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Vitomir Štruc2 Stephanie Schuckers1

1Clarkson University, United States 2University of Ljubljana, Slovenia

Abstract

Modern face recognition (FR) models, particularly their

convolutional neural network based implementations, often

raise concerns regarding privacy and ethics due to their

“black-box” nature. To enhance the explainability of FR

models and the interpretability of their embedding space,

we introduce in this paper three novel techniques for discov-

ering semantically meaningful feature directions (or axes).

The first technique uses a dedicated facial-region blend-

ing procedure together with principal component analysis

to discover embedding space direction that correspond to

spatially isolated semantic face areas, providing a new per-

spective on facial feature interpretation. The other two pro-

posed techniques exploit attribute labels to discern feature

directions that correspond to intra-identity variations, such

as pose, illumination angle, and expression, but do so either

through a cluster analysis or a dedicated regression pro-

cedure. To validate the capabilities of the developed tech-

niques, we utilize a powerful template decoder that inverts

the image embedding back into the pixel space. Using the

decoder, we visualize linear movements along the discov-

ered directions, enabling a clearer understanding of the in-

ternal representations within face recognition models. The

source code will be made publicly available.

1. Introduction

Face recognition (FR) technology has proven itself ben-

eficial across various domains. The benefits of face recog-

nition stem from its ability to efficiently and unobtrusively

determine identity. Leveraging this capability, face recogni-

tion technology has become ubiquitous in personal devices,

border controls, and law enforcement [5, 26]. While it is

not difficult to find positive applications for face recogni-

tion, it has also raised concerns about the opacity of recog-

nition decisions in contemporary FR models [16], under-

scoring the need for improved interpretability and explain-

ability to ensure their trustworthiness. Despite considerable

efforts towards better understanding the mechanisms behind

today’s deep learning based FR techniques, it remains dif-
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ficult to precisely explain the inner workings of FR models

in a human-interpretable way. This is because most modern

models are based on heavily parameterized neural networks

with elaborate architectures that implement the input-output

mapping in a complex non-interpretable way and are there-

fore often treated as black-box models, where only the in-

put images and output results bear semantic meaning. In

response to these challenges, researchers are continually

studying the inner workings of FR models to better explain

their behaviour [19]. Such explanations are critical for the

transparency of automated decision-making, the trustwor-

thiness of face recognition technology and, not least, are

also expected to be available by default by various privacy

laws and regulations, such as GDPR1.

Central to the operation of FR models is the concept

of template similarity. When two faces are subjected to a

comparison within a face recognition system, a comparison

score is typically computed that captures the similarity of

the faces in the embedding (or template) space of the FR

model. This comparison score, in a sense, encodes how

similar two faces are in terms of their visual features and

overall appearance. Typically, the comparison score is the

extent of the explanation that face recognition systems pro-

vide during the recognition process. Unfortunately, this sin-

gular number leaves practitioners wondering: What visual

features were used to determine the similarity and come to

an identity conclusion? To answer such questions, vari-

ous explainability techniques have emerged in the literature

over the years that aim to provide insight into the internal

mechanisms governing face recognition models [19].

Existing techniques towards the explainability of face

recognition models generally fall into one of two categories:

(i) attribution techniques that attempt to locate the most

important pixels in an image given a recognition decision

(or embedding comparison), and (ii) embedding/template

interpretation techniques that assign human-interpretable

meaning to the deep features used in modern face recogni-

tions models. The first category of explainability techniques

most often relies on the so-called saliency maps [2, 13, 18].

These maps give some indication of what region of the im-

1https://gdpr-info.eu/



age was the most “important” for the recognition decision.

Generally, their indications tend to highlight pixels that rep-

resent the eyes, nose, and mouth as important for a recogni-

tion outcome. While this result tells us that these regions are

important to identity in a general sense, it does not give any

further detail on what about the eyes, nose, and mouth dis-

tinguishes individuals. Furthermore, these predictions come

with a high degree of variance, further increasing the uncer-

tainty of results and the potential for selection bias [3, 6].

The second category of techniques is focused on decipher-

ing what the deep features are specifically encoding about

the face. These techniques have the potential to explain

FR decisions in much greater detail as they are focused on

the feature space rather than the image space. Prior work

in this area has investigated the organization of the feature

space by analyzing: (1) the similarity structure of the tem-

plate codes [20], (2) the semantics of the greatest variance

directions in the embedding space [21], or (3) feature hier-

archies in the template space [11] to mention a few of the

most impactful works. While these techniques provide in-

sight into the organization and high-level characteristics of

the FR embedding space, they are still limited in their abil-

ity to discover/interpret data attributes beyond a few basic

classes (e.g., gender, illumination, viewpoint) and are chal-

lenging to apply with facial images captured in-the-wild.

