition datasets, as face images have commonly been collected via
3

web-scraping without suitable consent in the past. Several of these cru-
cial large-scale datasets have recently been retracted or removed from
public repositories (Jasserand, 2022), due to the introduction of various
privacy acts and data protection regulations, e.g., the GDPR (Hoofnagle
et al., 2019). This poses a potential issue for future face recognition
research, which heavily relies on the availability of large-scale datasets
to achieve state-of-the-art results.

In an effort to address these concerns, researchers are exploring
the creation of synthetic biometric data with modern generative ap-
proaches, which can then, in turn, be used to train recognition models
in a privacy-preserving manner. Specifically, existing research has ex-
plored the generation of face recognition datasets, but also data for
other biometric modalities (Joshi et al., 2024), by relying on ad-
vancements in conditional generative models (Boutros et al., 2023e).
The suitability of synthetic face images for biometric recognition was
recently analyzed by Zhang et al. (2021). With the use of modern face
quality assessment techniques, they showed that images generated by
StyleGAN-based (Karras et al., 2019, 2020b) models could compete
with the quality and utility of real-world samples. A human study of
synthetic face images was also carried out by Shen et al. (2021), who
demonstrated that not even human subjects could reliably distinguish
synthetic images from real ones.

Deng et al. (2020) proposed a novel StyleGAN-based framework,
called DiscoFaceGAN, which utilized 3D face priors and a custom
imitative-contrastive learning scheme to achieve a disentangled and
interpretable latent space. The framework enabled control over several
attributes of the face image generation process, including the identity,
expression, pose and lighting. However, Qiu et al. (2021) showcased
that training face recognition models with data of DiscoFaceGAN re-
sulted in worse performance in comparison to training with real-world
data. They attributed the performance difference to the domain gap
between synthetic and real images as well as the low intra-identity
variation of synthetic images. To address the observed weaknesses, they
extended DiscoFaceGAN with identity and domain mixup of synthetic
and real data during training. Recently, Boutros et al. (2022) proposed
an alternative face generation method, called SFace, based on the
StyleGAN2-ADA model (Karras et al., 2020a). To create face recog-
nition datasets of synthetic identities they conditioned the generative
model on identity labels in the form of a one-hot encoded vector. In
their experiments, the authors demonstrated that SFace achieved higher
intra-identity variation than previous methods, at the cost of lower
identity separability. They also observed that a low, but not negligible,
cross-identifiability exists between synthetic and real samples, at least
with large-scale training datasets. However, the reliance on one-hot en-
coded vectors presents a limit on the amount of possible identities that
can be generated with this approach. In their follow up work (Boutros
et al., 2023c), the authors also investigated the possibility of creating
recognition data by disentangling identity information from latent
spaces of pretrained non-conditional StyleGAN models (Karras et al.,
2020a, 2021). They showcased that by determining latent identity
directions, they could construct positive and negative class examples
without the need for identity-labeled datasets.
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More recently, Boutros et al. (2023b) explored the generation of
face recognition data with modern latent diffusion models (Rombach
et al., 2022). In their work, they proposed the IDiff-Face model, which
conditions the denoising U-Net (Ronneberger et al., 2015) network on
identity features of a pretrained face recognition model. Additionally,
the authors introduced contextual partial dropout during training to
prevent overfitting on real-world identities and enable control over
the trade-off between identity separability and intra-identity diversity.
Throughout their experiments they showcased that IDiff-Face achieved
unprecedented image quality and intra-identity diversity, thus enabling
the training of better performing recognition models.

However, despite the advancements in identity-conditioned syn-
thesis capabilities, the generation of recognition datasets that do not
breach the privacy of real-world subjects has not been adequately dis-
cussed in the open literature so far. Furthermore, existing research has
only explored the generation of face-image data in the visible spectrum,
despite the advantages that multispectral data can provide, especially
for improving recognition performance (Bourlai, 2016). This is likely
due to the small scale and poor alignment of available multispectral
datasets, which present a difficult obstacle for training deep generative
models (Tomašević et al., 2022).

Differently from existing works, we focus in this paper specifi-
cally on the generation of privacy-preserving multispectral face recog-
nition datasets. To this end, we build on existing GAN-based ap-
proaches (Tomašević et al., 2022; Boutros et al., 2022; Karras et al.,
2020a) and propose a novel identity-conditioned generative frame-
work, ArcBiFaceGAN, that is capable of generating aligned visible
(VIS) and near-infrared (NIR) face images of synthetic identities, even
when faced with a limited amount of poorly aligned training data.
Additionally, we introduce a novel filtering component, that enables
the removal of privacy-breaching identities while ensuring better intra-
identity diversity. To enable more precise control over the identity
aspect than existing GAN-based approaches, we also condition our
model on identity features of a pretrained recognition model.

3. Methodology

The main contribution of this paper is the proposed ArcBiFaceGAN
framework that enables the generation of identity-labeled privacy-
preserving bimodal face images. This section presents an overview of
the framework and provides detailed descriptions of its main compo-
nents.

3.1. Overview of ArcBiFaceGAN

The proposed ArcBiFaceGAN framework relies on two key compo-
nents: (𝑖) the identity-conditioned Dual-Branch StyleGAN2 (DB-
tyleGAN2) model (Section 3.2) that generates VIS-NIR image pairs
f a desired identity, and (𝑖𝑖) the Privacy and Diversity (PD) fil-
er (Section 3.3), which ensures the synthesis of new privacy-preserving
dentities and diverse intra-identity samples. Together these compo-
ents facilitate the generation of high-quality bimodal synthetic data,
hich can be used to train deep face recognition models without
reaching the privacy of real-world subjects, as depicted in the right
olumn of Fig. 2.

The image generation process is based on two input vectors, the
andomly sampled latent code 𝑧 ∈ Z and the identity code 𝑖𝑑 ∈ A,

sampled from the latent space of a pretrained recognition model (Deng
et al., 2019a). The mapping network 𝑓 combines the inputs into the
style information 𝑤 ∈ W that is then passed to the Dual-Branch
Synthesis network 𝑔 to create the corresponding VIS and NIR images
(i.e. 𝐱𝑖𝑑𝑉 𝐼𝑆 and 𝐱𝑖𝑑𝑁𝐼𝑅) of the desired identity 𝑖𝑑. These samples are
then evaluated by the Privacy and Diversity filter 𝑃𝐷 that removes
samples if they (𝑖) do not contain a face, (𝑖𝑖) contain privacy-breaching
identities, (𝑖𝑖𝑖) contain identities that have already been generated, (𝑖𝑣)
do not contain the same identity as previous samples for a given 𝑖𝑑, or
4

(𝑣) contain samples that are too similar to previously generated samples
f a given 𝑖𝑑, as detailed in Section 3.3. Formally, this synthesis process
an be expressed as:

𝐱𝑖𝑑𝑉 𝐼𝑆 , 𝐱
𝑖𝑑
𝑁𝐼𝑅} = 𝑃𝐷({𝐱𝑖𝑑𝑉 𝐼𝑆 , 𝐱

𝑖𝑑
𝑁𝐼𝑅}) = 𝑃𝐷(𝑔(𝑤)) = 𝑃𝐷(𝑔(𝑓 (𝑖𝑑, 𝑧))). (1)

Thus, based on the randomly sampled latent code 𝑧 and identity code 𝑖𝑑
the proposed ArcBiFaceGAN framework produces a multispectral image
pair {𝐱𝑖𝑑𝑉 𝐼𝑆 , 𝐱

𝑖𝑑
𝑁𝐼𝑅} of a privacy-preserving synthetic identity 𝑖𝑑.

3.2. Identity-conditioned dual-branch StyleGAN2

The synthesis capabilities of the proposed ArcBiFaceGAN frame-
work are rooted in the identity-conditioned Dual-Branch StyleGAN2
(DB-StyleGAN2). The proposed model extends the dual-branch archi-
tecture of the BiOcularGAN approach (Tomašević et al., 2022) to
enable the synthesis of identity-specific samples. Differently from exist-
ing identity-conditioned GAN-based approaches, our method does not
condition the generative model on class labels (e.g. one-hot encoded
vectors as with SFace (Boutros et al., 2022)) but rather on identity
features from the latent space of a pretrained ArcFace recognition
model (Deng et al., 2019a). This, in turn, facilitates more flexible and
detailed control over the identity sampling and bypasses potential lim-
its of identity capacity. In total, the identity-conditioned DB-StyleGAN2
consists of two key components, i.e., (𝑖) the generator that produces
data and (𝑖𝑖) the discriminators that are responsible for training, as
depicted in Fig. 2. Details on the two components are given below.

3.2.1. Identity-conditioned DB-StyleGAN2 generator
The generator network of our identity-conditioned DB-StyleGAN2 is

presented in Fig. 3. As can be seen, it is split into two connected net-
works, where the mapping network 𝑓 determines the style of the image
that the synthesis network 𝑔 generates. The mapping network receives
as input two 512-dimensional latent codes, the random input 𝑧 and the
identity condition 𝑖𝑑, that jointly guide the generative process. The
identity condition 𝑖𝑑 is first passed through an initial fully-connected
layer that reinterprets the identity information but retains the feature
dimensions. Both the 𝑧 and the reinterpreted 𝑖𝑑 feature codes are
then normalized separately and concatenated into a single latent code.
The combined code is then passed through 8 fully-connected layers,
which map the input information to an intermediate 512-dimensional
latent code 𝑤, that defines the style of the image to be created. Here,
the initial identity-based fully-connected layer is crucial for enabling
better control over the image generation process during inference. In
particular, more diverse identities can be generated by multiplying
the sampled identity condition 𝑖𝑑, as demonstrated in Section 4.4.4.
Importantly, this can be done without affecting the quality of produced
samples because the multiplication effect is limited to the initial fully-
connected layer and thus does not overwhelm the entire mapping
network and consequently the synthesis network.

The synthesis network 𝑔 incorporates seven consecutive synthesis
blocks that increase in powers of two from 4 × 4 to 256 × 256. Each
block consists of two style blocks, except the first, which contains
only one style block. As input, the first block receives a constant
4 × 4 × 512 feature 𝑐, which is then passed to a convolutional 3 × 3
layer. Meanwhile, the style information 𝑤 from before is introduced
into the convolutional weights in order to influence the generative
process. This is done by utilizing the modulation and demodulation
operations (Karras et al., 2020b), which simulate the Adaptive Instance
Normalization (AdaIN) technique (Karras et al., 2019). After each
convolutional layer, additional bias and noise are also incorporated
into the signal, before the Leaky ReLU activation function (Maas et al.,
2013) is applied. The signal is then passed to the next style block and
the process repeats. If this entails crossing to the next synthesis block
then the signal is also upsampled to the correct size.

After each respective synthesis block two output feature maps are
created, one for the VIS and one for the NIR spectrum, by passing the
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Fig. 2. High-level overview of the proposed ArcBiFaceGAN framework. The framework conditions a Dual-Branch StyleGAN2 model (Tomašević et al., 2022) on identity
features 𝑖𝑑 of a pretrained recognition model (Deng et al., 2019a) to generate visible (VIS) and near-infrared (NIR) images of a desired identity. The model is trained using separate
discriminators (𝐷𝑉 𝐼𝑆 and 𝐷𝑁𝐼𝑅) for each spectrum, which compute the loss based on input images and the 𝑖𝑑 feature. During the data generation process, we first sample and
lock the 𝑖𝑑 vector, and then randomly sample input latent codes 𝑧 to generate multiple samples of the target identity. The created samples are then passed to the Privacy and
Diversity filter that: (𝑖) removes samples whose identities match any real-world subject or previously generated identity, and (𝑖𝑖) ensures intra-identity diversity by removing images
that are too similar to previous samples of the same identity.
current latent signal through separate 1 × 1 convolutional layers. These
layers act as a sort of renderer that applies the correct spectrum-related
appearance onto the shared feature map. On the outside, the synthesis
network forms two branches that upsample and merge the spectrum-
specific outputs of the synthesis blocks. The result is the creation of VIS
and NIR image pairs, which are well-aligned due to the shared semantic
information.

3.2.2. Identity-conditioned discriminators
To train the multispectral generator we rely on two identity-condit-

ioned discriminator networks, one for each light spectrum (𝐷𝑉 𝐼𝑆 and
𝐷𝑁𝐼𝑅). Their role is to determine the authenticity of the syntehsized
images, i.e. decide if the images are synthetic or genuine. The pro-
duced feedback is then used to improve the generator and facilitate
the synthesis of VIS-NIR image pairs that compete in quality with
the training distribution. Both discriminator networks utilize the same
ResNet-like (He et al., 2016) downsampling architecture, similar to
previous StyleGAN-based approaches (Karras et al., 2020b,a; Tomašević
et al., 2022), as illustrated in Fig. 4.

Each discriminator receives as input either a synthetic or a training
sample in the corresponding spectrum as well as the identity feature
𝑖𝑑. The image samples are first passed through a 1 × 1 convolutional
layer before reaching a series of seven resolution blocks, each consisting
of two convolutional layers connected by an auxiliary skip connection.
These downsample the image resolution from 256 × 256 back to 4 × 4,
each step by a power of two. At the end, the discriminator incorporates
a single convolutional layer and a fully-connected layer that takes into
account the obtained latent representation of the image as well as the
identity information to decide on the authenticity of the presented
sample. Before that, however, the original 𝑖𝑑 feature is passed through
a separate mapping network akin to the network of the generator but
with different weights and without the latent code 𝑧, to enable better
decision making.
5

3.2.3. Identity-conditioned training
As noted above, the identity-conditioned DB-StyleGAN2 utilizes two

discriminator networks to train and improve its synthesis capabili-
ties. The feedback of both discriminators is combined in a multi-task
adversarial learning objective, which augments existing multispectral-
based objectives (Tomašević et al., 2022) with the additional identity
information, as seen in the left column of Fig. 2. Differently from
existing methods (Boutros et al., 2022), we rely on identity features that
are extracted from face images with a pretrained ArcFace recognition
model (Deng et al., 2019a).

At the core of the learning objective lies the Non-Saturating Logistic
loss (Goodfellow et al., 2014) that is implemented with the soft-plus
operation, i.e. 𝑠𝑝(𝑥) = log(1 + exp(𝑥)), as is standard practice. The
loss function is accompanied by two crucial regularization methods,
including 𝑅1 regularization (Mescheder et al., 2018) and path length
regularization (𝑅𝑃𝐿) (Karras et al., 2020b), that stabilize and improve
the training process. These are applied only every 16 mini-batches so
as not to negatively impact the speed of training.

The aim of both discriminator networks is to improve their ability
to distinguish between authentic and synthetic samples. Thus, their
corresponding learning objectives 𝑉 𝐼𝑆 and 𝑁𝐼𝑅 can be defined as:

𝑏 = 𝑠𝑝(−𝐷𝑏(𝑖𝑑, 𝐲𝑏)) + 𝑠𝑝(𝐷𝑏(𝑖𝑑, 𝐱𝑏)) +
𝛾𝑅1

2
E
[

‖∇𝐷𝑏(𝑖𝑑, 𝐲𝑏)‖2
]

, (2)

where 𝑏 represents either the visible (𝑉 𝐼𝑆) or the near-infrared (𝑁𝐼𝑅)
spectrum. Here, real (training) images and produced synthetic images
are denoted with 𝐲𝑏 and 𝐱𝑏 respectively, while 𝑖𝑑 represents the identity
feature. Lastly, the regularization hyperparameter 𝛾𝑅1

is determined as
𝛾𝑅1

= 10−4 (2𝑟𝑒𝑠2∕𝑏𝑠) based on the batch size 𝑏𝑠 and resolution 𝑟𝑒𝑠 of
the images (Karras et al., 2020b).

