
2024 18th International Conference on Automatic Face and Gesture Recognition (FG)

DiCTI: Diffusion-based Clothing Designer via Text-guided Input

Ajda Lampe2, Julija Stopar1, Deepak K. Jain3, Shinichiro Omachi4, Peter Peer2, Vitomir Štruc1
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Abstract— Recent developments in deep generative models
have opened up a wide range of opportunities for image
synthesis, leading to significant changes in various creative
fields, including the fashion industry. While numerous methods
have been proposed to benefit buyers, particularly in virtual
try-on applications, there has been relatively less focus on
facilitating fast prototyping for designers and customers seeking
to order new designs. To address this gap, we introduce DiCTI
(Diffusion-based Clothing Designer via Text-guided Input),
a straightforward yet highly effective approach that allows
designers to quickly visualize fashion-related ideas using text
inputs only. Given an image of a person and a description of
the desired garments as input, DiCTI automatically generates
multiple high-resolution, photorealistic images that capture the
expressed semantics. By leveraging a powerful diffusion-based
inpainting model conditioned on text inputs, DiCTI is able to
synthesize convincing, high-quality images with varied clothing
designs that viably follow the provided text descriptions, while
being able to process very diverse and challenging inputs,
captured in completely unconstrained settings. We evaluate
DiCTI in comprehensive experiments on two different datasets
(VITON-HD and Fashionpedia) and in comparison to the state-
of-the-art (SoTa). The results of our experiments show that
DiCTI convincingly outperforms the SoTA competitor in gener-
ating higher quality images with more elaborate garments and
superior text prompt adherence, both according to standard
quantitative evaluation measures and human ratings, generated
as part of a user study. The source code of DiCTI will be made
publicly available.

I. INTRODUCTION

The fashion industry is a thriving billion-dollar business
that engages a diverse array of stakeholders, ranging from
manufacturers, retailers, and merchandisers to buyers and
models [4]. Among these contributors, fashion designers
play a pivotal role by leveraging their creative talents to
craft innovative garment outfits that aim to resonate with
the market and ultimately satisfy the discerning tastes of
buyers. As the fashion industry continues to evolve, designers
and consumers are adapting to these transformative trends.
Designers are leveraging technology to bring their creations
to life, while buyers are embracing the freedom to express
their individuality through fashion [9], [24], [26].

Recently, generative models for image synthesis as well
as text understanding models have undergone rapid ad-
vances [3]. State-of-the-art generative models, for example,
are today capable of generating a wide variety of realistic,

This was supported by the Slovenian national research agency ARIS in
research project J2-2501, and ARIS programmes P0-0250 and P2-0214.

Fig. 1: Example results generated by DiCTI. Given an
initial image and a description of the desired outfit, DiCTI,
the proposed model for text-guided garment design, produces
a photo-realistic image with the person in the original image
in an outfit that matches the provided text description.