In this work, we aim to expand the explainability of face

recognition decisions and the interpretability of the FR tem-

plate space by developing multiple novel technique for dis-

covering semantically meaningful deep features (and direc-

tions) in the embedding space of contemporary face recog-

nition models. Specifically, we propose the following tech-

niques that also present the main contributions of this work:

• Semantic Spatially Isolated Deep Feature Discovery:

With this approach, we first introduce a targeted facial-

region blending process (illustrated in Figure 1) that ma-

nipulates local semantic structures of the face and pro-

duces images with identical pixel values in all areas ex-

cept the targeted semantic region. Using a large number

of such manipulated faces, we then probe the template

space of face recognition models and explore directions

of greatest variations to identity deep features that corre-

spond to spatially isolated semantic face structures.

• Label-Guided Discovery with Centroid Modelling:

With the second proposed approach, we utilize attribute

labels of the facial images to identify clusters of faces in

the template space that share the same appearance charac-

teristics. We then estimate the difference vector between

the centroid of an observed attribute-cluster and the cen-

troid of a selected reference cluster (e.g., canonical faces

in neutral pose, expression and homogenous illumination)

and use this vector (a deep feature) to explain selected di-

rection in the embeddings space.

• Label-Guided Discovery with Regression Modelling:

For the last approach, we model the relationship between

Figure 1. Targeted facial-region blending. An example set of

the blended facial images used for discovering semantic-spatially

isolated (SSI) deep features is presented. The face donor image

is blended into the region donor images using facial region masks

in the left-most column. After a set of blended images is created,

they are embedded into the embedding space of a face recognition

model and used for discovering SSI feature directions.

selected attributes and the embeddings of facial images

using linear regression. This process allows us to estimate

regression coefficients that can be interpreted as embed-

ding space directions and exploited for studying template

variations along the estimated embedding space axis.

To visualize the results of the proposed feature discovery

techniques, we utilize the recently introduced Deep Face

Decoder [15] that allows us to invert FR templates back

into the image space. We apply our techniques to three

distinct face recognition models and demonstrate state-of-

the-art semantic feature discovery with a number of inter-

esting insights. For example, we show that: (1) certain di-

rections in the template space encode local facial properties,

(2) within-class variations can be encoded through feature

directions and be consistently applied across various identi-

ties, (3) various facial features utilize distinctly-shaped fea-

ture manifold, and also point to differences and similarities

among the considered 3 FR models.

2. Related Work

With advancements in face recognition capabilities and

the deployment of FR models on a wider scale, a criti-

cal issue that received considerable attention recently has

been enhancing the interpretability and transparency of face

recognition models [19]. While a considerable number of

conceptually different techniques have been proposed in the

literature so far, the majority of existing work falls into two

broad categories that are briefly presented below.

Attribution Techniques aim to identify informative image

regions and commonly utilize saliency maps to elucidate the

decision-making processes of the studied face recognition

models. Castanon et al. [2], John et al. [13], and Xu et



al. [30], for instance, employed saliency maps to visualize

and quantify the critical features in facial images that influ-

ence the decisions made by deep learning-based face recog-

nition systems. These methods not only provide insights

into the features that are deemed important by the models

but also contribute to a better understanding of how these

models process and recognize facial features. Similarly,

Domingo [17] presented an approach that used saliency

maps for explaining facial analysis techniques in scenarios,

where internal access to the model is limited. This method-

ology stands out for its ability to interpret recognition deci-

sions in a true black-box scenario, emphasizing the changes

in recognition probability when the images are perturbed.

Feature Interpretability Techniques, on the other hand,

focus on different aspects of face recognition and often

aim to understand the properties of the embedding space

of face recognition models. Upchurch et al. [24], for exam-

ple, studied the interpolation of features within deep neural

networks to achieve controlled modifications in image at-

tributes, such as age or expression. O’Toole et al. [20], Hill

et al. [11], and Parde et al. [21] explored the organization of

the embedding space, which is instrumental in understand-

ing how these deep learning based face recognition models

handle recognition across varied attributes. Wang et al. [28]

focused on data augmentation techniques leveraging deep

network feature linearization, and Williford et al. [29] and

Knoche et al. [14] contributed to the field of explainable AI

with innovative methods for explaining model predictions.

Our Contribution. The techniques, presented in this work,

build on the research outlined above, but extend it in mul-

tiple aspects. Specifically, as we show in the experimental

section, our techniques are capable of finding feature direc-

tions that correspond to much more complex facial struc-

tures/attributes with substantially less entanglement than

what prior work was able to identify (i.e., global attributes,

such as gender or ethnicity), and to determine feature axes

that allow us to impact the encoded template properties,

such as pose or illumination angle.

3. Semantic Spatially Isolated (SSI) Deep Fea-

ture Discovery

In this section, we present the first main contribution of

this work, i.e., a novel technique for the discovery of fea-

ture directions in the embedding space of face recognition

networks that correspond to semantically meaningful and

spatially isolated visual facial features.