The two discriminator learning objectives 𝑉 𝐼𝑆 and 𝑁𝐼𝑅 are then
combined to form the objective of the generator network 𝐺, as visu-
alized in Fig. 2. However, the generator is tied solely to the production
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Fig. 3. Illustration of the identity-conditioned DB-StyleGAN2 generator architecture. The generator consists of a mapping network 𝑔 and a synthesis network 𝑓 . The synthesis
network 𝑓 features a main branch that encodes the facial semantics and a pair of output branches after each processing block that render the images in the VIS or NIR spectrum,
denoted as tVIS and tNIR. These outputs are then upsampled and merged to form the final generated VIS and NIR images. The networks rely on fully-connected layers (FC),
convolutional layers (Conv), and upsampling (Up).
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Fig. 4. Illustration of the identity-conditioned discriminator networks. To train
the identity-conditioned DB-StyleGAN2 we utilize two separate discriminator networks
(𝐷𝑉 𝐼𝑆 and 𝐷𝑁𝐼𝑅), one for each light spectrum. These determine the authenticity of
enerated images, which is used to improve the synthesis capabilities. The discrimi-
ators operate on the high-dimensional representations of images, which are obtained
rom fVIS and fNIR blocks. In the image, Down denotes downsampling.

f synthetic images, and never encounters real-world samples. This is
eflected in the merged learning objective, as it incorporates only terms
rom the discriminator objective that involve synthetic images 𝐱𝑏. Thus,
he generator learning objective can be formally defined as:

𝐺 =
∑

𝑤𝑏 ⋅ 𝑠𝑝(−𝐷𝑏(𝑖𝑑, 𝐱𝑏)) + 𝛾𝑅𝑃𝐿 E
(

‖

‖

‖

∑

∇(𝐱𝑏𝑞𝑏)
‖

‖

‖

− 𝑎
)2
, (3)
6

𝑏∈𝐵 𝑏∈𝐵
f

here the notations defined before also apply. Furthermore, 𝑤 repre-
ents a weight parameter that determines the effect of a given spectrum
on the final loss value, 𝑞 denotes images with normally distributed

ixel intensities, and 𝑎 is the average of the computed norm. Here,
he regularization hyperparameter 𝛾𝑅𝑃𝐿 is computed based on the
esolution 𝑟𝑒𝑠 as 𝛾𝑅𝑃𝐿 = ln 2∕(𝑟𝑒𝑠2(ln 𝑟𝑒𝑠 − ln 2)) (Karras et al., 2020b).

Importantly, due to the small-scale of available multispectral face
atasets, we also critically depend on the Adaptive Discriminator Aug-
entation (ADA) technique (Karras et al., 2020a) to enable more stable

raining in a low-data regime. This process entails augmenting syn-
hetic or authentic images, before they are passed to the discriminator
etworks, with geometric and color transforms based on an adaptive
robability.

.3. Privacy and diversity filter

In our work, we propose a novel Privacy and Diversity (PD) filter,
hich can be used as an auxiliary component during data generation

o ensure the creation of privacy-preserving datasets and improve both
dentity separability and the intra-identity diversity of samples. This
s crucial for creating large-scale high-quality recognition datasets that
an be used to train biometric systems in a way that does not breach
he privacy of real-world subjects.

The proposed PD filter relies on identity features which are ex-
racted from images with a pretrained face recognition model, namely
rcFace (Deng et al., 2019a). In addition, the filter utilizes the pre-

rained Multi-Task Cascaded Convolutional Neural Network (MTCNN)
Zhang et al., 2016) face detector, to determine the presence of faces in
he image. To compare the similarity of different identities, our filter
ncorporates the cosine similarity function (Nguyen and Bai, 2010),

ollowing existing research (Deng et al., 2019a; Wang et al., 2018;
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𝑠

Boutros et al., 2023a). Formally, the similarity 𝑠𝑖𝑚 between two identity
features 𝑎 and 𝑏 can be computed as:

𝑖𝑚(𝑎, 𝑏) = 𝑎 ⋅ 𝑏
‖𝑎‖ ‖𝑏‖

. (4)

To determine which images are problematic, the filter utilizes pre-
determined identity similarity thresholds 𝜏. These are based on the
characteristics of the training dataset. Specifically, we rely on the mean
𝜇 and standard deviation 𝜎 values of intra-identity similarity of real
images to determine the thresholds. The specific thresholds used in our
experiments are presented below, when explaining the filtering process.
However, these thresholds can be changed to attain the desired privacy
and diversity levels of synthetic data, suitable for the task at hand.

During the data generation process, the proposed PD filter follows
the following procedure:

• Step 1 - Identity Initialization: When creating the first sample
of a new synthetic identity, the filter uses the pretrained face
detector to check if the synthetic sample even contains a face.
Based on the obtained landmarks, it also determines if the face
is in a frontal pose. This is done by ensuring that the distance
between the nose and each eye landmark is similar, considering
a predetermined threshold based on the distance between they
two eyes. The filter then removes the image, if it does not suit
this criterion. This initial step is performed to ensure that all
subsequent samples of the same identity have a decent base for
identity comparison and forces the model to synthesize a frontal
image during initialization.

• Step 2 - Privacy Filter: Next, for each of the generated samples
the filter extracts a 512-dimensional identity feature vector us-
ing the pretrained face recognition model. Here, the computed
feature vector is first compared to the feature vectors of the real-
world identities of the training dataset. Note that we utilize only
one feature vector per identity that is most representative for
each real-world subject to (drastically) speed up the sampling
procedure. This representative feature vector is extracted from
the sample that is most similar to all other samples of the same
identity, typically the one with a front facing subject. If the
synthetic identity in question is too similar, in terms of cosine
similarity, to any of the real-world identities, based on a prede-
termined threshold 𝜏𝐼𝐷 = 𝜇 − 2𝜎, it is discarded. In turn, this
ensures the removal of privacy-breaching synthetic samples. A
similar check is then performed but with previously generated
synthetic identities. If the new synthetic identity is too similar to
an existing synthetic identity with the same threshold 𝜏𝐼𝐷, then
the sample is again discarded. Thus the proposed PD filter not
only ensures privacy, but also improves the identity separability
of the generated synthetic identities.

• Step 3 - Consistency Check: If the generated sample in question
is not the first sample of given synthetic identity, then the pro-
posed filter also checks that the generated identity is consistent
with the first generated sample of a given 𝑖𝑑. Again, the similarity
of identity features is measured and compared with the prede-
termined threshold 𝜏𝐼𝐷. Furthermore, the sample is compared to
all previously generated samples of the same identity to ensure
that it is also not too similar, so as to avoid duplicate samples
with the same pose. For this, the filter utilizes a high identity
similarity threshold 𝜏𝐻𝑖𝑔ℎ = 𝜇 + 𝜎. This process thus results
in improved intra-identity diversity of synthetic samples. If the
generated sample passes all the listed criteria then it is allowed
into the final synthetic dataset.

It should also be noted that the decision to mostly rely on represen-
tative identity features was made to address the otherwise inefficient
sampling process, whilst achieving almost the same results. Sampling
speed becomes an issue especially in cases where datasets contain
large quantities of samples for each subject. However, if required, the
identity comparison could be made more extensive, e.g. in a real-world
7

application with extremely sensitive data.
4. Experiments and results

This section covers the evaluation of the proposed ArcBiFaceGAN
framework. First, we introduce the utilized face datasets and perfor-
mance indicators, as well as provide additional implementation details.
Next, we present a variety of experiments through which we compare
our solution to the state-of-the-art.

4.1. Experimental setup

4.1.1. Training data
Throughout the experiments, we rely on the multispectral Tufts

Face Database (Panetta et al., 2018) to train and evaluate the different
generative models. The dataset, summarized in Table 1, contains het-
erogeneous facial data of 113 individuals, including over 10,000 images
in various spectra. This includes face images in both the visible (VIS)
and near-infrared (NIR) spectrum, which were captured with a custom
quad-camera setup in a semi-circle around the individuals. VIS images
were taken by four visible field cameras under constant diffused light,
while four night vision cameras and a 850 nm Infrared 96 light system
were used for NIR imaging. Importantly, however, the VIS and NIR
images were not captured simultaneously, resulting in notable image
pair misalignment.

To make the data more suitable for training our proposed bimodal
generative model, we utilized the following preprocessing steps. First,
we removed blurry images, in which subjects moved, and side-profile
images, which lacked crucial facial features (e.g. two eyes) and then
cropped the images to focus on the region of interest, i.e., the face.
Next, we defined an affine transform, based on the angle between the
centroids of the eyes and the distance between them, with the use
of the pretrained Multi-Task Cascaded Convolutional Neural Network
(MTCNN) (Zhang et al., 2016) face and landmark detector. Using this
approach, we considerably improved the alignment of VIS-NIR image
pairs and also ensured a similar face size across the entire dataset. The
final preprocessed dataset thus included 2113 VIS-NIR image pairs of
105 individuals, resized to a resolution of 256 × 256. The data was then
split in an approximate 9 ∶ 1 ratio into the training and the holdout set.
These two sets included images of 95 and 10 identities, respectively, or
a total of 1970 training and 143 holdout images.

4.1.2. Evaluation methodology
To evaluate the quality and diversity of images produced by differ-

ent generative models, we rely on the following standard performance
measures that mimic the human perception of images.

• We use the Fréchet Inception Distance (FID) (Heusel et al.,
2017) to estimate the overall quality of images in comparison
to the real-world data. To compare the images, the FID-score
calculation procedure first extracts features of images with a
pretrained Inception-v3 model (Szegedy et al., 2016) and then
estimates the difference between the feature distributions of real
and synthetic images. Lower scores imply better correspondence.

• As an alternative, we use the Learned Perceptual Image Patch
Similarity (LPIPS) (Zhang et al., 2018), which relies on latent
image features from a pretrained VGG network (Simonyan and
Zisserman, 2014). However, instead of comparing distributions,
it estimates the similarity of a given image pair, in our case a
real and synthetic image. Thus, to obtain the similarity of two
datasets, we measure the LPIPS score between randomly sampled
real and synthetic images and then report the mean and standard
deviation values. Lower scores again imply better performance.

• We also utilize the Certainty Ratio Face Image Quality As-
sessment (CR-FIQA) (Boutros et al., 2023a) measure that is
designed specifically for face images. It measures the quality via
the relative classifiability of a given face image with a pretrained

ResNet-101 backbone (He et al., 2016). However, because the
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Table 1
Overview of face recognition datasets used in our research. The proposed ArcBiFaceGAN is trained and validated with the multispectral
Tufts Face Database (Panetta et al., 2018). The other datasets are then used to evaluate the performance of recognition models trained on
synthetic data of different generative models.

Dataset #Images #IDs Resolution Modality Purpose

Tufts Face Database (Panetta et al., 2018) > 10, 000 113 3280 × 2464 VIS & NIR –
Tufts Face Database* (Panetta et al., 2018) 2213 105 256 × 256 VIS & NIR TR & SV

LFW (Huang et al., 2007) 13,233 5749 250 × 250 VIS REC
CA-LFW (Zheng et al., 2017) 7156 2996 250 × 250 VIS REC
CP-LFW (Zheng and Deng, 2018) 5984 2296 250 × 250 VIS REC
AgeDB-30 (Moschoglou et al., 2017) 16,488 568 Var. VIS REC
CFP-FP (Sengupta et al., 2016) 7000 500 Var. VIS REC

(*) – Preprocessed subset; (TR) – Training; (SV) – Synthesis Validation; (REC) – Recognition experiments; (Var.) – Various resolutions.
model was trained on close-ups of faces, we first use a pretrained
Multi-task Cascaded Convolutional Network (MTCNN) face detec-
tor (Zhang et al., 2016) to crop the generated images and then
evaluate their quality with CR-FIQA (Boutros et al., 2023a).

• To provide a comprehensible visual comparison of real and syn-
thetic distributions, we rely on the 𝑡-distributed Stochastic
Neighbor Embedding (𝑡-SNE) (Van der Maaten and Hinton,
2008) method. Image distributions are first represented with
feature vectors obtained from a ResNet-101 model (He et al.,
2016) that was pretrained on the ImageNet dataset (Deng et al.,
2009). The 𝑡-SNE method then utilizes the Kullback–Leibler
divergence (KL-divergence) (Joyce, 2011) to construct a lower-
dimensional distribution representative of the initial distribution
that can be visualized in a 2D space. To achieve this, the method
minimizes the KL-divergence between the low-dimensionality and
the original distribution.

• We also analyze the pose of faces in the images in order to
determine the intra-identity diversity of samples. For this, we rely
on predictions of the state-of-the-art 6DRepNet (Hempel et al.,
2022) head pose estimator that is pretrained on the 300W-LP
dataset (Zhu et al., 2016). Specifically, for the evaluation we
utilize the yaw predictions, as the diversity of the training Tufts
Face Database (Panetta et al., 2018) and the produced synthetic
data is highly limited in terms of the pitch and roll of the faces.

Furthermore, we also investigate the suitability of the generated
ynthetic datasets to train recognition models. To this end, we rely
n genuine and imposter score distribution plots, obtained with a
retrained face recognition model (Deng et al., 2019a), and correspond-
ng verification measures. Alongside the mean and standard deviation
alues of distributions, we measure the Equal Error Rate (EER) (Maio
t al., 2002), i.e., the operating point on the Receiver Operating Char-
cteristics (ROC) curve, where the False Match Rate (FMR) equals the
alse Non-Match Rate (FNMR), as well as the Fisher Discriminant
atio (FDR) (Poh and Bengio, 2004), which quantifies the separability
f genuine and imposter scores. In addition, we report the lowest
NMR for a FMR that is lower or equal than 1.0% or 0.1%, denoted
s FMR100 and FMR1000 respectively. To showcase the utility of the
roduced data in a real-world scenario, we also use it to train a CosFace
ace recognition model (Wang et al., 2018) that utilizes a ResNet-18
etwork as the backbone and class-margin criterion as the learning
bjective (He et al., 2016). The performance of the model is then
valuated in terms of verification accuracy on five popular verification
enchmarks, whose main characteristics are listed in Table 1. A more
etailed description of the utilized benchmarks is presented below:

• Labeled Faces in the Wild (LFW) (Huang et al., 2007) represents
an unconstrained verification dataset of 13,233 face images of
5749 identities that was collected from the web.