high-resolution images of various scenes and objects [28],
[29], [31]. The fashion industry also embraced generative
technology to streamline different automation tasks, such
as virtual try-on [6], [9], [26] or make-up transfer [18],
[32]. Furthermore, researchers have also been looking into
other interesting applications of computer vision models in
the fashion industry, such as garment attribute transfer [7]
and editing [8], outfit fashionability improvement [11], [15]
and controllable garment synthesis [12], [25], [34]. The
recent success of text and vision models opened the door
for advances in text-controlled fashion image synthesis [1],
[19], [25]. Despite the similarities of these tasks, the target
audience of different methods varies. While some explicitly
target consumers (e.g., virtual try-on), others aim to assist
designers in brainstorming ideas for new designs by allowing
fine-grained spatial control over the generated results by pro-
viding additional inputs, such as sketches [1], [34]. Different
from such techniques, our goal in this work is to design a tool
that supports consumers in communicating their wishes to a
designer or allow for simple image search on the internet to
find similar garments available in online stores. As illustrated
in Fig. 1, we address this task with a text-conditioned image
editing model capable of generating high-quality images of
a provided input subject with a desired garment design.
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Specifically, we propose a novel approach to fashion
image editing, termed DiCTI – a Diffusion-based Clothing
Designer via Text-guided Input, that requires solely an input
image of a person and a text description of the desired
garment expressed in natural language to generate creative
and fashionable garments. With DiCTI, we formulate the
image-editing task as an inpainintg problem, and leverage
the expressivity of a pre-trained general purpose latent dif-
fusion model [29] to generate visually convincing, varied
and realistic garment designs based on the provided descrip-
tions. We assess the performance of DiCTI on two diverse
test datasets, i.e., VITON-HD [5] and Fashionpedia [17],
demonstrating that the approach is applicable to images
captured in constrained, but also completely unconstrained
(i.e., in-the-wild) settings. To validate the performance of
DiCTI and put the reported results into context, we compare
our method to the most similar work from the literature in
terms of input requirements and goal, FICE [25]. Through
comprehensive experiments, including a user study, we show
that DiCTI can produce realistic images of clothed humans
while successfully adhering to the manually prepared text
prompts and does so significantly better than FICE.

II. RELATED WORK

Controlled garment image synthesis and editing has re-
cently become an active topic of research. A considerable
amount of techniques has been proposed in the literature to
guide the synthesis/editing process in recent years, including
techniques that rely on spatial information (e.g., pose rep-
resentations, keypoints, sketches, etc.) and text descriptions.
Below, we briefly review some of these techniques to provide
the necessary background for the proposed DiCTI model.

A. Guidance with spatial information

Some methods generate pose or parsing maps of an input
image to guide garment image synthesis. FiNet [11], for
example, aims to inpaint a missing piece of garment in the
input image by first predicting its segmentation map and then
generating a visually compatible garment that fits into the
original image. However, this method gives the user little
control over the synthesized garment. PISE [33] similarly
generates target parsing map based on pose keypoints and
source parsing map, then uses it to guide synthesis of an
image of a person in a different pose or with garment texture
from another image. ADGAN [22] learns image mapping
into two latent spaces - a pose representation and a style
representation that consists of disentangled components for
different semantic regions in the image. This allows for
a controlled image composition based on multiple image
inputs, where style is independent from pose. Other authors
provide design sketches to allow for better control over
garment appearance. D2RNET [12], for instance, consists
of a two-branch pipeline that synthesizes a preview of real
fashion items that correspond to the given design drafts.
DesignerGAN [34] employs SPADE-like spatially-adaptive
normalization to perform reposing or edit shape-related gar-
ment attributes based on an input image and a sketch.

B. Guidance with text

With the advancements in text parsing, text understanding
and successful association with image synthesis techniques
(through models, such as CLIP [27]), text prompts have
become a popular way to guide the synthesis process in con-
junction with other guiding parameters. Text2Human [19],
for example, proposes a two-step pipeline for synthesis
of clothed humans. First, a semantic parsing map of the
target image is predicted and then used together with a
text prompt to guide image synthesis. TD-GEM [8] learns
to control partially disentangled style space latent vectors
using text prompts, thus allowing for text-guided editing
of garments. FICE [25] employs an extended GAN inver-
sion technique to maximize the correspondence between
the generated garment and the textual description, while
preserving the initial identity and pose. The Multimodal
Garment Designer [1] incorporates text inputs together with
sketch and pose conditioning to guide garment synthesis in
the underlying denoising diffusion model. In our work, we
relate to FICE and Multimodal Garment Designer, seeking
the best of both worlds - simplicity of use of the former,
requiring no additional inputs, and image quality and model
expressivity on par with that of the latter.

III. METHODOLOGY

In this section, we present our proposed denoising
diffusion-based method for text-guided garment synthesis,
termed DiCTI, capable of generating highly realistic results,
as illustrated in Fig. 1. We start the section with a formal
description of the problem setting and then describe the
individual components of the proposed editing approach.