3.1. Problem formulation and method overview

Given an input face image I ∈ R
m×n×3 and black-box

facial recognition network R, our goal is to discover human-

interpretable deep features (or directions), t, in the abstract

embedding space, R(I), with the goal of gaining insight into

the inner workings of deep face recognition models and the

Figure 2. The SSI deep feature discovery approach leverages

the variability in a specific facial region to discover principal direc-

tions within the embedding space that correspond to semantically

meaningful changes of this region in the reconstructed images

only. Semantic meaning is assigned to these directions through

a visual analysis facilitated by a template inversion approach.

characteristics of its embedding space.

Central to the discovery of high-quality, disentangled,

semantic and spatially isolated (SSI) features in the deep

embedding space are two novel components, as illustrated

in Figure 2. The first is a targeted facial-region blending

(TFRB) module, which allows us to sample precise vari-

ations in different facial structures and then model them

in the embedding space via principal component analysis

(§3.2). The second is the feature decoding technique, which

allows us to visualize the discovered deep feature directions

with an arbitrary face sample and evaluate their level of en-

tanglement and generalizability (§3.3).

3.2. Targeted blending and feature discovery

Facial region isolation. As different facial structures nat-

urally correlate with one another in face data, we need to

isolate the different face regions to learn disentangled fa-

cial recognition features. We begin by isolating the targeted

face region, f , using a facial landmarking model S, for each

sample in a dataset of N training images, {Ii}
N
i=1

. Here,

a standard 68-point landmarking model is used, where the

landmarks are used to isolate selected facial regions. For

the experiments, we consider the eyes, nose and lower face

region (see Figure 1), but the facial-region isolation process

is general and can be applied to arbitrary facial structures.

Targeted blending. Next, we wish to blend the facial re-

gions into donor faces to create a dataset of embeddings

with selective variations. Using the previously computed

facial region boundaries, we blend the facial region from

a region donor image Ik with the surrounding face from a

donor image Im using a Gaussian kernel. This generates a

dataset of blended images {Ibm,k|
m = 1 : N

k = 1 : N − 1} ∈ R
h×w×3.

Computing the corresponding face recognition embeddings



for network, R, with embedding length d, results in the set

of templates {tbm,k|
m = 1 : N

k = 1 : N − 1} ∈ R
d.

Feature direction discovery. To learn appropriate (disen-

tangled) feature directions, we need to first isolate the dif-

ferences in the face embeddings attributed only to changes

in the targeted face region f . Thus, we begin by computing

the template center for each face donor image, i.e.:

µm =
1

N − 1

N−1
∑

k=1

t
b
k,m. (1)

Next, to remove the influence of each face donor, m, from

the templates, we center the face embeddings with respect

to their face donor images, as follows:

T = [tbm,k − µm]

∣

∣

∣

∣

m = 1 : N
k = 1 : N − 1. (2)

This step ensures that the subsequent analysis focuses

on region-specific features, rather than individual-specific

traits. With the template scatter isolated to the target face

region, f , we now center the face embeddings with respect

to each feature, Tc = T− T̄, calculate the covariance ma-

trix C,

C =
1

N(N − 1)− 1
T

T

c
Tc, (3)

and then solve the following eigenproblem for the eigenvec-

tors and eigenvalues:

CV = VΛ. (4)

The eigenvectors vi and eigenvalues λi are obtained from

the columns of V and diagonal entries of Λ, respectively.

The leading eigenvectors corresponding to the largest d′

eigenvalues, i.e., V = [v1,v2, . . . ,vd′ ] ∈ R
d×d′

, d′ ≤ d

define the (orthonormal) principal axes of the face region

subspace in the FR embedding space and represent the ba-

sis for meaningful features corresponding to the targeted

face region f . The eigenvalues indicate the relative impor-

tance of each basis vector in describing the scatter. For our

discovery procedure, we select the top d′ eigenvectors, that

jointly form a feature direction matrix Z:

Z = [v1,v2, ...,vd′ ]. (5)

3.3. Feature direction visualization

Based on the computed direction matrix Z it is possible

to manipulate specific aspects of a provided face embedding

by moving the embedding along the directions encoded in

Z. For instance, given a probe image Ip, its template tp can

be transformed in a way that corresponds to spatially local

appearance variations in the original input image Ip, i.e.:

t
′

p = tp + α
vi

|vi|
, (6)

where vi is the i-th eigenvector of the targeted facial region

and α corresponds to the strength of the manipulation.