• Cross-Age Labeled Faces in the Wild (CA-LFW) (Zheng et al.,
2017) is a subset of the LFW (Huang et al., 2007) dataset, con-
taining 7156 images of 2996 identities, aimed at evaluating recog-
8

nition performance across a given age gap.
• Cross-Pose Labeled Faces in the Wild (CP-LFW) (Zheng and
Deng, 2018) represents a subset of the LFW (Huang et al., 2007)
dataset that is suited for evaluating cross-pose verification perfor-
mance. The dataset includes 5984 face images of 2296 identities
captured in a variety of poses.

• AgeDB-30 (Moschoglou et al., 2017) is a dataset of in-the-wild
face images, targeted specifically at the evaluation of verifica-
tion performance across a 30 year age gap. In total, the dataset
contains 16,488 images of 568 identities.

• Celebrities in Frontal-Profile in the Wild (CFP-FP) (Sengupta
et al., 2016) is a verification dataset that is aimed at evaluating
cross-pose performance, specifically frontal and profile poses. The
dataset entails 500 identities, each with 10 frontal and 4 profile
images, i.e. 7000 images in total.

For the purposes of our experiments, all datasets are used to construct
3000 genuine comparison pairs and an equal amount of imposter pairs.
For the cross-age and cross-pose datasets the imposter comparison pairs
are sampled from the same race and gender, in order to limit the
influence of other attributes on the recognition model. In addition, all
images are rescaled to a resolution of 112 × 112 to be in-line with the
image resolution of the trained recognition model.

It should be noted, however, that these datasets only include image
data in the visible (VIS) spectrum. Thus, to evaluate the performance of
recognition models that are trained on VIS-NIR image pairs, we utilize
a grayscale representation of the available VIS images to mimic the
corresponding NIR spectrum. Furthermore, to address the lack of mul-
tispectral verification benchmarks, we construct our own benchmark
from the holdout set of the preprocessed Tufts Face Database (Panetta
et al., 2018). The holdout set includes only 143 VIS-NIR image pairs
of 10 identities, due to the already small-scale of the initial dataset.
Following the structure of existing verification benchmarks, we use
this data to create 1145 genuine comparison pairs and 9008 imposter
comparison pairs.

4.1.3. Implementation and experimental details
The ArcBiFaceGAN framework is implemented in PyTorch (Paszke

et al., 2019) and is made publicly available.1 The identity-conditioned
Dual-Branch StyleGAN2 model is built upon the SytleGAN2-ADA imple-
mentation (Karras et al., 2020a) and outputs images with a resolution
of 256 × 256. This resolution was selected based on the resolution
requirements of face recognition models used in related works (Boutros
et al., 2022, 2023b), however, it can also be adapted to facilitate
the generation of higher resolution images. Differently from existing
GAN-based approaches (Boutros et al., 2022), our model is conditioned
on identity features obtained from a pretrained ArcFace recognition
model (Deng et al., 2019a). Specifically, we rely on the publicly avail-
able model that is based on the iResnet-101 architecture (He et al.,
2016; Duta et al., 2021) and pretrained on the MS1MV3 dataset (Guo
et al., 2016b).

1 https://github.com/dariant/ArcBiFaceGAN

https://github.com/dariant/ArcBiFaceGAN
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Table 2
Summary of the training procedure for each generative architecture and the
recognition experiments. The table includes parameters used for training the different

ual-Branch StyleGAN2 models and the diffusion-based IDiff-Face (Boutros et al.,
023b) model. Parameters used throughout the recognition experiments for training
he recognition models are also reported.
DB-StyleGAN2 Parameter value

Batch size 12
Optimizer Adam (Kingma and Ba, 2015)
Learning rate 25 × 10−4

𝛽1, 𝛽2, 𝜖 0, 0.99, 10−8
Loss functions Eq. (2) & Eq. (3)
𝑤𝑉 𝐼𝑆 & 𝑤𝑁𝐼𝑅 1.0 & 0.1 (0.5)
𝛾𝑅1

& 𝛾𝑅𝑃𝐿 1.09 & 2.2 × 10−6

Maximum steps 2500𝑘𝑖𝑚𝑔𝑠
ADA target (Karras et al., 2020a) 0.6

IDiff-Face (Boutros et al., 2023b) Parameter value

Batch size 64
Optimizer Adam (Kingma and Ba, 2015)
Learning rate 10−4

𝛽1, 𝛽2, 𝜖 0.9, 0.99, 10−8
Loss function MSE
Maximum steps 20,000
EMA factor 0.75
Horizontal flip chance 0.5
Identity dropout ratio 0.25

Recognition experiments Parameter value

Batch size 16
Optimizer SGD
Learning rate 0.1
Momentum 0.9
Weight decay 5 × 10−4

Loss function CosFace (Wang et al., 2018)
Scale & Margin 64 & 0.35
Augmentation N & M 4 & 16
Dropout ratio 0.4

ArcBiFaceGAN training parameters. Prior to training, the model
is initialized with random weights to avoid breaching the privacy of
any subjects used for training any publicly available pretrained version
of StyleGAN2 (Karras et al., 2020b). The model is then trained with
the multi-task learning objective (Eqs. (2) and (3)) and the Adam
optimizer (Kingma and Ba, 2015) in batches of 12 images. The learning
rate is set to 25 × 10−4, 𝛽1 = 0, 𝛽2 = 0.99, and 𝜖 = 10−8, based on
he original implementation (Karras et al., 2020a). During training, we
ondition the model on normalized identity features of the pretrained
rcFace recognition model (Deng et al., 2019a). To limit the effect of

he condition only to the identity aspect and not limit other attributes
uch as pose, we train the model only with the most representative
eature for each real-world identity, i.e. the one that is most similar to
eatures of all other samples of the same identity. Effects of this decision
re presented in more detail in Section 4.4.1, where we compare the
apabilities of the model trained with representative features for each
dentity or separate features for each image.

To improve the stability of training on poorly aligned VIS-NIR
mage pairs, we perform training in two training phases. This entails
anipulating the weight that the NIR discriminator loss 𝑁𝐼𝑅 has in

he final learning objective 𝐺. We first begin training with loss weights
f 𝑤𝑁𝐼𝑅 = 0.1 and 𝑤𝑉 𝐼𝑆 = 1.0, which facilitates the production of high-
uality VIS images alongside a low-quality estimation of images in the
IR spectrum. This phase is performed until we achieve convergence
nd the desired quality of VIS images, in terms of FID (Heusel et al.,
017) scores. The second phase of training is then aimed at improving
he quality of NIR images, which we accomplish by increasing the
IR weight to 𝑤𝑁𝐼𝑅 = 0.5. This phase lasts until a desired quality
f NIR images is achieved or at maximum up to 2500kimgs (thousand
9

2

mages). Overall, this enables the model to generate more detailed
IR images, while not reducing its synthesis capabilities in the VIS

pectrum, and results in the creation of aligned VIS-NIR image pairs.
urthermore, to achieve more stable training on small-scale datasets
in our case 1970 images), we also heavily rely on the Adaptive
iscriminator Augmentation (ADA) (Karras et al., 2020a) technique
ith a target of 0.6 to augment images before they are passed to the
iscriminators, thus achieving more variety in the training images. This
ncludes augmentations related to rotation, scale, brightness, contrast,
ue, saturation and also horizontal flips. The described training process
s also summarized in Table 2.

ArcBiFaceGAN data generation procedure. To create data suit-
ble for recognition tasks, we must generate multiple identities each
ith multiple synthetic images. We begin our data generation process
y randomly sampling the latent feature 𝑖𝑑 that determines the identity
o be created. To generate multiple images of the same identity, we lock
he 𝑖𝑑 feature, and then focus on sampling latent input codes 𝑧. For each
ample, the locked 𝑖𝑑 and a random 𝑧 feature are first preprocessed
nd then passed to the mapping network of our identity-condition DB-
tyleGAN2 that generates a pair of visible and near-infrared images
𝐱𝑖𝑑𝑉 𝐼𝑆 , 𝐱

𝑖𝑑
𝑁𝐼𝑅}. Preprocessing includes truncating the 𝑧 feature with a

actor of 𝜓 = 0.7 to reduces the amount of anomalies (Karras et al.,
020a), and applying a multiplication factor of 4 to the identity feature,
o improve the diversity of sampled identities, as demonstrated in
ection 4.4.4. The identity feature is then reinterpreted by a fully-
onnected layer, after which the feature is normalized, thus limiting
he effects of the multiplication to the initial layer. The 𝑧 feature
s also normalized separately and then truncated with the identity
eature to form the combined input for the rest of model. Once the
mages {𝐱𝑖𝑑𝑉 𝐼𝑆 , 𝐱

𝑖𝑑
𝑁𝐼𝑅} are generated they are sent to the proposed PD

ilter for evaluation. The filter removes potentially problematic images,
ollowing predetermined similarity thresholds. If this occurs with the
irst sample of a certain 𝑖𝑑, then we reset the generation process and
ample a new identity features 𝑖𝑑. However, if this occurs with any
ater sample, then the 𝑖𝑑 is retained and we simply sample a new
andom latent code 𝑧 to continue the generation process. To address
otential time issues, we also limit the amount of synthesis attempts for
reating samples of a certain identity to 2500. If this limit is reached, the
eneration process moves on to the next potential synthetic identity.

Privacy and Diversity filter. During the generative process our
rcBiFaceGAN framework utilizes the proposed Privacy and Diversity

PD) filter. To evaluate the similarity of identities in the generated sam-
les, the filter relies on the cosine similarity (Nguyen and Bai, 2010)
f identity features obtained with a pretrained recognition model.
pecifically, the filter utilizes the ArcFace recognition model (Nguyen
nd Bai, 2010) with an iResNet-101 (He et al., 2016; Duta et al.,
021) backbone that was pretrained on the MS1MV3 dataset (Deng
t al., 2019b). The computed similarity can then be used to perform
iltering based on several constraints presented in Section 3.3. The
hresholds that are used to distinguish between identities are based
n the intra-identity similarity of samples in the training set of the
ufts Face Database (Panetta et al., 2018). In particular, we utilize
he mean 𝜇 = 0.776 and standard deviation 𝜎 = 0.077 of intra-
dentity similarity values to determine the threshold for the samples
hat contain similar identities, i.e. 𝜏𝐼𝐷 = 𝜇 − 2𝜎 = 0.622, which can be
sed to remove samples with potentially privacy-breaching identities
s well as ensure better identity separability. In addition, we define a
hreshold for samples that are too similar to existing samples of the
ame identity, i.e. 𝜏𝐻𝑖𝑔ℎ = 𝜇+ 𝜎 = 0.853, which can be used to improve
ntra-identity diversity. These values, are however, selected solely for
he purposes of our experiments and can be adapted to suit the desired
rivacy and diversity needs of a given application.

Recognition experiments. The utility of synthetic data generated
y the proposed ArcBiFaceGAN is evaluated in a series of recognition
xperiments, where we use it to train a small-scale ResNet-18 (He et al.,

016) recognition model. For the purposes of the experiments, we use
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the different generative methods to create datasets of 95, 500 and 1000
identities, with 32 images per identity. To prepare the images for the
recognition model, we crop and align them with the MTCNN face detec-
tor (Zhang et al., 2016), thus resulting in face images with a resolution
of 112 × 112. Training is performed in batches of 16 images with the
CosFace loss function (Wang et al., 2018) and the Stochastic Gradient
Descent (SGD) optimizer with 0.9 momentum and a weight decay of
5×10−4. The initial learning rate is set to 0.1 and is lowered by a factor
of 10 after the 22nd, the 30th, and the 35th epoch. During training the
model also relies on random augmentations (Cubuk et al., 2020) with 4
random operations (N) and a magnitude (M) of 16 to add more variety
to the training images. A dropout ratio of 0.4 is also utilized to prevent
overfitting. Training is then stopped once no improvements in 5 epochs
are observed, in terms of verification accuracy, on the LFW (Huang
et al., 2007) benchmark. Table 2 contains a summary of the described
training process and the used parameters.

In our experiments, we analyze the performance of two variants
of the presented recognition model. The first operates on the VIS
spectrum, while the second is based on both VIS and NIR data. To this
end, the latter model is adapted to receive an input with 4 channels. In
the end, the performance of the trained recognition models is evaluated
on five state-of-the-art verification benchmarks (Huang et al., 2007;
Zheng et al., 2017; Zheng and Deng, 2018; Moschoglou et al., 2017;
Sengupta et al., 2016). However, these only contain data in the visible
spectrum. Thus to evaluate the performance of the multispectral recog-
nition model, we adapt the existing benchmarks by using the grayscale
representation of VIS images as a replacement for the NIR spectrum.
Furthermore, we also perform verification on the holdout data of the
Tufts Face Database (Panetta et al., 2018) by constructing genuine and
imposter comparison pairs among all combinations of samples.

Implementation of state-of-the-art baselines. We rely on the
SFace (Boutros et al., 2022) and IDiff-Face (Boutros et al., 2023b)
generative models to evaluate the performance of our proposed Ar-
cBiFaceGAN framework. To allow for a fair comparison, we adapt the
SFace (Boutros et al., 2022) model to also utilize the same underlying
Dual-Branch StyleGAN2 architecture (Tomašević et al., 2022) as our
ArcBiFaceGAN. This means that we also rely on the same training
procedure and parameters. Thus, the only difference between the two
is the identity condition that is used. The SFace (Boutros et al., 2022)
model utilizes a one-hot encoded vector as a form of class label to
determine the identity that is to be generated. Here, the length of
the vector is determined by the amount of identities in the training
dataset, i.e. 95 in the case of the Tufts Face Database (Panetta et al.,
2018). However, this in turn limits the amount of potential identities
that can be achieved with the original SFace (Boutros et al., 2022)
model. To address this issue, we also extend the sampling procedure
of the existing SFace (Boutros et al., 2022) and propose the so called
Mix-SFace approach. To enable the generation of more identities, that
are not tied to only the main indices of the one-hot encoded vector,
we create new random identities by combining two to five randomly
sampled identities of the vector. These vectors are then interpreted by
a fully-connected layer at the start of the mapping network (Boutros
et al., 2022).

Conversely, we rely solely on the original IDiff-Face (Boutros et al.,
2023b) model for the purposes of our experiments. This inherently
gives it an edge over the other GAN-based approaches, as it is limited
only to the generation of visible spectrum data. The IDiff-Face (Boutros
et al., 2023b) model follows the architecture of recently introduced
latent diffusion models (Rombach et al., 2022) and is based on the
denoising U-Net (Ronneberger et al., 2015) model. This network con-
tains four resolution levels, each with two consecutive residual blocks.
To enable identity-conditioned image generation the model introduces
identity features of a pretrained face recognition model (Deng et al.,
2019a) into the generative process with the cross-attention mechanism.
Attention blocks are applied in all residual blocks apart from the first
10

resolution level. This denoising model then operates within the latent
space of a pretrained autoencoder network (Rombach et al., 2022).
Based on results of the proposed work, we also rely on contextual
partial dropout that prevents overfitting on real-world identities by
partially dropping out the identity context during training with a
probability of 25%, which is especially important due to the small scale
of the utilized dataset. In total, the diffusion process entails 1000 time
steps and is controlled by the linear diffusion variance schedule. The
denoising model is trained to generate 128 × 128 images with the Mean
Squared Error (MSE) loss function and the Adam optimizer (Kingma
and Ba, 2015) with 𝛽1 = 0.9, 𝛽2 = 0.99 and 𝜖 = 10−8. The initial learning
rate is set to 10−4 and is controlled by an annealing cosine learning
rate schedule with warm restarts. Training is performed in batches of
64 images across 20,000 steps, which is adjusted for the smaller scale
of the utilized dataset in comparison to the original work (Boutros
et al., 2023b). Here, the learning rate is first adjusted after 2500
steps and then in phases that are twice as long as before. Throughout
training the weights of the model are also adjusted with the Exponential
Moving Average (EMA) technique and a negative exponential factor of
0.75. Data augmentation in the form of horizontal flips is also applied
with a probability of 50%. The described training parameters are also
summarized in Table 2.