A. Problem formulation and DiCTI overview

Given a reference image of a person I and a text de-
scription of the desired garment y, the goal of DiCTI is to
generate an image Î of the same person with the person’s
garments substituted for garments corresponding to the text
description. To achieve this goal, we formulate the editing
problem as an inpainting task, where the generative model is
given a mask of the initial clothing area, and is tasked with
filling it in, while keeping the rest of the image unaltered.

Fig. 2 shows a high-level overview of the proposed
method. As can be seen, the input to DiCTI is an image and
a text prompt with the description of the desired clothing.
The image is first passed through the Mask Generation
Module (§III-B) to infer the area that needs to be inpainted
as well as the position of the face. The resulting body mask,
together with the rest of the inputs, is then passed through
the Garment Synthesis Module (§III-C), which generates new
garments in the masked area according to the text description.
Finally, an additional Identity Preservation (§III-D) stage is
utilized to ensure the preservation of facial features.

B. Mask Generation Module

The first component of DiCTI is the Mask Generation
Module (MGM). It takes an input image and generates
two binary masks: (i) an inpainting mask Mi, covering
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Fig. 2: High-level overview of the proposed DiCTI method. DiCTI consists of multiple components. The Mask Generation
Module (A) generates a binary mask covering the body/clothing and another one covering the head of the person in the
input image. The body mask, along with the input image, is then passed to the Garment Synthesis Module (B), responsible
for completing the masked-out parts of the image in adherence to the prompt. The synthesized image then undergoes post-
processing to restore facial features that may have been altered during synthesis and ensure Identity Preservation.

the entirety of the human body, except for the face, hands,
and feet, and (ii) a head mask Mh for the post-processing
(identity preservation) step. In order to produce such masks,
the relevant regions in the input image need to be identified.
With the goal of preventing the initial garment shape from
influencing the shape of the synthesized garment, we base
the MGM on a clothing-agnostic parser. Specifically, we use
DensePose [10] to generate a map of labels for the input
image. DensePose is a human-pose parsing model, which
has shown great robustness to a variety of poses as well
as background distractors [20]. When applying DensePose,
each image pixel in I is assigned to one of the 24 body part
categories or the background: Sh×w, where S(i, j) ∈ [0, 24].

Computing the inpainting mask. The inpainting mask Mi

is generated from the DensePose output S and through the
application of various morphological operations. To compute
the inpainting mask, we first combine the binary masks of all
body parts, except for the face, hands and feet, and produce
a body-part mask Mb. To account for loose-fitting clothing,
the mask is dilated by d pixels in every direction. Next,
we combine areas that need to preserved (corresponding to
the face, hands, and feet) into a preservation-area mask Mp

and erode the mask by e pixels in each direction. Finally,
we subtract the eroded preservation-area mask form the
dilated body mask. This results in an inpainting mask that
covers all existing clothing, allows freedom in generating
new garments, and prevents the identity of the person in
I from being altered. Formally, this process is defined as

follows:
Mi = Mb ⊕ Cd − (Mp ⊖ Ce), (1)

where Cx is a circle-shaped structuring element of radius
x, and ⊕ and ⊖ are morphological dilation and erosion
operations, respectively.

Computing the head mask. To ensure identity preservation,
which is especially noticeable in facial features, we perform
image stitching in the post-processing phase. A mask is
needed to determine the location of the face and neck within
the original image. Similarly as with the inpainting mask,
the DensePose segmentation S is used to determine the area
of interest, which is then eroded by f pixels to avoid sharp
edges and artifacts in case of small misalignments, i.e.:

Mh = Mhe ⊖ Cf , (2)

where Mhe is a binary mask corresponding to the head region
in S and Cf is again a circle-shaped structuring element.