Experimental hardware. All experiments are conducted on a Desk-
top PC with an AMD Ryzen 7 5800X CPU with 32 GB of RAM and two
Nvidia RTX 3060 GPU cards, each with 12 GB of VRAM.

4.2. Face image synthesis capabilities

In the first series of experiments, we evaluate the quality and diver-
sity of the data produced by our proposed ArcBiFaceGAN framework.
To this end, we compare the synthesis capabilities of our method to two
state-of-the-art face image generative frameworks, i.e. the GAN-based
SFace approach (Boutros et al., 2022) and the diffusion-based IDiff-
Face approach (Boutros et al., 2023b). To allow for a fair comparison,
we use each framework to generate 95 identities, with 32 samples per
identity. This corresponds to the number of identities in the training
subset of the Tufts Face Database (Panetta et al., 2018). We note again
that for our experiments, the SFace approach (Boutros et al., 2022) has
been adapted to also generate bimodal data, i.e. it relies on the same
underlying Dual-Branch StyleGAN2 architecture that ArcBiFaceGAN
uses, whereas the IDiff-Face approach (Boutros et al., 2023b) remains
unchanged, and thus only generates images in the VIS spectrum.

4.2.1. Quality and diversity evaluation
We begin our experiments by analyzing the overall quality of images

produced by the different generative frameworks. For this purpose,
we measure the Fréchet Inception Distance (FID) (Heusel et al., 2017)
and the Learned Perceptual Image Patch Similarity (LPIPS) (Zhang
et al., 2018) between the generated synthetic datasets and both the
training (T) and holdout (H) real-world set. We report these values in
Table 3, along with results of the Certainty Ratio Face Image Quality
Assessment (CR-FIQA) (Boutros et al., 2023a) measure that determines
the suitability of images for training face recognition approaches. For
context, we also report the FID and LPIPS scores between the training
and the holdout set, as well as the CR-FIQA score of the training set.
These scores are also separately measured for the visible and the near-
infrared spectrum. Furthermore, we provide image samples of different
generative frameworks in the left column of Fig. 5. Here, each row
contains images that best match the real-world identity depicted in the
first row, in terms of cosine similarity of identity embeddings from a
pretrained ArcFace recognition model (Deng et al., 2019a).

We first investigate how our initial ArcBiFaceGAN, without filtering,
performs in comparison to the original SFace (Boutros et al., 2022)
model. As can be observed in Table 3, our approach achieves slightly
higher quality with regards to LPIPS and CR-FIQA, but scores notably
lower in terms of FID, across both spectra. However, the main differ-

ence between the models is actually found in the number of possible
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Table 3
Evaluation of image quality in terms of FID (Heusel et al., 2017), LPIPS (Zhang et al., 2018) and CR-FIQA (Boutros et al., 2023a) scores.
The reported FID and LPIPS scores are obtained by comparing synthetic samples from datasets of 95 identities with either the training (T) or
holdout (H) set of the Tufts Face Database (Panetta et al., 2018). Here FID compares two distributions, while LPIPS compares each image pair.
Differently, CR-FIQA only evaluates each synthetic sample in terms of face image quality, i.e., utility for face recognition.

Sp. Dataset PD FID ↓ – T (H) LPIPS ↓ – T (H) CR-FIQA ↑

VIS

Tufts (H vs. T) (Panetta et al., 2018) – 52.324 0.489 ± 0.106 1.743 ± 0.259

StyleGAN2 (Karras et al., 2020a) – 19.772 (53.143) 0.477 ± 0.114 (0.474 ± 0.113) 1.711 ± 0.222

DB-StyleGAN2 (Tomašević et al., 2022) – 22.701 (56.370) 0.470 ± 0.115 (0.481 ± 0.109) 1.699 ± 0.251

SFace (Boutros et al., 2022) – 26.189 (58.739) 0.443 ± 0.095 (0.436 ± 0.100) 1.779 ± 0.193

Mix-SFace (Boutros et al., 2022) – 34.793 (62.697) 0.431 ± 0.097 (0.444 ± 0.090) 1.792 ± 0.164
✓ 28.898 (56.706) 0.564 ± 0.071 (0.566 ± 0.070) 1.824 ± 0.149

ArcBiFaceGAN (Ours) – 38.873 (62.034) 0.428 ± 0.098 (0.425 ± 0.087) 1.841 ± 0.108
✓ 29.920 (55.666) 0.453 ± 0.113 (0.454 ± 0.104) 1.835 ± 0.140

IDiff-Face (N) (Boutros et al., 2023b) – 28.602 (69.832) 0.520 ± 0.101 (0.528 ± 0.096) 1.559 ± 0.332
IDiff-Face (Boutros et al., 2023b) – 46.789 (80.327) 0.526 ± 0.123 (0.536 ± 0.111) 1.843 ± 0.175

NIR

Tufts (H vs. T) (Panetta et al., 2018) – 43.497 0.404 ± 0.090 1.575 ± 0.338

StyleGAN2 (Karras et al., 2020a) – 23.599 (72.028) 0.591 ± 0.070 (0.586 ± 0.066) 1.498 ± 0.296

DB-StyleGAN2 (Tomašević et al., 2022) – 22.813 (65.676) 0.380 ± 0.101 (0.402 ± 0.096) 1.477 ± 0.310

SFace (Boutros et al., 2022) – 28.157 (53.069) 0.366 ± 0.085 (0.375 ± 0.082) 1.553 ± 0.286

Mix-SFace (Boutros et al., 2022) – 36.056 (56.701) 0.362 ± 0.088 (0.380 ± 0.078) 1.557 ± 0.239
✓ 28.373 (50.457) 0.364 ± 0.096 (0.376 ± 0.096) 1.642 ± 0.242

ArcBiFaceGAN (Ours) – 37.952 (55.528) 0.347 ± 0.086 (0.364 ± 0.082) 1.666 ± 0.206
✓ 27.589 (49.012) 0.368 ± 0.100 (0.381 ± 0.101) 1.680 ± 0.199

(T) – Training set; (H) – Holdout validation set; (↓) – Lower is better; (↑) – Higher is better.
(Sp.) – Spectrum of light; (PD) – Privacy and Diversity filter.
Fig. 5. Comparison of real-world and synthetic visible spectrum samples. The first row contains images from the training dataset. Images in the following rows are produced
by a different generative framework. The left column contains samples that best match training identities, while images in the right column showcase intra-identity diversity.
11
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Fig. 6. Privacy-preservation comparison of different generative approaches. Dis-
played are synthetic samples that have the highest identity similarity with samples from
the training set of the Tufts Face Database (Panetta et al., 2018). The most similar
samples are determined via cosine similarity of features obtained with a pretrained
ArcFace recognition model (Deng et al., 2019a).

unique identities. The SFace (Boutros et al., 2022) approach relies on
a one-hot encoded vector to determine the identity. Thus, its original
implementation is only capable of sampling as many identities as there
are identities in the training set. Even then, however, the produced
synthetic identities highly resemble those found in the training set, as
can be seen in Fig. 5. Conversely, our approach utilizes an identity
feature vector, obtained from a pretrained face recognition model, as
the identity condition that is passed to the Dual-Branch StyleGAN2
model. This inherently avoids the identity capacity limit, as we can
simply randomly sample new random feature vectors during inference
to create new identities.

To improve upon the original SFace (Boutros et al., 2022) method
and allow for a more fair comparison with our ArcBiFaceGAN, we
propose to mix different one-hot encoded vectors during inference.
For the purposes of these experiments, we sum two to five randomly
selected one-hot encoded vectors during sampling to create a new
identity. This creation of mixed identities bypasses the limited number
of possible identities and reduces the overall resemblance to real-world
identities. However, similarities still remain, which is problematic from
a privacy point of view. In terms of quality indicators, the performance
of the so called Mix-SFace approach lies between performance of the
original SFace (Boutros et al., 2022) and our ArcBiFaceGAN approach.

To address the privacy-breaching issues that affect both the Mix-
SFace approach and our ArcBiFaceGAN (to a lesser extent), we propose
the use of an auxiliary Privacy and Diversity (PD) filter during the
creation of synthetic datasets, as detailed in Section 3.3. In short,
this filter applies a set of restrictions that determine the acceptable
similarity between new synthetic identities and both training identities
as well as existing samples. The drastic effect of the proposed PD filter
can be observed in the identity changes in Fig. 6. Overall, the filtering
process ensures that the produced samples do not breach the privacy
12
of subjects from the training set, whilst substantially improving the
quality of both Mix-SFace and ArcBiFaceGAN approaches in terms of
FID with respect to both training and holdout samples across both
spectra. Notable is also the improvement in CR-FIQA scores of the
Mix-SFace approach. However, the LPIPS scores are affected slightly
negatively, most notably with the Mix-SFace approach. Interestingly,
we also observe that all generative approaches achieve higher CR-FIQA
scores than the training set and that the produced data is more similar
to the training set, in terms of FID, than the training is to the holdout
set. In addition, we analyze the effect of the identity condition on
the generative process. We observe that the capability for controlling
identities can have its cost, as the image quality of discussed GAN-
based approaches is lower than that of their non-conditional variants,
i.e. the single spectrum StyleGAN2 and the multispectral Dual-Branch
StyleGAN2 model, at least in terms of FID scores.

Lastly, we compare our approach with the diffusion-based visible
spectrum IDiff-Face (Boutros et al., 2023b) model. The non-conditional
variant, i.e. IDiff-Face (N) (Boutros et al., 2023b), achieves better FID
scores with regards to the training distribution. However, this is not the
case when comparing the produced data with the holdout set, where
the results point to a substantially lower quality than all previous meth-
ods. The model also performs worse than our proposed ArcBiFaceGAN
in terms of LPIPS scores, with regards to both the training and the
holdout set, as well as CR-FIQA scores, where we observe not only a
lower mean value but also a notable increase in standard deviation.
It should be noted, however, that these results belong to the baseline
non-conditional version IDiff-Face (N) (Boutros et al., 2023b), which is
not capable of generating multiple samples of the same identity.

In comparison, the identity conditioned version IDiff-Face (Boutros
et al., 2023b), performs drastically worse in terms of FID and even
slightly worse with regards to LPIPS scores. Interestingly, however, the
model achieves a substantially higher CR-FIQA score, that competes
with the quality of our ArcBiFaceGAN approach. This suggests a more
suitable quality of images for training recognition models, despite the
lower FID and LPIPS scores. However, when examining the visualized
samples in Fig. 5 we observe that the quality of images is indeed
rather poor. In comparison with the GAN-based approaches, the images
produced by IDiff-Face (Boutros et al., 2023b) contain noticeable un-
natural artifacts and are more blurry, even though the model is tasked
with the synthesis of only a single spectrum, thus avoiding issues with
alignment of VIS-NIR pairs. These issues point to possible issues with
training diffusion models on the small scale multispectral Tufts Face
Database (Panetta et al., 2018).

The presented results showcase the suitability of our ArcBiFaceGAN
framework for creating high-quality face images. Overall, our solu-
tion outperforms the original SFace (Boutros et al., 2022) model, in
terms of CR-FIQA scores and FID scores with regards to the holdout
set, whilst enabling the production of less privacy breaching datasets.
Furthermore, it also achieves higher quality images across all measures
in comparison to the proposed Mix-SFace approach, likely due to the
feature-based identity condition that provides more information to
the generative process than a one-hot encoded vector. Finally, our
framework is also more suited for training in a low data regime than
the IDiff-Face (Boutros et al., 2023b), which is crucial for producing
new multispectral synthetic datasets or augmenting existing ones.

4.2.2. T-SNE analysis
To obtain further insight into the differences between synthetic and

real-world image distributions of the methods tested in the previous
section, we visually compare the distributions with the 𝑡-distributed
Stochastic Neighbor Embedding (𝑡-SNE) technique (Van der Maaten and
Hinton, 2008). In Fig. 7, we depict the 𝑡-SNE for each spectrum, featur-
ing image distributions of different generative frameworks alongside
the training and holdout sets. For clarity we only plot 250 random
samples from each dataset. Furthermore, we provide the Kullback–
Leibler divergence (KL-divergence) values (Joyce, 2011) employed in
the creation of the 𝑡-SNE plots in Table 4.
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Fig. 7. Synthetic and training distributions presented with 2D t-SNE plots. For clarity the plots are generated with 250 image samples randomly selected from datasets with
95 identities or similarly sized datasets of non-conditional methods. The plot includes samples created by different generative frameworks as well as samples from the training and
holdout sets.
Table 4
Comparison of Kullback–Leibler (KL) divergence values of the t-SNE plots in Fig. 7. Reported values are obtained
by comparing synthetic images of a given generative framework to the real-world training and holdout samples. Lower
values imply more similarity between synthetic and real distributions and thus better performance.

KL-divergence vs. (T) vs. (H)

Dataset PD VIS NIR VIS NIR

Tufts Face (H) (Panetta et al., 2018) – 6.644 6.661 – –

SFace (Boutros et al., 2022) – 3.341 3.071 6.009 5.186

Mix-SFace (Boutros et al., 2022) – 3.056 2.958 4.671 4.798
✓ 2.902 2.602 4.539 4.335

ArcBiFaceGAN (Ours) – 3.831 2.930 5.219 4.873
✓ 3.061 2.179 4.289 3.950

IDiff-Face (N) (Boutros et al., 2023b) – 9.640 – 8.980 –
IDiff-Face (Boutros et al., 2023b) – 8.834 – 8.193 −
The plots in Fig. 7 reveal that the distributions of most generative
frameworks overlap rather well with the real-world distributions. The
main outliers are again the distributions of the two diffusion-based
IDiff-Face (Boutros et al., 2023b) models in the visible spectrum. These
can easily be separated from the rest, including the training and holdout
distributions, as also indicated by the high KL-divergence values in
Table 4. The two distributions are also substantially less spread out,
in comparison to other distributions, which points to a possible low
diversity of samples. Overall, this suggests that these models lack
the capability of producing images that would match the quality and
diversity of real world samples.

From the plots, we can also discern that the GAN-based approaches
that utilize the proposed Privacy and Diversity (PD) filter overlap
slightly better with both the training and the holdout distributions,
as they cover a larger area. An example of this can be seen on the
left side of both plots, where more samples reach the ends of the
real-world distributions. This is supported by the lower KL-divergence
scores achieved by both Mix-SFace and ArcBiFaceGAN when combined
with the PD filter, as seen in Table 4 across both spectra. This suggests
that the addition of the PD filter actually increases the diversity of
created images and also makes sense, when we consider the alternative.
Without it we often sample identities that are most common in the
latent space, which results in the creation of similar identities.