C. Garment Synthesis Module

The second component of DiCTI is the Garment Synthesis
Module (GSM), which inpaints the area covered by Mi in
I in accordance with the provided text prompt y. For the
synthesis module, we leverage the generalization abilities of
a latent diffusion-based model (i.e., Stable-Diffusion-V21)
pretrained on a large amount of data. We choose not to
finetune the pretrained model to avoid a loss in generality,
which is inevitable especially in the case of smaller datasets,

1Available from: https://huggingface.co/stabilityai/stable-d
iffusion-2-inpainting
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such as those generally used for clothed-human synthesis.
This way, the model may be tasked with generating rather
uncommon outfits, that may not be seen in specialized
datasets. Thus, general understanding of different concepts
is more desirable than narrow specialization for the task at
hand. To make the paper self-contained, we first present the
background on denoising diffusion models and then discuss
their application for image inpainting in our GSM.

Prerequisites on denoising diffusion models. Denoising
diffusion models [14] are based on the assumption that
progressively adding Gaussian noise to a clear input image
x0 will result in an all-noise image after T steps. The idea
is to sample xt at timesteps t ∈ [1, T ] given the closed-form
formula

xt ∼ N (xt;
√
ᾱtx0, (1− ᾱt)I), (3)

where ᾱt = Πt
s=0αs, α = 1 − βt and βt is the variance

of the Gaussian noise added to xt−1, and then use the
corresponding pairs of data points xi, xi−1 to learn the
reverse (i.e., backward diffusion) process, i.e., to approximate
q(xt−1|xt). Calculating for all t from T to 0 then yields a
sample from the data distribution

pθ(x0:T ) = pθ(xT ).

To reduce the high computational cost of iteratively per-
forming reverse diffusion on images in pixel space, Latent
Diffusion Models (LDM) [29] reduce the dimensionality of
the problem by projecting the image onto a latent space
of a pre-trained encoder E . Additionally, they introduce
model conditioning by jointly optimizing the model ϵθ and a
domain-specific expert model τθ whose outputs are passed to
the model using a cross-attention mechanism. The learning
objective then becomes

LLDM = EE(x),y,t,ϵ∼N (0,I)

[
∥ϵ− ϵθ(zt, t, τθ(y)∥2

]
, (4)

where zt is a latent representation of xt and y is a condi-
tioning input, such as a text prompt or a semantic map.

Inpainting Latent Diffusion Models [29] follow the same
objective as the LDM models presented above, but limit the
generative process within the backward diffusion steps to the
area determined by a mask. From an implementational point
of view, the pretrained backbone diffusion model receives
five additional input channels to accommodate the masked
image and inpainting mask. In addition to the latent vector
zt ∈ Rw×h×4, time step t and text prompt y, the model
receives the inpainting mask (Mi ∈ RW×H×1) and a masked
image Im = (1 − Mi) ⊙ I ∈ RW×H×3, containing only
areas that should be preserved. The masked image is encoded
with encoder E to reduce its dimensionality to E(Im) ∈
Rw×h×4 where h < H and w < W . The inpainting mask
is downsampled to match the latent dimensions w and h.
The latent vector, inpainting mask, and masked image are
concatenated along the channel dimension and passed to the
diffusion model that outputs prediction for the noise at time
step t − 1. The denoising process is further guided by the
text prompt, enhanced with some additional words, such as

photorealism, detailed hands, natural lightning,
and sharp to encourage these traits in an image. Text em-
beddings are computed using a pre-trained OpenCLIP [16]
model (τθ(y)). The result of the inpainting latent diffusion
is an intermediate image Ig with the synthesized clothing.
However, since the images often contain faces that differ in
appearance from the faces in the input image I , we use a final
post-processing step to ensure better identity preservation.

D. Identity preservation

Due to the inherent weakness and imperfections of gener-
ative models, preserving the appearance and facial features
of the subjects in the input images is challenging and such
features are often changed and smoothed during the synthesis
process. To better preserve facial appearance, we perform an
image stitching operation in the post-processing stage, i.e.:

Î = Ig ⊙ (1−Mh) + I ⊙Mh, (5)

where Ig is the output of the generative model, I is the
source image and Mh is the binary head mask. This operation
is possible since the generator model preserves the pose of
the original image around the neck area. The output of the
presented post-processing step is the final edited image Î .

IV. EXPERIMENTS AND RESULTS

In this section, we first describe our experimental setting
as well as the datasets and quantitative performance measures
used for the evaluation [21]. Due to the difficulty of capturing
the performance of generative methods without a unique
ground truth in a single meaningful number, we perform a
series of experiments that allow us to illustrate the strong
and weak points of DiCTI and compare it to a competing
method. We start the experimental section with a comparison
to a SoTa competitor, i.e., FICE [25], to put the capabilities
if DiCTI into perspective. To this end, we first report a
number of image quality scores that measure image realism
and adherence to the text prompt as perceived by deep
neural models. However, compared to computers, humans
put more emphasis on different image characteristics and,
as a result, automated evaluation techniques often do not
correlate entirely with human perception. Thus, we perform
a user study to gauge human perception of the performance
of DiCTI compared to FICE. Next, we present a qualitative
evaluation and conduct an ablation study to determine the
effect of the mask-dilation parameter d on the results of
synthesis. We conclude the section with a visual analysis
of the generated images, to explore the limitations of our
approach and to identify directions for further research.

A. Datasets

We test DiCTI on two challenging high-resolution fash-
ion datasets, i.e., VITON-HD [5] and Fashionpedia [17].
VITON-HD is a collection of 13,679 commercial images
of models in a frontal pose, and their corresponding upper-
garment. The images are taken in a controlled environment
with posing models in front of a homogeneous light colored
background and with the depicted person taking up the larger



Fig. 3: Comparison of FICE and DiCTI. Example synthesis
results are presented for various text prompts.

TABLE I: Qualitative comparison of FICE and DiCTI.
KID, CLIP-S and CLIP-IQA scores are reported.

Method KID ↓ CLIP-S ↑ CLIP-IQA ↑

FICE [25] 0.082 22.04 0.58
DiCTI (ours) 0.066 27.48 0.72

part of the image. Most of the models are only visible from
knees or middle of the thighs up. Fashionpedia [17], on the
other hand, is a set of 48,825 fashion images of celebrities
captured in daily life, i.e., in the wild. It includes images
of various sizes and aspect ratios, covering a number of
challenging scenarios, such as background clutter, imper-
fect lighting conditions, non-target human distractors, and
uncommon and challenging poses. We therefore use VITON-
HD to evaluate performance in a controlled environment and
establish performance upper-bounds of the method, whereas
the purpose of Fashionpedia is to measure robustness when
dealing with photos taken in the wild.

B. Performance measures

Since evaluating image synthesis techniques quantitatively
is a complex task, we use a collection of image quality
assessment (IQA) measures that capture different image
characteristics. We evaluate visual image quality with the
Kernel Inception Distance score (KID) [2], which compares
distributions of real and generated images. Specifically,
we use the implementation proposed by [23]. Since KID
measures the distance between two distributions, a lower
value is preferred, meaning that the distribution of generated
images is closer to that of the real images, implying that
the images look more realistic. Additionally, we employ the
CLIP-IQA [30] quality score that uses a pair of antonyms
as an input (e.g. ["Good photo.", "Bad photo."])
and considers softmax values of the cosine similarity of the
image embedding to each of the prompts:

CLIP-IQA =
espos

espos + esneg
,

where spos is the cosine similarity between CLIP embed-
dings of the input image I and the positive description (e.
g. Good photo.) and sneg is cosine similarity between
the input image and the negative description (e. g. Bad
photo.). The value of CLIP-IQA is between 0 and 1,
where higher value indicates a better match with the positive

TABLE II: Human-study results. The reported statistics are
aggregated per image for each scoring criterion, showing a
fraction of times DiCTI was chosen over FICE.