It should also be noted that the shapes of the training and holdout
distributions match fairly well, despite containing different identities.
This implies that the distance between different samples does not
necessarily correspond to a difference in identity. Thus, we are not in-
centivized to search for distributions with the highest divergence from
13
real-world samples. Interestingly, the GAN-based approaches overlap
with the training distribution better than the training does with the
holdout, similarly to previous FID results. However, the overlap is also
better with the holdout distribution, so this does not indicate a case
of overfitting. Overall, our proposed ArcBiFaceGAN with the PD filter
achieves the lowest KL-divergence values across most scenarios. The
PD filter also has a drastically larger positive impact on KL-divergence
values when applied to ArcBiFaceGAN rather than to Mix-SFace.

4.2.3. Evaluating intra-identity diversity
Next, we investigate the diversity of intra-identity samples produced

by the different generative frameworks. This aspect of data generation
is critically important, especially when discussing synthetic data for
training recognition approaches. To achieve high recognition perfor-
mance the generated dataset should contain diverse identities, each
with a large number of diverse samples. Unfortunately, the multispec-
tral Tufts Face Database (Panetta et al., 2018) contains rather low
diversity between samples. Subjects are captured from different angles
but this is done in a controlled environment with the same background.
Thus, the diversity is mainly limited to the varying face pose, along
with slight lighting changes. This drastically limits the amount of
diversity that any generative framework can learn.

Due to these characteristics, we focus our analysis on the pose
diversity that can be found in the training set, namely the yaw rotation
of faces. To this end, we utilize a pretrained state-of-the-art head pose
estimator 6DRepNet (Hempel et al., 2022) to obtain the yaw rotation
of each sample. We then analyze the yaw rotation distributions across
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Fig. 8. Comparison of image diversity through yaw rotation of faces. The left plot displays the distribution of yaw rotations across all samples of the datasets. Differently,
he right plot contains distributions of Standard Deviation (SD) yaw rotation values obtained for each identity separately, thus highlighting intra-identity diversity of the datasets.
he yaw rotation of faces is determined with a pretrained head pose estimator (Hempel et al., 2022).
Table 5
Comparison of image diversity based on yaw rotations of faces. Reported are the mean and standard deviation values
of the different distributions from Fig. 8. The left column describes the distribution of yaw rotations across all samples.
The right includes results of Standard Deviation (SD) distributions obtained across samples for each identity. The yaw
rotation of samples is determined with a pretrained head pose estimator (Hempel et al., 2022).

Dataset PD Yaw rotation SD of Yaw per ID

Tufts Face (T) (Panetta et al., 2018) – −0.265 ± 26.591 25.262 ± 4.740

SFace (Boutros et al., 2022) – −1.600 ± 9.995 8.983 ± 1.841

Mix-SFace (Boutros et al., 2022) – −1.955 ± 9.762 8.852 ± 1.694
✓ −2.948 ± 17.127 12.704 ± 4.045

ArcBiFaceGAN (Ours) – −1.563 ± 9.038 8.588 ± 1.061
✓ −8.766 ± 19.173 15.036 ± 4.568

IDiff-Face (Boutros et al., 2023b) – 7.534 ± 34.918 32.025 ± 11.199

(T) – Training set; (PD) – Privacy and Diversity filter.
a

ll samples as well as for each identity separately. Specifically, to de-
ermine the intra-identity diversity, we compute the standard deviation
f samples for each identity and then form distributions based on these
alues. We provide plots of the dataset-wide distribution and the intra-
dentity standard deviation distributions in Fig. 8. We also report the
ean and standard deviation of the different distributions in Table 5.

n addition, we depict, in the right column of Fig. 5, three samples
ith different face poses from the right-most identity shown in the left

olumn.
From Fig. 8 and Table 5 we can discern that all GAN-based methods

ithout the PD filter generate data with similarly low levels of both
ataset-wide diversity and intra-identity diversity. To address this, our
roposed PD filter not only removes privacy-breaching samples, but
lso removes samples if they are too similar to previously generated
amples for a given identity. The effect of the PD filter on the data
iversity of both Mix-SFace (Boutros et al., 2022) and ArcBiFaceGAN
an be clearly observed by the more spread out distributions with lower
eaks. Importantly, the distributions of intra-identity diversity are also
oved further to the right. As seen in Fig. 5 the produced samples

over a larger range of face poses. Interestingly, this effect is more
ronounced with our ArcBiFaceGAN approach as it achieves a notably
igher diversity scores than the Mix-SFace (Boutros et al., 2022),
espite similar performance without the PD filter. These observations
re also reflected in the intra-diversity plot, as the distribution of our
rcBiFaceGAN framework with filtering best matches the real-world
14

istribution.
In comparison to the GAN-based approaches, the diffusion-based
IDiff-Face (Boutros et al., 2023b) model scores the highest in terms
of intra-identity diversity, with values even higher than the training
dataset, as seen in Table 5. A similar observation can be made for
the dataset-wide distribution, but only in terms of standard deviation.
Despite the promising scores, the bimodal shape of the dataset-wide
distribution in Fig. 8 reveals a notable problem, i.e. a lack of front
facing samples. In contrast the real-world or GAN-based datasets form
uniform distributions with peaks near the middle. This problem can
also be observed in samples of both columns in Fig. 5, where most
samples take on a more profile-based view. Overall, the distributions of
the IDiff-Face (Boutros et al., 2023b) model simply do not correspond
well to the real-world samples.

4.2.4. Exploration of the latent space
In the above experiments we demonstrated the suitability of our

proposed framework for identity-conditioned image generation, where
the identity of a subject is determined by the 𝑖𝑑 input while other
spects of the image, e.g. the pose, are based on the regular 𝑧 input

of StyleGAN-based architectures (Karras et al., 2019, 2020b). In this
section, we specifically explore the control offered by the separate
inputs and their potential entanglement, as well as the linearity of their
latent spaces. To this end, we generate images by linearly interpolating
between two randomly sampled points in the identity space the identity
while keeping the 𝑧 input fixed to a randomly selected point and vice

versa. In Fig. 9 we depict samples generated by this process, with three
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Fig. 9. Interpolation results generated with ArcBiFaceGAN. The patterns are generated by linear interpolation between two randomly selected points in either identity or latent
𝐙 space, while the other input remains fixed. The leftmost and rightmost images correspond to sampled points, while the images in between represent the results of interpolation.
examples for each interpolated input. From the resulting images, we
can discern that interpolating between two identities does not affect the
overall pose of the face. Meanwhile interpolating over the 𝑧 input en-
ables drastic changes to the pose of the face with minimal influence on
the identity. All interpolations also display a smooth gradual transition
either between two identities or two poses, confirming the linearity of
the latent spaces. Overall, these results highlight the disentanglement
that can be achieved with our ArcBiFaceGAN framework, especially
when training on most representative identity features for each real-
world subjects to limit the effect on the pose, as is further explored in
Section 4.4.1.

4.3. Recognition experiments

The second set of experiments revolves around the suitability of
synthetic data for training face recognition approaches. This includes
exploring the identity separability of generated datasets and inves-
tigating how synthetic (multispectral) data can be used to improve
the performance of modern recognition models. Similarly to before,
we compare our proposed ArcBiFaceGAN with the state-of-the-art
conditional generative frameworks, i.e. SFace (Boutros et al., 2022)
and IDiff-Face (Boutros et al., 2023b), as well as the presented Mix-
SFace (Boutros et al., 2022) variant. In addition, we investigate how the
introduced Privacy and Diversity (PD) filter affects the final generated
datasets. For the purposes of the experiments, we use the different
generative frameworks to produce multiple datasets with increasing
amounts of identities, i.e. 95, 500 and 1000, with 32 samples per identity
in order to analyze their full potential.

4.3.1. Identity separability
We begin our face recognition experiments by evaluating the sepa-

rability of identities generated by our proposed framework and compar-
ing it to the state-of-the-art. To analyze this capability in a quantitative
manner, we utilize a pretrained ArcFace recognition model (Deng
et al., 2019a) to extract identity embeddings and use them to construct
15
genuine and imposter distribution plots in Fig. 10, which are based on
all possible genuine pairs and an equal amount of randomly sampled
imposter pairs. We also report the corresponding verification perfor-
mance in Table 6, including the Equal Error Rate (EER) (Maio et al.,
2002), the False Non-Match Rate (FNMR) at or below a False Match
Rate (FMR) of 1.0% and 0.1%, denoted as FMR100 and FMR1000, as
well as the mean and standard deviation of each distribution along
with the Fisher Discriminant Ratio (FDR) (Poh and Bengio, 2004). For
brevity, the plots only contain datasets with 95 identities, as increases
in scale did not alter the overall distribution shapes. Numerical results
for the different scales are, however, still provided in Table 6.

Comparing real-world and synthetic identity separability. First
let us address the unusual lack of overlap between the genuine and
imposter distributions in the Tufts Face Database (Panetta et al., 2018).
This is typically not observed in large-scale real-world datasets, as
can be seen in related works (Boutros et al., 2022, 2023b). Likely,
this is caused by the small-scale of the multispectral dataset and its
incredibly limited intra-identity diversity, apart from face pose changes.
Apart from these factors, perfect identity separability is also not in-
dicative of a good recognition training dataset, due to the ease of
separating the identities. To train successful face recognition models
we require a delicate balance of identity separability and intra-identity
diversity (Boutros et al., 2023b).

In comparison to the Tufts Face Database (Panetta et al., 2018),
all produced synthetic datasets showcase some form of overlap and
verification errors. The lowest EER and FMR100 scores are obtained
by the original SFace (Boutros et al., 2022) approach, along with the
highest overall distribution separability in terms of FDR. This is rather
expected, considering the nature of the model, as it utilizes a one-hot
encoder vector as the identity condition. While this choice does limit
the amount of possible identities that can be created, these identities
should be separable, given a properly trained model. Interestingly,
however, the model performs drastically worse in terms of FMR1000
than other generative models, i.e. results in more false non-matches
when a FMR of 1-in-1000 is desired. This drastic increase between
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Fig. 10. Identity separability comparison of different datasets with plots of genuine and imposter distributions. Distributions are obtained by computing the identity
similarity of a pair of visible spectrum face images, either of the same or different identities (i.e. genuine and imposter pairs). For each dataset, all possible genuine pairs are
considered, along with an equal amount of randomly sampled imposter pairs. Identity similarity is determined by the cosine similarity of identity features, obtained for each image
with a pretrained ArcFace recognition model (Deng et al., 2019a). To allow a comparison with the real-world dataset, the figure only contains plots of datasets with 95 identities.
Table 6
Quantitative identity separability analysis of different datasets. Reported are verification-based results, i.e. Equal Error Rate (EER) and the false non-match rate at a False
Match Rate of 1% (FMR100) or 0.1% (FMR1000), of the distributions of visible spectrum face images in Fig. 10. Included are also the mean and standard deviation of the
distributions along with their overall separability in terms of Fisher Discriminant Ratio (FDR). The best results of synthetic datasets are marked in bold.

Dataset PD #IDs EER ↓ FMR100 ↓ FMR1000 ↓ Gen. 𝜇 (𝜎) Imp. 𝜇 (𝜎) FDR ↑

Tufts Face (T) (Panetta et al., 2018) – 95 0.000 0.000 0.000 0.887 (0.056) 0.021 (0.074) 87.069

SFace (Boutros et al., 2022) – 95 0.020 0.041 0.797 0.694 (0.122) 0.155 (0.124) 9.663

Mix-SFace (Boutros et al., 2022)

– 95 0.056 0.199 0.519 0.659 (0.121) 0.242 (0.148) 4.754
✓ 95 0.040 0.140 0.392 0.633 (0.109) 0.188 (0.123) 7.332
✓ 500 0.031 0.101 0.382 0.643 (0.109) 0.162 (0.124) 8.523
✓ 1000 0.030 0.088 0.337 0.647 (0.114) 0.150 (0.125) 8.594

ArcBiFaceGAN (Ours)

– 95 0.066 0.270 0.540 0.687 (0.091) 0.360 (0.122) 4.638
✓ 95 0.058 0.253 0.573 0.635 (0.105) 0.267 (0.119) 5.360
✓ 500 0.043 0.167 0.475 0.648 (0.107) 0.230 (0.122) 6.643
✓ 1000 0.037 0.130 0.418 0.657 (0.107) 0.214 (0.121) 7.465

IDiff-Face (Boutros et al., 2023b)
– 95 0.157 0.523 0.700 0.463 (0.156) 0.181 (0.114) 2.115
– 500 0.151 0.506 0.677 0.474 (0.152) 0.186 (0.116) 2.267
– 1000 0.152 0.507 0.681 0.475 (0.152) 0.188 (0.115) 2.257

(PD) – Privacy and Diversity filter, (Gen.) – Genuine distribution; (Imp.) – Imposter distribution. (#IDs) – Number of identities; (↓) – Lower is better; (↑) – Higher is better.
e
t
a
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FMR100 and FMR1000 scores points to an imposter distribution with
a long right tail, meaning that some generated identities might be
extremely similar. Differently from slight similarities, which provide
a valid challenge for face recognition training, such high similarity
anomalies might not be desirable.

In contrast, both proposed approaches that resolve the unique iden-
tity limit of the original SFace (Boutros et al., 2022), i.e. the Mix-SFace
variant and our ArcBiFaceGAN, achieve worse overall identity separa-
bility across most reported results in Table 6. This is also reflected in
larger overlap between the genuine and imposter distributions, caused
by the drastic shift of the imposter distributions to the right and
their overall flatter shape. Worse results are however not surprising,
due to the sampling approach taken by both proposed frameworks.
Since we either randomly combine one-hot encoded vectors (Mix-
SFace) or randomly sample features from a latent space of a pretrained
recognition model (ArcBiFaceGAN), we are likely to generate similar
identities at some point. This is especially true when considering the
low amount of training data, which limits the possible identity diversity
learnt by the generative models. Nevertheless, both approaches actually
attain notably lower FMR1000 scores than SFace (Boutros et al., 2022),
16

despite larger FMR100 values. While this does indicate the presence t
of beneficial similar identities (e.g. identities of cosine similarity near
the EER threshold), it also showcases a lower amount of potentially
problematic extremely similar identities.

The reported results on identity separability reveal additional issues
with training the IDiff-Face (Boutros et al., 2023b) model on the limited
amount of training images. The genuine and imposter distributions in
Fig. 10 showcase a considerable amount of overlap and poor identity
separability. Additionally, the genuine distribution follows an unusual
bimodal shape, further indicating a potential lack of intra-identity
diversity, i.e. coverage across the different face poses. The results in
Table 6 support these observations, as the model scores drastically
worse than other generative models across all measures, apart from
FNMR1000 where it still outperforms the SFace approach (Boutros
et al., 2022).

Influencing identity separability with the PD filter. Lastly, we
xplore the effect of our proposed Privacy and Diversity (PD) filter on
he identity separability of datasets generated by both the Mix-SFace
nd the ArcBiFaceGAN framework. Fig. 10 and Table 6 reveal that the
ntroduction of the PD filter drastically shifts the imposter distributions
o the left and increasing their peaks. This improves scores across

he majority of reported measures, most noticeably in terms of EER
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and FDR, results in an overall increased separability among generated
identities, thus addressing the issues of sampling similar identities.
Interestingly, when generating larger datasets with increased amounts
of identities (e.g. 500 and 1000), our PD filter actually ensures the
increase of identity separability. This can be observed in substantial
improvements in terms of all results with the increasing number of
identities and leads to scores that are closer to those of the SFace
approach (Boutros et al., 2022), whilst achieving a drastically lower
FMR1000 value.

4.3.2. Face recognition training on synthetic datasets
The experiments decribed above focused on analyzing the synthesis

capabilities of the proposed ArcBiFaceGAN framework to determine the
overall quality of the generated data. However, in order to evaluate
the utility and applicability of the created synthetic data in a real-
world scenario, we need to investigate how well it performs in the
task of training recognition models. To this end, we train a modern
CosFace recognition model (Wang et al., 2018), based on the ResNet-
18 network architecture (He et al., 2016), with the synthetic data
produced by different generative frameworks. This includes the state-
of-the-art SFace (Boutros et al., 2022) and IDiff-Face (Boutros et al.,
2023b) models along with the introduced Mix-SFace variant (Boutros
et al., 2022) and our ArcBiFaceGAN. In addition, we explore how the
generation of privacy-preserving data with the proposed Privacy and
Diversity (PD) filter affects the suitability of the generated datasets. We
evaluate the overall performance and genaralizability of the different
synthetic-based recognition models with the use of five widespread face
recognition benchmarks. This includes the unconstrained LFW (Huang
et al., 2007) dataset, the cross-age AgeDB-30 (Moschoglou et al., 2017)
and CA-LFW (Zheng et al., 2017) datasets, as well as the cross-pose
CFP-FP (Sengupta et al., 2016) and CP-LFW (Zheng and Deng, 2018)
datasets. To investigate how the models perform on real-world mul-
tispectral data, we also perform evaluation on the small holdout set
of the Tufts Face Database (Panetta et al., 2018). The verification
accuracies obtained by the different synthetic-based face recognition
models are reported in Table 7. Here it should be noted, that differently
from existing works (Boutros et al., 2022, 2023b), we validate the
recognition model during training only on the LFW (Huang et al., 2007)
benchmark, instead of across all benchmarks. In this section, we focus
on the analysis of the results tied to solely the visible spectrum, while
the use of multispectral data is explored in the following section.

Real-world and synthetic-based recognition. First, let us discuss
the recognition performance obtained with different datasets of 95
dentities, to allow for a fair comparison with the real-world Tufts Face
atabase (Panetta et al., 2018). When considering the results with the
atasets generated without the proposed PD filter, we observe that the
riginal SFace (Boutros et al., 2022) approach results in the highest
erification accuracies on the LFW and CA-LFW (Zheng et al., 2017)
enchmarks. However, on the other four benchmarks, we achieve
rastically better performance when utilizing data produced by our
rcBiFaceGAN approach. Meanwhile, the results of the Mix-SFace and

he IDiff-Face (Boutros et al., 2023b) model present a middle ground
etween the performance of SFace (Boutros et al., 2022) and our
rcBiFaceGAN. In comparison, training a recognition model on real-
orld data delivers overall better performance on most benchmarks
part from AgeDB-30 (Moschoglou et al., 2017) and CA-LFW (Zheng
t al., 2017), where synthetic-based models prevail. Importantly, all
bove discussed solutions share the same crucial downside, i.e. they
ll rely on potentially privacy-breaching images.

Suitability of privacy-preserving data for recognition. The re-
ults in Table 7 reveal that utilizing PD filtered datasets instead does
ot drastically affect the overall accuracy of the trained recognition
odels. The performance achieved with our Mix-SFace approach does

lightly decrease on all benchmarks. However, we can observe that
t actually improves with ArcBiFaceGAN on the LFW (Huang et al.,
17

007) and CA-LFW (Zheng et al., 2017) benchmarks. Most notably, the b
Face (Boutros et al., 2022)-based approach achieves higher accuracies
n all verification benchmarks, when using the PD filter during the
reation of the dataset. This showcases that it is possible to train face
ecognition models without breaching the privacy of real-world sub-
ects. Nevertheless, it should be noted, that the recognition performance
s in certain instances close to random (e.g. on AgeDB-30 (Moschoglou
t al., 2017)), with either real-world or synthetic datasets. This poor
eneralizability to real-world benchmarks is likely caused by the small
ize of the datasets (only 95 identities) and the extremely limited
iversity of samples, caused by the controlled environment in which
he real-world images were captured.

Scalability of synthetic recognition datasets. In order to explore
ossible solutions, we investigate the scalability of our proposed ap-
roaches. To this end, we create datasets with a increasing amounts
f unique identities (500 and 1000) with the different generative ap-
roaches that support this. From Table 7, we discern a substantial
mprovement in accuracies when increasing the amount of identities
ith Mix-SFace and ArcBiFaceGAN. Creating 500 identities with Mix-
Face leads to better performance across most benchmarks apart from
geDB-30 (Moschoglou et al., 2017). In comparison, results based
n 500 identities created by ArcBiFaceGAN, showcase substantial im-
rovements in all benchmarks, where the approach also outperforms
he Mix-SFace variant. On the LFW (Huang et al., 2007) and CA-
FW (Zheng et al., 2017) benchmarks, this configuration even achieves
etter results than when utilizing real-world data. We observe simi-
ar performance increases with the IDiff-Face (Boutros et al., 2023b)
odel, which yields better results on AgeDB-30 (Moschoglou et al.,
017) than our ArcBiFaceGAN approach, but lower among other bench-
arks. Lastly, utilizing synthetic datasets of 1000 identities again results

n improved performance in the majority of experimental settings.
ith the Mix-SFace approach we observe notably higher accuracies

n the AgeDB-30 (Moschoglou et al., 2017) and CFP-FP (Sengupta
t al., 2016) benchmarks along with better verification on the hold-
ut set of the Tufts Face Database (Panetta et al., 2018). However,
his is accompanied by slightly worse performance on other bench-
arks. Differently, increasing the dataset scale of IDiff-Face (Boutros

t al., 2023b) heavily negatively impacts the recognition performance
n AgeDB-30 (Moschoglou et al., 2017), CFP-FP (Sengupta et al.,
016) and CP-LFW (Zheng and Deng, 2018), whilst not providing
oticeable performance boosts on other benchmarks. These scalability
ssues are likely caused by the low identity separability investigated
n Section 4.3.1. In comparison, our proposed ArcBiFaceGAN show-
ases the best scalability, as we observe improved performance on
ll benchmarks, apart from CP-LFW (Zheng and Deng, 2018), when
xpanding the synthetic dataset to 1000 identities. Most notable here
s the substantial accuracy increase on the previously problematic
geDB-30 (Moschoglou et al., 2017) benchmark.

Suitability of ArcBiFaceGAN. Among all generative approaches,
he proposed ArcBiFaceGAN model leads to overall highest scores
cross the different verification benchmarks in terms of all dataset
cales, with only few exceptions that are based on minimal accuracy
ifferences (e.g. on CFP-FP (Sengupta et al., 2016)). Most importantly,
y utilizing the synthetic dataset of 1000 identities generated by our
roposed ArcBiFaceGAN and the presented PD filter, we achieve dras-
ically better verification performance than with the real-world dataset.
his can be observed in all benchmarks apart from CP-LFW (Zheng and
eng, 2018), but even there the results of our method remain competi-

ive. Overall, the presented results showcase the value of synthetic data
or training biometric recognition models, especially when faced with
mall-scale real-world datasets with limited diversity. Furthermore,
he performance achieved with our approach demonstrates that high
dentity separability of training data does not always translate to better
ecognition models. Compared to ArcBiFaceGAN, both SFace (Boutros
t al., 2022) and Mix-SFace attained better identity separability but
ubstantially worse intra-identity diversity. Thus, when creating state-
f-the-art synthetic datasets, we should always consider the trade-off
etween identity separability and intra-identity diversity, and seek to

alance both aspects.
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Table 7
Verification performance of recognition models trained with synthetic data of different generative frameworks. Reported is the accuracy across 5 state-of-the-art
verification benchmarks and all image pairs of the holdout set of the Tufts Face Database (Panetta et al., 2018). During training, the models are validated (Val.) on the LFW
(Huang et al., 2007) benchmark to prevent overfitting. Overall, the table is split into two sections according to the type of data used for training, i.e. visible spectrum (VIS) or
multispectral, as indicated in the first column. Since verification benchmarks do not include near-infrared (NIR) data, we instead use a grayscale version of VIS images in its
place, when evaluating multispectral recognition models. The best performance on each benchmark for each spectral section is marked in bold. The best scores that are based
on 95 identities are also underlined.

Training setting Val. ↑ Verification accuracy on benchmarks ↑

Sp. Dataset PD #IDs LFW AgeDB-30 CA-LFW CFP-FP CP-LFW Tufts (H)

VIS

Tufts Face (T) (Panetta et al., 2018) – 95 0.674 0.511 0.532 0.595 0.548 0.973

SFace (Boutros et al., 2022) – 95 0.655 0.493 0.537 0.580 0.526 0.945
✓ 95 0.644 0.506 0.541 0.599 0.537 0.949

Mix-SFace (Boutros et al., 2022)

– 95 0.647 0.522 0.535 0.581 0.537 0.940
✓ 95 0.634 0.511 0.526 0.559 0.519 0.939
✓ 500 0.676 0.504 0.552 0.579 0.543 0.966
✓ 1000 0.667 0.537 0.550 0.600 0.541 0.981

ArcBiFaceGAN (Ours)

– 95 0.640 0.529 0.523 0.593 0.540 0.946
✓ 95 0.645 0.506 0.541 0.571 0.531 0.940
✓ 500 0.676 0.517 0.552 0.593 0.547 0.976
✓ 1000 0.692 0.549 0.562 0.598 0.545 0.981

IDiff-Face (Boutros et al., 2023b)
– 95 0.648 0.504 0.531 0.567 0.534 0.948
– 500 0.668 0.522 0.547 0.593 0.540 0.954
– 1000 0.670 0.497 0.548 0.574 0.535 0.960

VIS & NIR

Tufts Face (T) (Panetta et al., 2018) – 95 0.699 0.531 0.561 0.616 0.548 0.978

SFace (Boutros et al., 2022) – 95 0.656 0.538 0.542 0.587 0.522 0.948
✓ 95 0.666 0.513 0.535 0.582 0.531 0.950

Mix-SFace (Boutros et al., 2022)

– 95 0.665 0.506 0.534 0.591 0.530 0.952
✓ 95 0.627 0.508 0.534 0.564 0.525 0.945
✓ 500 0.703 0.521 0.578 0.579 0.547 0.960
✓ 1000 0.721 0.561 0.580 0.600 0.540 0.958

ArcBiFaceGAN (Ours)

– 95 0.652 0.511 0.535 0.584 0.530 0.948
✓ 95 0.670 0.496 0.557 0.587 0.539 0.946
✓ 500 0.715 0.496 0.579 0.608 0.545 0.979
✓ 1000 0.727 0.554 0.580 0.619 0.560 0.979

(Sp.) – Spectrum of light; (↑) – Higher is better; (T/H) – Training/Holdout set; (PD) – Privacy and Diversity filter.
4.3.3. Recognition with multispectral data
So far, we demonstrated the possibility of using synthetic visible

spectrum data to train successful recognition models. In this section,
we extend our recognition-based analysis to the bimodal capabilities
of the proposed ArcBiFaceGAN model to investigate the value and
utility of generated datasets that include both visible (VIS) and near-
infrared (NIR) images. To this end, we repeat our previous recognition
experiments but limit our comparison to only GAN-based approaches
that we have adapted to rely on the same Dual-Branch StyleGAN2
architecture (Tomašević et al., 2022). Additionally, to allow recognition
based on VIS-NIR image pairs, we alter the ResNet-18 architecture (He
et al., 2016) of the CosFace recognition model (Wang et al., 2018),
to accept a four-channel image as input, with the additional channel
dedicated to the NIR data. To compare the performance obtained with
datasets from different generative frameworks, we must also modify the
existing recognition benchmarks, due to the lack of benchmarks with
aligned VIS-NIR image pairs. We therefore propose to create new VIS-
NIR benchmarks by simply using the grayscale version of existing VIS
images to mimic the required NIR spectrum. This in turn allows for
a fair comparison with previous experiments, as we can run the new
four-channel recognition models on the same benchmarks as before. To
allow for easier comparison, we report the results of these experiments
in the second half of Table 7.

Real-world and synthetic-based multispectral recognition. We
observe that training the recognition model on real-world VIS-NIR
image pairs of the Tufts Face Database (Panetta et al., 2018) results in
drastically increased performance than when relying on VIS data. This
indicates the potential of the proposed rudimentary solution that mim-
ics NIR data for further improving the real-world accuracy of modern
recognition models without requiring the setup of additional NIR sen-
sors. Performance improvements when utilizing VIS-NIR data are also
18

seen with the non-filtered synthetic dataset produced by SFace (Boutros
et al., 2022), as it leads to higher accuracies on all benchmarks, apart
from CP-LFW (Zheng and Deng, 2018). In comparison, the performance
increases are not as pronounced with datasets created by Mix-SFace
and our ArcBiFaceGAN. Both achieve noticeably better accuracy on the
validation LFW (Huang et al., 2007) benchmark, and CPF-FP (Sengupta
et al., 2016) and CA-LFW (Zheng et al., 2017) respectively, but the
performance on other benchmarks is similar or lower.

Privacy-preserving multispectral recognition. With the addition
of the proposed PD filter to the sampling process, we observe an overall
slight decrease in benchmark scores, when generating datasets of 95
identities. The only major improvements are seen with SFace (Boutros
et al., 2022) on CP-LFW (Zheng and Deng, 2018) and with ArcBiFace-
GAN on LFW-based benchmarks (Huang et al., 2007; Zheng et al.,
2017; Zheng and Deng, 2018). When compared to only relying on
the VIS spectrum, the recognition performance improvements are quite
noticeable. This is especially true with our ArcBiFaceGAN on the LFW-
based benchmarks (Huang et al., 2007; Zheng et al., 2017; Zheng and
Deng, 2018) as well as the CFP-FP (Sengupta et al., 2016) and the
holdout Tufts Face (Panetta et al., 2018) benchmarks. Similar accuracy
increases are also observed with the proposed Mix-SFace approach, on
CA-LFW (Zheng et al., 2017) and on Tufts Face holdout (Panetta et al.,
2018), as well as both cross-pose benchmarks (Zheng and Deng, 2018;
Sengupta et al., 2016). With SFace (Boutros et al., 2022), however, the
improvements are limited to the LFW (Huang et al., 2007) and AgeDB-
30 (Moschoglou et al., 2017) benchmarks. Meanwhile, the accuracy on
other benchmarks decreases, likely due to the lower CR-FIQA quality of
generated NIR images, observed in Section 4.2.1. However, despite the
effect on performance, the proposed PD filter facilitates the generation
of privacy-preserving dataset.