Criterion Mean Std Min Max

Identity 0.67 0.16 0.41 0.92
Pose 0.22 0.17 0.00 0.62
Prompt 0.88 0.10 0.67 0.97
Realism 0.72 0.12 0.45 0.89

description. For the description pair above, the higher score
indicates a picture of a higher quality. In addition to realistic
appearance, a successful method for the task of garment
synthesis should also ensure adherence to the text prompt.
We use the CLIP score [13] (CLIP-S) to measure the
similarity between the input image (I) and the text prompt
(y) CLIP embeddings cI and cy:

CLIP-S(cI , cy) = 100 ·max(cos(cI , cy), 0).

The CLIP score range is [0, 100], where higher values
indicate better image correspondence with the prompt y.

C. Comparison with the state-of-the-art

Quantitative comparison. We compare our method to
FICE [25], a SoTa method that operates on the same inputs –
an input image and a text prompt written in natural language.
Unlike our method, FICE works on an image resolution of
256×256. Since the training of FICE was done on VITON-
HD [5], the method is limited to female models and upper
garments only. Therefore, the comparison is done on images
from the VITON-HD test set, cropped to a square covering
the upper part of the image, to ensure a fair comparison. The
test set consists of 416 images. In this experiment, we pair
each of them with each of the 9 pre-prepared prompts, to
generate 3744 images per method.

Fig. 3 shows the results produced by our method and
FICE on the same example images and prompts as used
in the original paper [25]. As can be seen, DiCTI tends
to generate much more detailed images with logos and
sharp, accurate necklines (e.g. polo). This can, in part, be
attributed to the higher-resolution generative model used in
our method, which is also more general (with superior zero-
shot capabilities), since it was never finetuned on a particular
dataset. Furthermore, it partially stems from the tight-fitting
masks used in the optimization-based GAN inversion phase
of FICE, which only cover up the clothing part of the
image and do not account for potentially more loose-fitting
garments. This likely results in FICE being discouraged from
generating additional garment parts, such as a polo neck.

To get a numerical comparison of DiCTI and FICE, we
compare the two in terms of the performance measures,
described in §IV-B. Table I summarizes the values of KID,
CLIP-score and CLIP-IQA, showing that DiCTI outperforms
FICE, both in terms of image realism and adherence to
the text prompts by a considerable margin. In other words,
it better captures the expressed semantics while producing
higher-quality images with superior realism.



Fig. 4: Examples from the user study. While DiCTI occa-
sionally alters the pose slightly, the results are commonly of
higher quality and more faithful to the text prompt.

Fig. 5: Examples of different fabrics used for dresses,
trousers, sweaters and shirts. The prompts were generated
by pairing garment property and type.

Human/user study. We validate the results of the reported
quantitative evaluation through a human study. To this end,
we uniformly sample two images from the VITON-HD test
set per each of the nine text prompts. For each of the eighteen
text-image pairs, we then ask participants to vote for the
better performing model, i.e., DiCTI or FICE, w.r.t. 4 criteria:

• Q1: Perceived image realism,
• Q2: Adherence to the input text prompt,
• Q3: Preservation of the initial identity, and
• Q4: Preservation of initial pose.

The survey involved 39 participants, yielding 702 responses
per question with image-text pairs, as shown in Fig. 4.

We aggregate the percentage of times that an image
generated by DiCTI was chosen over one generated by FICE.
The statistics are summarized in Tab. II. We perform a t-test,

Fig. 6: Examples of different shapes used for trousers and
dresses. Note the realism, details and convincing textures
generated based on the text prompts. In contract to FICE,
DiCTI is also capable of generating lower garment results.

which confirmed that the results are statistically significant
for all the scoring criteria. The results show that our method
performs worse in terms of pose preservation, which is
partially expected, given that DiCTI enforces no explicit
conditioning on the model pose. Due to the mask dilation
applied in the mask generation phase, part of the information
about the body pose gets lost. On the other hand, even when
the pose does get altered, it is done without reducing the
realism of the image. In contrast, FICE constrains the editing
area to a tight mask covering an existing garment, which
encourages pose preservation, however, at the cost of limiting
the garment fit to that of the original clothing.