Scalability of synthetic VIS-NIR datasets. When increasing the
scale of the synthetic datasets, we again notice drastic performance
boosts, consistent with observations from the single spectrum experi-

ments. The Mix-SFace dataset of 500 identities displays improvements
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on all benchmarks, with the largest differences being on the LFW-
related benchmarks (Huang et al., 2007; Zheng et al., 2017; Zheng and
Deng, 2018). With 1000 identities these improvements continue and are

ost notable on the AgeDB-30 (Moschoglou et al., 2017) benchmark.
owever, performance does slightly decrease on the CP-LFW (Zheng
nd Deng, 2018) and holdout Tufts Face (Panetta et al., 2018) bench-
arks. Compared to results on the VIS spectrum, the accuracy does sub-

tantially increase on LFW (Huang et al., 2007), AgeDB-30 (Moschoglou
t al., 2017) and CA-LFW (Zheng et al., 2017) but remains simi-
ar on the CFP-FP (Sengupta et al., 2016) and CP-LFW (Zheng and
eng, 2018) benchmarks. However, worse performance is achieved
n the holdout set of the Tufts Face Database (Panetta et al., 2018),
ossibly due to the misalignment found between the VIS-NIR im-
ge pairs. In comparison, our proposed ArcBiFaceGAN approach dis-
lays even better scalability than our Mix-SFace variant. This can be
iscerned from higher accuracies across all benchmarks, apart from
geDB-30 (Moschoglou et al., 2017), when increasing the dataset size

o 500 identities. Performance again substantially increases with 1000
dentities, with the most drastic improvement observed specifically on
he AgeDB-30 (Moschoglou et al., 2017) benchmark. When compared
o accuracies obtained on the VIS spectrum, we notice drastic im-
rovements in the large majority of experiments. The only performance
ecrease is seen on AgeDB-30 (Moschoglou et al., 2017) when using a
ataset of 500 identities. Minimally lower performance is also observed
n the holdout set of the Tufts Face Database (Panetta et al., 2018),
gain likely due to VIS-NIR image pair misalignment.

Suitability of ArcBiFaceGAN. Overall, the best performing recog-
ition model is based on the 1000 identity dataset of the filtered

ArcBiFaceGAN approach. It performs better than all other synthetic-
based models on all benchmarks, apart from AgeDB-30 (Moschoglou
et al., 2017), and also outperforms the model that was trained on
real-world data of the Tufts Face Database (Panetta et al., 2018) in
all verification aspects. Likely, the performance with our proposed
ArcBiFaceGAN can be explained by the better balance in terms of
identity separability and intra-identity of generated samples, observed
in Sections 4.2.3 and 4.2.1. The obtained results reveal the incredible
potential of utilizing multispectral data for training recognition models
instead of only data in the visible spectrum. In addition, they support
the notion of possibly training modern recognition models on pairs of
VIS-NIR images, in order to achieve better recognition performance
on visible spectrum data, thus bypassing the need for additional sen-
sors in real-world scenarios. Furthermore, these results showcase that
our proposed ArcBiFaceGAN framework is more suitable for creating
large-scale privacy-preserving synthetic datasets that lead to better
performing recognition models on unseen real-world data, than existing
state-of-the-art generative approaches.

4.3.4. Data augmentation with synthetic samples
The main goal of this work is to explore the possibility of replacing

real-world datasets with synthetic ones. However, to further analyze
the utility of the generated datasets, we also briefly investigate how
they can be used to augment existing small-scale multispectral datasets.
Thus, we repeat the recognition experiments with combined data of
the training set of the Tufts Face Database (Panetta et al., 2018)
and datasets of different generative approaches. To allow for a fair
comparison and retain brevity, we limit the experiments to datasets
with 95 identities.

Verification scores reported in Table 8 showcase that augmenting
the training datasets with synthetic data of all generative methods
results in performance increases on most verification benchmarks. In
addition, we observe that utilizing data of either Mix-SFace (Boutros
et al., 2022) or ArcBiFaceGAN results in better verification perfor-
mance across all benchmarks than when using data of the original
SFace (Boutros et al., 2022) method. This is likely due to the higher
similarity between synthetic identities of SFace (Boutros et al., 2022)
19

and real-world identities.
Interestingly, without the PD filter the performance of our ArcBi-
FaceGAN-based augmentation is actually worse than that of the non-
filtered Mix-SFace approach (Boutros et al., 2022). However, the addi-
tion of the proposed PD filter substantially improves the performance of
the ArcBiFaceGAN-based augmentation, but it often does not positively
impact the Mix-SFace (Boutros et al., 2022) method. Thus in total,
our ArcBiFaceGAN with the PD filter achieves the highest performance
on the majority of benchmarks. Overall, the drastic performance gains
obtained by augmenting the Tufts Face Database (Panetta et al., 2018)
with only a small set of synthetic identities showcase the incredible
potential and applicability of synthetic data in a variety of scenarios.

4.4. Ablation studies

The following section is dedicated to the evaluation of the imple-
mentation details and training configurations of the proposed ArcBi-
FaceGAN framework.

4.4.1. Choice of training identity conditions
In the discussed experiments, we trained our proposed ArcBiFace-

GAN approach by conditioning it on representative identity features for
each real-world subject rather than utilizing separate identity features
for each sample. With this we limit the impact of the identity condition
on other aspects of the generated images, e.g. the pose, as described in
Section 4.1.3. This decision was made based on the analysis of samples
generated with both training configurations. As before we generated
datasets with 95 identities and 32 samples per identity. During the gen-
eration process, we also skipped the Privacy and Diversity (PD) filter, to
ensure that the observations were solely focused on the capabilities of
the proposed identity-conditioned DB-StyleGAN2 model. To investigate
possible undesired effects of the identity condition, we evaluate the di-
versity of generated samples in terms of the yaw rotation, as defined in
Section 4.2.3. The obtained dataset-wide distribution, i.e. distribution
of yaw rotation across all samples, and the intra-identity distribution,
i.e. distribution of standard deviation values of yaw rotation for each
identity, are displayed in Fig. 11.

When observing the dataset-wide distributions (left plot), we note
that the configuration that utilizes features of each sample results
in a distributions with more pronounced valleys than when training
with only representative identity features. This shows that certain yaw
rotations are underrepresented in the generated samples. However, an
even larger difference between the two configurations can be discerned
from the intra-identity distributions (right plot). Relying on different
identity features for each sample results in a distribution of standard
deviation values that is heavily skewed to the left and thus exhibits
a lack of yaw rotation diversity across samples of most identities.
These results highlight the adverse effect that utilizing separate identity
features for each sample during training can have on the capabilities
of the trained model, specifically the production of diverse samples
in terms of pose. The disentanglement of these features can, however,
be addressed by relying on a single representative identity feature for
each training subject, as can be seen by the drastic improvement in the
intra-identity distribution.

Scores reported in Table 9 also showcase that the chosen training
configuration does not negatively affect the quality of produced sam-
ples across both light spectra. We also utilize the generated samples to
form genuine and imposter distributions, as described in Section 4.3.1.
Results reported in Table 10 also display a notable improvement in
identity separability across all verification measures, when training the

model with representative identity features.
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Table 8
Verification performance of recognition models trained with combinations of real and synthetic datasets with 95 identities. Reported is the accuracy across 5 state-of-
the-art verification benchmarks and all image pairs of the holdout set of the Tufts Face Database (Panetta et al., 2018). During training, the models are validated (Val.) on the
LFW (Huang et al., 2007) benchmark to prevent overfitting. Overall, the table is split into two sections according to the type of data used for training. The best performance
on each benchmark for each spectral section is marked in bold.

Training setting Val. ↑ Verification benchmarks ↑

Sp. Dataset PD LFW AgeDB-30 CA-LFW CFP-FP CP-LFW Tufts (H)

VIS

Tufts Face (T) (Panetta et al., 2018) – 0.674 0.511 0.532 0.595 0.548 0.973

(T) + SFace (Boutros et al., 2022) – 0.660 0.523 0.545 0.592 0.548 0.965

(T) + Mix-SFace (Boutros et al., 2022) – 0.682 0.529 0.549 0.607 0.551 0.964
✓ 0.688 0.520 0.559 0.575 0.549 0.970

(T) + ArcBiFaceGAN (Ours) – 0.645 0.511 0.526 0.563 0.533 0.948
✓ 0.689 0.522 0.559 0.594 0.532 0.980

(T) + IDiff-Face (Boutros et al., 2023b) – 0.688 0.523 0.550 0.588 0.540 0.969

VIS & NIR

Tufts Face (T) (Panetta et al., 2018) – 0.699 0.531 0.561 0.616 0.548 0.978

(T) + SFace (Boutros et al., 2022) – 0.716 0.568 0.575 0.598 0.544 0.946

(T) + Mix-SFace (Boutros et al., 2022) – 0.713 0.575 0.584 0.599 0.556 0.935
✓ 0.700 0.572 0.568 0.584 0.543 0.946

(T) + ArcBiFaceGAN (Ours) – 0.706 0.593 0.568 0.598 0.544 0.950
✓ 0.723 0.599 0.576 0.601 0.535 0.935

(Sp.) – Spectrum of light; (↑) – Higher is better; (T/H) – Training/Holdout set; (PD) – Privacy and Diversity filter.
Fig. 11. Image diversity through yaw rotation of faces with different identity conditions. The left plot displays the distribution of yaw rotations, obtained with a pretrained
head pose estimator (Hempel et al., 2022), across all samples of the datasets. Differently, the right plot contains distributions of Standard Deviation (SD) yaw rotation values
obtained for each identity separately. The mean and standard deviation for each distribution are also reported in the legend.
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4.4.2. Amount of training data
As part of our ablation studies, we also investigate how the amount

of training and holdout data influences the synthesis capabilities of our
proposed ArcBiFaceGAN framework. To this end, we split the prepro-
cessed Tufts Face Database (Panetta et al., 2018) into two similarly
sized parts, with the training set containing 1118 VIS-NIR image pairs
of 53 identities, while the remaining 995 image pairs of 52 identities are
art of the holdout set. We then use the former set to train our proposed
rcBiFaceGAN model, following the training procedure described in
ection 4.1.3. The trained model is then used to generate two synthetic
atasets, one with 53 identities, corresponding to the smaller scale of
he training dataset, and another with 95 identities, to allow for a
ore fair comparison with previous methods. As before, we generate 32

amples for each identity without the use of the proposed PD filter, to
ighlight the synthesis capabilities of the model. These configurations
re denoted as Tufts Face Half in Tables 9 and 10. Here it should also
e noted that the reported FID (Heusel et al., 2017) and LPIPS (Zhang
t al., 2018) measures for these configurations also utilize the smaller
raining and larger holdout set for comparison.

With both configurations we can discern a substantial drop in
uality across all measures reported in Table 3, when compared to the
20

e

riginal configuration (in bold) that is trained on the larger training set.
his drop is also more notable for the NIR spectrum. We also observe
hat training on the smaller dataset results in worse identity separabil-
ty, as seen in Table 10. The overlap between identities is especially
otable in terms of the EER and FDR measures. Overall, these results
ighlight the difficulty of training the multispectral ArcBiFaceGAN
ramework in such a low data regime. In this setting worse synthesis
apabilities are expected, especially when considering the already small
ize of the initial multispectral Tufts Face Database (Panetta et al.,
018). However, despite the lower quality and identity separability,
he proposed framework is still able to produce synthetic face image
amples in both the VIS and the NIR spectrum.

.4.3. Training regularization methods
During training, our ArcBiFaceGAN framework relies on two exist-

ng regularization methods, 𝑅1 regularization (Mescheder et al., 2018)
nd path length (𝑅𝑃𝐿) regularization (Karras et al., 2020b). Their
eights are determined by heuristic formulas based on image reso-

ution and batch size, following their initial implementations (Karras
t al., 2020b,a; Mescheder et al., 2018), as described in Section 3.2.3.
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Table 9
Evaluation of image quality obtained with different ArcBiFaceGAN configurations, in terms of FID (Heusel et al., 2017), LPIPS (Zhang
et al., 2018) and CR-FIQA (Boutros et al., 2023a) scores. The reported FID and LPIPS scores are obtained by comparing synthetic samples with
either the training (T) or the holdout (H) set of the Tufts Face Database (Panetta et al., 2018). Differently, CR-FIQA evaluates each synthetic
samples in terms of face image quality, i.e. its utility for face recognition, without the need for a real-world reference. The baseline configuration
that is used throughout the paper is written in bold.

Sp. Configuration of ArcBiFaceGAN FID ↓ – T (H) LPIPS ↓ – T (H) CR-FIQA ↑

VIS

Separate 𝑖𝑑 for each sample (M4) 49.930 (71.436) 0.437 ± 0.102 (0.440 ± 0.091) 1.886 ± 0.113
Representative 𝑖𝑑 (M4) 38.873 (62.034) 𝟎.𝟒𝟐𝟖 ± 𝟎.𝟎𝟗𝟖 (𝟎.𝟒𝟐𝟓 ± 𝟎.𝟎𝟖𝟕) 𝟏.𝟖𝟒𝟏 ± 𝟎.𝟏𝟎𝟖

Representative 𝑖𝑑 (M1) 64.983 (78.281) 0.436 ± 0.097 (0.440 ± 0.090) 1.798 ± 0.099
Representative 𝑖𝑑 (M8) 40.604 (64.843) 0.433 ± 0.097 (0.433 ± 0.099) 1.850 ± 0.117

No regularization (M4) 288.106 (326.667) 0.701 ± 0.041 (0.700 ± 0.033) 0.646 ± 0.156

Tufts Face Half 53 (M4) 56.171 (63.510) 0.573 ± 0.077 (0.569 ± 0.078) 1.649 ± 0.422
Tufts Face Half 95 (M4) 54.095 (61.423) 0.568 ± 0.077 (0.569 ± 0.076) 1.679 ± 0.430

NIR

Separate 𝑖𝑑 for each sample (M4) 45.172 (61.397) 0.350 ± 0.093 (0.366 ± 0.088) 1.676 ± 0.168
Representative 𝑖𝑑 (M4) 37.952 (55.528) 𝟎.𝟑𝟒𝟕 ± 𝟎.𝟎𝟖𝟔 (𝟎.𝟑𝟔𝟒 ± 𝟎.𝟎𝟖𝟐) 𝟏.𝟔𝟔𝟔 ± 𝟎.𝟐𝟎𝟔

Representative 𝑖𝑑 (M1) 46.921 (59.769) 0.346 ± 0.090 (0.365 ± 0.083) 1.497 ± 0.172
Representative 𝑖𝑑 (M8) 39.160 (56.920) 0.349 ± 0.088 (0.366 ± 0.080) 1.689 ± 0.194

No regularization (M4) 215.014 (241.046) 0.576 ± 0.078 (0.579 ± 0.073) 0.433 ± 0.204

Tufts Face Half 53 (M4) 75.828 (85.471) 0.376 ± 0.099 (0.381 ± 0.095) 1.435 ± 0.415
Tufts Face Half 95 (M4) 72.002 (81.439) 0.372 ± 0.097 (0.382 ± 0.097) 1.472 ± 0.417

(Sp.) – Spectrum of light; (T/H) – Training/Holdout set; (M#) – Identity multiplication factor; (↓/↑) – Lower/Higher is better.
Table 10
Identity separability analysis of samples produced by different ArcBiFaceGAN configurations. Reported are verification-based results of
the genuine and imposter distributions of visible spectrum images generated without the PD filter. This includes the Equal Error Rate (EER)
(Maio et al., 2002), the false non-match rate at a False Match Rate of 1% (FMR100) or 0.1% (FMR1000) as well as the mean and standard
deviation of the distributions along with their overall separability in terms of Fisher Discriminant Ratio (FDR) (Poh and Bengio, 2004). The
baseline configuration used throughout the experiments is marked in bold.