DiCTI clearly outperforms FICE in the rest of the scoring
criteria. When scoring identity preservation, it is selected
over FICE 67% of the time, showing the effectiveness of
the identity preservation module. Given the similarity of
the identity preservation methodology of both methods, we
speculate the decisive factor to be the preservation of the
skin tone. FICE often results in altered skin color compared
to the original, while DiCTI generally synthesizes skin
tone, consistent with the input image (rows two and three
of Fig. 4). The difference in performance is even more
apparent for the realism and text prompt adherence criteria.
On average, DiCTI is selected over FICE 72% and 88%
of the time for realism and prompt adherence, respectively,
while the standard deviations for those criteria are lower
than in the case of identity and pose preservation. This
suggests that DiCTI is capable of leveraging the underlying
pre-trained models’ ability to generate high-quality, high-
resolution images, while also adhering to the text prompt to
a high degree. Conversely, FICE images tend to get blurry
and less accurate in terms of the desired garment style and
patterns.



Fig. 7: Examples of different patterns and prints on tunics
and T-shirts. The prompts pair garment property and type.

Fig. 8: Visual examples with female models from Fash-
ionpedia. The first column shows the input images. Each of
the subsequent columns shows results of one text prompt.

D. Qualitative analysis

Next, we analyze some of the synthesized images visually
to gain better insights into DiCTI’s strengths and weaknesses.
For this, we test DiCTI on a number of text prompts
describing different garment fabrics, shapes, and patterns.

We begin by isolating some of the garment features and

Fig. 9: Visual examples with male models from Fashion-
pedia. The first column shows the input images. Each of the
subsequent columns shows results of one text prompt.

letting the rest be freely chosen by the model. Fig. 5 shows
that DiCTI can generate a number of different fabric types,
such as silk, wool, velvet, or denim, on different kinds of
garments. Fig. 6 displays various garment shapes, according
to length, sleeve and neck type, and fit. Fig. 7 shows a
number of different patterns and graphics to show DiCTI’s
versatility at understanding concepts deemed uncommon in
the garment descriptions, such as cute little cats or emoji.

Next, we focus on the Fashionpedia [17] dataset, due to
its diversity in gender and ethnicity of the subjects as well as
the more realistic setting in which images have been taken.
For this experiment, we use more verbose prompts, generally
describing the whole outfits, while trying to cover as many
garment features as possible. Fig. 8 and Fig. 9 show some
examples of images from the Fashionpedia [17] dataset for
female and male subjects, respectively. The results show that
our method can perform well regardless of the gender and
can also handle different ethnicities of the subjects depicted.
Additionally, it highlights DiCTI’s ability to understand the
combinations of outfits. Furthermore, the results on the
images from Fashionpedia show that the method is robust
to background clutter and does not result in significant
alterations of the background, with the occasional exception
of some background text and image watermarks, which we
argue are not critical given the goal of the task.



TABLE III: Ablation study results. KID, CLIP-S and CLIP-
IQA scores are reported for different dilation sizes d.

VITON Fashionpedia

d KID ↓ CLIP-S ↑ CLIP-IQA ↑ KID ↓ CLIP-S ↑ CLIP-IQA ↑

0 0.057 24.52 0.691 0.010 19.63 0.867
30 0.068 26.74 0.688 0.011 21.5 0.872
50 0.071 27.08 0.698 0.012 22.03 0.875
70 0.073 27.27 0.700 0.013 22.45 0.876
90 0.076 27.32 0.698 0.014 22.65 0.881
110 0.077 27.37 0.697 0.016 22.79 0.881

Fig. 10: Effect of mask dilation size on inpainting quality.
When too small, information on existing garments leaks into
the model and forces them to incorporate it into the inpainted
region, while setting it too large results in loss of detail.

E. Ablation study

We perform an ablation study with different sizes of the
dilation kernel to evaluate its impact on the performance of
DiCTI. We use four text prompts and generate five images
for each of the test images from VITON-HD, yielding over
8000 generated images per kernel size. The scores for each
of the kernel sizes are shown in Tab. III. The table suggests
that the lowest KID score is achieved for d = 0, meaning
that the model just uses a raw binary mask, generated directly
from the DensePose segmentation. The KID value gradually
increases with an increasing dilation size. This may be
attributed to the fact that the dataset is relatively small, so
the distribution of the images with no mask dilation may
be the most similar to that of the dataset images since the
generated garments are forced to be more similar to the
original ones that ”leak” into the inpainting model without
being masked out. Conversely, the CLIP score shows better
performance for higher values of d. We speculate this is
caused by more freedom with creating the garment, since
the inpainting area is larger and the effect of garments in the
original image diminishes. Interestingly, CLIP-IQA peaks at
d = 70, which correlates with our initial empirical setting of
the parameter. The differences are, however, relatively small,
suggesting that dilation kernel size does not have a critical
influence on the realism of the image as perceived by a deep
neural model for higher values of d. A similar observation
can be made for the Fashionpedia dataset. All of the metrics
gradually increase. CLIP score and CLIP-IQA stabilize after
70, suggesting that the effect of increasing kernel size has
past 70 diminishes. The difference is furthermore visualized
in Fig. 10. The result for d = 0 completely fails to generate
the correct garment shape due to a restrictive inpainting
mask. The result for d = 30 is better, but the sleeves appear
slightly unnaturally tight. The results for d > 50 appear much
better visually, but we notice that the pose change increases

Fig. 11: Limitations of DiCTI. a) The inpainting mask fails
to cover all existing clothes, b) the model fails to interpolate
the pose of the covered area, and c) the model fails to
understand the relations between parts of the text prompt.

with the growing size of the kernel.

F. Limitations

As demonstrated in the previous sections, DiCTI achieves
highly realistic results, faithful to the text descriptions. We
do however notice a few scenarios in which the performance
degrades a little. Those can be roughly grouped into three
groups, as shown in Fig. 11. Sometimes the automatically
generated mask fails to cover the entirety of an existing
garment. This is most noticeable in cases when the exist-
ing garment is very loose. Unlike many similar, masking-
dependent methods, DiCTI generally still produces a realistic
and fashionable garment image by incorporating the existing
garment into the new one, sometimes adding a nice artistic
touch to the image (Fig. 11a). Since the inpainting module
gets little information about the body pose, save for the
head and hands position, the pose tends to change a bit
compared to the input image (Fig. 11b). Despite the changes,
the resulting images depict people in realistic poses without
degradations in image quality. Text-prompt faithfulness (like
most similar methods) is bound to the underlying pre-trained
language model. When a text prompt is very elaborate,
containing many features of several different clothing items,
the information sometimes gets mixed up among items
(Fig. 11c). This can often be solved with a little prompt-
engineering, which is becoming a very common technique
in artistic applications of text-image models.

V. CONCLUSIONS

In this work, we proposed a consumer-targeted pipeline for
fashion item design, called DiCTI. DiCTI leverages the capa-
bilities of the recently developed general-purpose diffusion-
based generative models within a text-guided inpainting
scheme. Despite its apparent simplicity, evaluation results
show that DiCTI generates images of high visual quality and
can cover a wide range of clothing shapes, materials, and
colors; and that it clearly outperforms the previous state-of-
the-art. As part of our future work, we plan to extend the
approach to more general prompting input that in addition
to text would also include other target characteristics.
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