Configuration of ArcBiFaceGAN EER ↓ FMR100 ↓ FMR1000 ↓ Gen. 𝜇 (𝜎) Imp. 𝜇 (𝜎) FDR ↑

Separate 𝑖𝑑 for each sample (M4) 0.101 0.333 0.591 0.751 (0.091) 0.473 (0.118) 3.477
Representative 𝑖𝑑 (M4) 0.066 0.270 0.540 0.687 (0.091) 0.360 (0.122) 4.638

Representative 𝑖𝑑 (M1) 0.286 0.889 0.982 0.718 (0.081) 0.607 (0.108) 0.677
Representative 𝑖𝑑 (M8) 0.052 0.226 0.576 0.690 (0.096) 0.317 (0.130) 5.346

Tufts Face Half 53 (M4) 0.156 0.412 0.682 0.630 (0.264) 0.291 (0.209) 1.014
Tufts Face Half 95 (M4) 0.156 0.439 0.730 0.637 (0.259) 0.299 (0.211) 1.018

(M#) – Identity multiplication factor; (↓/↑) – Lower/Higher is better; (Gen./Imp.) – Genuine and imposter distribution.
𝑀

To assess the effect of these regularization methods, we also trained the
underlying identity-conditioned DB-StyleGAN2 model with and without
them. The configuration without regularization exhibited extremely
unstable training that resulted in mode collapse, a common problem of
GAN-based architectures (Brock et al., 2018). As a result, the images
generated with the best performing model showcase incredibly low
quality and diversity, and often do not even contain discernible faces.
Quantitative results, denoted as No regularization in Table 9, confirm
these observation with a drastic drop across all reported measures in
both the visible and the near-infrared spectrum. This showcases the
importance of utilizing the 𝑅1 and 𝑅𝑃𝐿 regularization methods (Karras
t al., 2020b,a; Mescheder et al., 2018) to facilitate stable training,
specially on small-scale datasets such as the multispectral Tufts Face
atabase (Panetta et al., 2018).

.4.4. Effect of the multiplication parameter during inference
As part of our last ablation study, we investigate the effect of the

roposed multiplication factor that is applied to the sampled identity
ode 𝑖𝑑 during data generation to improve the diversity of sampled
dentities. For the purposes of the experiments, the choice of this factor
as determined by analyzing the identity separability of data generated
ith either a factor of 1, i.e. no multiplication, 4 or 8. Each configura-

tion was used to generate 95 identities with 32 samples without the
Privacy and Diversity (PD) filter. Genuine and imposter distributions
were then constructed based on the identity features extracted from
these samples with the pretrained ArcFace recognition model (Deng
et al., 2019a), following the procedure described in Section 4.3.1.

Table 10 includes the corresponding verification results, where the
different multiplication parameters are denoted as 𝑀1, 𝑀4 and 𝑀8.
21

f

The reported scores reveal a large overlap between the genuine and
imposter distributions when utilizing the 𝑀1 configuration, which sig-
nifies a low identity separability between samples of different identities
and an overall lack of identity variety. This is particularly problematic
when also utilizing the proposed PD filter, as the generation of synthetic
identities that the filter considers new is almost impossible, which stalls
the data generation process. However, as observed in the Table 10,
this issue can be addressed with a higher identity multiplication factor
during sampling. The scores improve drastically across all measures
with the 𝑀4 configuration, showcasing more diversity of sampled
identities and, in turn, better identity separability. Importantly, more
likely sampling of new distinct identities, also enables more efficient
generation of privacy-preserving data with the proposed PD filter.
Interestingly, a further increase in the multiplication factor with the𝑀8
configuration only leads to minor improvements over the 𝑀4 configu-
ration, with the FMR1000 score actually being worse. The quality-based
results reported in Table 9 also showcase that a multiplication factor
above 1 drastically improves the quality of samples. Out of the three
configurations, the 𝑀4 configuration performs the best in terms of FID
and LPIPS scores, but is slightly surpassed in CR-FIQA score by the 𝑀8
configuration.

Overall, these results demonstrates the advantages of utilizing the
proposed identity multiplication approach during the data generation
process. Considering the drastic improvements between the 𝑀1 and
𝑀4 configurations and the slight negative effect on quality with the

8 configuration, we select a multiplication factor of 4 as the baseline
or our ArcBiFaceGAN framework.
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Table 11
Comparison of real-world time requirements of different generative methods. Reported is the time required for training
to converge and the time required to generate datasets with either 95, 500 or 1000 identities, each with 32 samples.

Generative model PD Training timea Generation time [min]

95 500 1000

StyleGAN2 (Karras et al., 2020a) – ≈ 50 h 1.7 8.8 17.6
DB-StyleGAN2 (Tomašević et al., 2022) – ≈ 87 h 2.1 10.8 21.5

SFace (Boutros et al., 2022) – ≈ 65 h 6.9 – –

Mix-SFace (Boutros et al., 2022) – ≈ 65 h 7.1 42.7 88.7
✓ – 15.3 389.6 2258.8

ArcBiFaceGAN (Ours) – ≈ 82 h 6.4 35.3 67.4
✓ – 26.0 751.5 6731.1

IDiff-Face (N) (Boutros et al., 2023b) – ≈ 7 h 75.7 401.6 804.9
IDiff-Face (Boutros et al., 2023b) – ≈ 11 h 105.7 562.3 1128.3

a Approximate estimate.
.5. Real-world training and generation requirements

The last set of experiments is focused on the real-world require-
ents for employing the generative models. This includes the time and

he video memory required for both training and data generation.

.5.1. Real-world time analysis
We first compare our proposed ArcBiFaceGAN approach with the

tate-of-the-art in terms of training speed and dataset generation times.
o this end, we report in Table 11 the time required for the different
enerative methods models to converge during training, along with the
ime required to generate the datasets with or without the proposed
rivacy and Diversity (PD) filter. Additionally, for each approach we
eport the time required to create the datasets with either 95, 500 or
1000 identities with 32 image samples per identity. All reported scores
are obtained with the hardware described in Section 4.1.

We begin by analyzing the effects of identity-conditioning on the
training speed of GAN-based approaches. The results in Table 11 reveal
that the additional conditioning actually speeds up training conver-
gence, when compared to training the unconditional DB-StyleGAN2
(Tomašević et al., 2022). However, all these approaches require longer
training than the single spectrum StyleGAN2, due to the additional
complexity of training on poorly aligned VIS-NIR image pairs. This is
also reflected in more time required to generate the datasets, where
the approaches based on the dual-branch architecture have to produce
two images at once. However this is still faster than running the single
spectrum StyleGAN2 twice.

In comparison, the diffusion-based IDiff-Face (Boutros et al., 2023b)
model is slowed noticeably by the identity-conditioning. In terms of
data generation speeds, the model requires roughly 40% more time,
while the difference in training times is even larger. Nevertheless,
convergence during training is achieved much quicker on the small-
scale dataset, in comparison to other GAN-based approaches. On the
other hand, the generation times are drastically larger than with other
solutions due to the multiple denoising steps required for each image.
Here, it should also be noted that the discussed IDiff-Face (Boutros
et al., 2023b) only generates images in the visible spectrum. A mul-
tispectral variant would likely be even slower. When comparing the
identity-conditioned SFace (Boutros et al., 2022) to the proposed Mix-
SFace variant, we observe only a slight difference in the time re-
quired to generate datasets, caused by the sampling of random vector
combinations. Interestingly, our ArcBiFaceGAN achieves slightly faster
generation times, however this is likely due to minimal implementation
differences.

Importantly, we also explore how our proposed Privacy and Di-
versity (PD) filter affects dataset generation speeds. We observe a
substantial slowdown with the use of the PD filter with both Mix-
SFace and ArcBiFaceGAN. The generation speed also gets exponentially
slower with increasing amounts of synthetic identities, due to also
comparing new synthetic identities to previously generated ones. Here,
22
the generation speed of ArcBiFaceGAN is impacted the most, since it
is more difficult to find new identities in a latent space via random
sampling, than it is to generate unique one-hot encoded vectors. We
could avoid this slow down, by only ensuring the generation of privacy-
preserving data. However, this would come at a cost of important
benefits related to improving the intra-identity diversity and identity
separability. With the use of the PD filter the generation speed of 1000
identities with ArcBiFaceGAN actually becomes substantially slower
than the speed of IDiff-Face (Boutros et al., 2023b). Despite this, the
above mentioned perks and benefits of generating privacy-preserving
data far outweigh the increase in inference times. Furthermore, adding
the PD filter to the IDiff-Face (Boutros et al., 2023b) to enable privacy-
preserving data generation would be impractical, due to its already
slow synthesis speed.

4.5.2. Real-world video memory footprint
Lastly, we compare the different generative models used throughout

the experiments in terms of the number of parameters and the video
memory (VRAM) required for performing training and inference, as
reported in Table 12. We begin by evaluating the differences between
our proposed ArcBiFaceGAN framework and the SFace (Boutros et al.,
2022) and Mix-SFace (Boutros et al., 2022) approaches. As in the
experiments above, the latter models are adapted to also produce
data in both the VIS and the NIR spectrum by relying on the DB-
StyleGAN2 (Tomašević et al., 2022) architecture that is utilized by
ArcBiFaceGAN. Overall, we observe only minor difference between the
models across all results, which are tied to the dimensions of the differ-
ent identity conditions. Our ArcBiFaceGAN utilizes a 512 dimensional
identity feature vector, while the dimension of the identity one-hot
vector used by SFace (Boutros et al., 2022) and Mix-SFace (Boutros
et al., 2022) is determined by the amount of identities in the training
dataset (95 in the case of the Tufts Face Database (Panetta et al., 2018)).

From Table 12 we can also observe a difference between conditional
(SFace (Boutros et al., 2022), Mix-SFace (Boutros et al., 2022) and
ArcBiFaceGAN) and non-conditional (DB-StyleGAN2 (Tomašević et al.,
2022)) multispectral models. This difference is caused by the need for
an additional mapping network for the discriminators, described in
Section 3.2.2, as well as the additional fully-connected layer at the start
of the mapping network that interprets the input identity feature, as
presented in Section 3.2.1. A drastic decrease in the parameters and the
VRAM is also seen with the original single spectrum StyleGAN2 (Karras
et al., 2020a), due to the need for only a single output branch in
the synthesis network and only a single discriminator network during
training. Overall, we also observe a notable decrease of parameters and
VRAM usage during data generation with all StyleGAN-based models
in comparison to the training process, because the discriminator are
not required during inference. Furthermore, the training process of
these models utilizes a batch size of 12, while the batch size is set
to 1 during data generation to enable the use of the proposed PD

filter. When also utilizing the PD filter during data generation, with
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Table 12
Comparison of generative models in terms of their footprint. Reported are the number of parameters of each model and
the VRAM required for training and data generation. Configurations that utilize the proposed PD filter are also included.

Generative model PD Training Data generation

Parameters VRAM Parameters VRAM

StyleGAN2 (Karras et al., 2020a) – 48,768,547 6367 MiB 24,767,458 1357 MiB
DB-StyleGAN2 (Tomašević et al., 2022) – 74,052,459 9282 MiB 26,050,409 1383 MiB

SFace (Boutros et al., 2022) – 76,776,298 9410 MiB 26,361,705 1409 MiB

Mix-SFace (Boutros et al., 2022) – 76,776,298 9410 MiB 26,361,705 1409 MiB
✓ – − 92,013,715 1679 MiB

ArcBiFaceGAN (Ours) – 77,203,306 9534 MiB 26,575,209 1413 MiB
✓ – − 92,227,219 1683 MiB

IDiff-Face (Boutros et al., 2023b) – 271,663,969 8813 MiB 249,326,546 1309 MiB
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the Mix-SFace (Boutros et al., 2022) and ArcBiFaceGAN approaches,
we note a drastic increase in the number of parameters, due to the use
of the ArcFace (Deng et al., 2019a) recognition model and the MTCNN
face detector (Zhang et al., 2016). However, since these models are
pretrained and implemented in an efficient manner, the VRAM usage
only increases slightly.

In comparison, the diffusion-based IDiff-Face model (Boutros et al.,
2023b) utilizes a drastically larger amount of parameters than all
StyleGAN-based models. However, due to various optimizations (e.g. use
of the half-precision floating-point format) and the selected lower
image resolution, this is not reflected in the VRAM usage. Over-
all, the memory footprint is slightly smaller than that of conditional
StyleGAN-based approaches, both during training and data generation.
Nevertheless, the IDiff-Face model (Boutros et al., 2023b) is still notably
slower in practice than StyleGAN-based approaches, as demonstrated in
Section 4.5.1, since it requires multiple passes through the network to
generate a single sample.

5. Conclusion

In this paper, we presented ArcBiFaceGAN, a new generative frame-
work that facilitates the synthesis of privacy-preserving multispectral
face recognition datasets. At its core, the framework relies on a novel
identity-conditioned Dual-Branch StyleGAN2 model capable of gener-
ating aligned high-quality visible (VIS) and near-infrared (NIR) face
images of synthetic identities, determined by identity features from a
pretrained face recognition model. To enable the creation of privacy-
preserving datasets the framework also utilizes a novel Privacy and
Diversity (PD) filter, which removes synthetic samples with privacy-
breaching identities while ensuring better identity separability and
intra-identity diversity.

Throughout the experiments we demonstrated that the proposed
ArcBiFaceGAN framework is able to compete with synthesis capabilities
of state-of-the-art generative methods while producing data that is
privacy-preserving. Importantly, we showed that recognition models
trained on synthetic data of ArcBiFaceGAN achieve higher verification
accuracy on multiple real-world benchmarks than models trained on
data of existing generative methods. The generation of more synthetic
identities also led to better verification performance than with other
methods or even with real-world data, thus exhibiting the possibility
of replacing real-world datasets. In addition, we observed that training
recognition models on both VIS and NIR data results in higher accu-
racy even on benchmarks that only contain visible spectrum images
and their grayscale representation. This suggests that we could poten-
tially improve the performance of existing recognition systems without
requiring any additional sensors.

Overall, our ArcBiFaceGAN framework offers a potent solution for
addressing the increasing privacy concerns and the need for multi-
spectral recognition data. However, our work also sheds light on the
issues that all generative models face when trained on small-scale mul-
tispectral datasets. Future work could extend this research by adding
23

more intricate control over the generative process or by exploring
domain transferring possibilities between the different spectra. The use
of diffusion-based models for multispectral data generation should also
be explored, especially in a low-data regime.
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