Finally, to evaluate the impact of the transformation in-

duced by moving the embeding along the discovered feature

directions, we use the state-of-the-art template inversion

Figure 3. Overview of the label-guided feature direction discov-

ery techniques. The flowchart illustrated the main ideas behind

the centroid- and linear-regression-based modelling techniques to

embedding-space direction discovery. Both techniques are capa-

ble of identifying linear directions that correspond to semantically

meaningful within-identity face variations.

procedure from [15], called Deep Face Decoder (DFD). The

DFD decoder is capable of inverting arbitrary face embed-

dings back into the visual domain, allowing for the interpre-

tation of the encoded visual features. Using the decoder, the

probe reconstruction I
′

p can then be computed using:

I
′

p = φD(t′p), (7)

where, φD represents the DFD network mapping.

4. Label-Guided Feature Discovery

The discovery of semantic information in the template

space can also be done by leveraging attribute labels as-

sociated with a dataset of facial images. In this section,

we present two novel techniques, capable of discovering

informative embedding space directions based on such la-

bels. Formally, this task can be described as follows. Given

a dataset of N facial images, {In}
N
n=1

∈ R
h×w×3 with

annotated attribute labels {yn}
N
n=1

determine semantically

meaningful embedding space directions corresponding to

the labels. In accordance with this task, we design the

first of our techniques based on a procedure build around

centroid-based modelling and the second one based on lin-

ear regression modelling, as also illustrated in Figure 3. De-

tails on the two techniques are provided below.

4.1. Centroidbased modeling

With the first proposed label-guided approach, based on

centroid modelling, the initial requirement involves procur-

ing a dataset comprising samples annotated with attribute

labels. These samples must include both the target (posi-

tive) and baseline (neutral) manifestations of the attributes

under investigation, such as smile and neutral, when study-

ing facial expressions, for instance. This bifurcation is piv-

otal for isolating the attribute’s effect on the corresponding

embedding. Unfortunately, this also rules out many in-the-

wild datasets, thus favoring the use of controlled datasets.



With the data requirement satisfied, we compute the

mean template for a given attribute, denoted as κ. Simi-

larly, the mean template for the corresponding neutral at-

tribute, denoted as ν, is also computed. Next, we subtract

the mean template pertaining to neutral attribute from the

mean template of positive attribute, leaving behind the tem-

plate difference d:

dκ = t̄|yn=κ − t̄|yn=ν (8)

This differential d embodies the deep features characteristic

of the attribute κ, which can be incorporated into the given

probe template tp by

t
κ
p = tp + αdκ, (9)

where factor α controls the level to which the attribute κ is

considered. In our experiments we use α = 1. The trans-

formed probe template tκp can then be reconstructed into the

image domain, similarly to the procedure given in (7). Note

that the above equation corresponds to a line in a vector

space, where dκ is the directional vector.

4.2. Linear Regression Modeling

For the second proposed label-guided discovery ap-

proach, we use linear regression to model the relationship

between a particular label in the dataset (dependent variable

y) and the deep features t that make up the facial recogni-

tion templates. The relationship can be expressed as:

y = β0 + β1t1 + β2t2 + βntn + ε. (10)

Here, the coefficients [β1, β2, . . . βn] represent the relative

weights assigned to each deep feature to optimally predict

the dataset label y. The intercept β0 represents the predicted

value when the independent variables are zero. The residu-

als ε represent the differences between the observed values

of the labels y and the values predicted by the linear regres-

sion model. The coefficient vector β is fit by minimizing

the sum of squared residuals:

min
β

N
∑

i=1

(yi − [β0 · · ·βn] ·

[

1
ti

]

)2 (11)

Given the coefficients β = [β0, β1, . . . βn] and the de-

sired label y, the probe template tp corresponding to neutral

label can then be transformed as:

t
′

p = tp + α[β1 · · ·βn], (12)

where the weighting factor α is defined as:

α = (y − β ·

[

1
tp

]

), (13)

to ensure that the transformed template corresponds to the

label y. Note that with the above setup, the regression coef-

ficients are interpreted as a linear direction (or axis) in the

embeddings space that can be traversed, similarly to a direc-

tion vector, to explore variations in the information content

of the template corresponding to label y. The transformed

template can again be decoded into the image space follow-

ing the procedure given in (7).

Figure 4. Example decodings generated with DFD. The probe

image on the left (from NISTMedsII [7]) was first embedded using

three different FR models and then decoded back into the image

space using DFD [15]. Note what information is reconstructed.

5. Experiments

5.1. Experimental Settings

Face Recognition Models. We utilize three publicly avail-

able pre-trained face recognition models to evaluate the ef-

fectiveness of the proposed feature discovery techniques.

The three models are chosen because they differ in the back-

bone architecture and learning objectives, and hence pro-

vide a solid cross-section of model variants for the evalua-

tion. Additionally, these models are come with trained DFD

inversion networks that are used to visualize results [15].

• VGG16-Softmax: The first model is based on the 16

layer convolutional neural network (ConvNet) VGG16

originally introduced in [23]. It consists of a set of convo-

lutional layers with 3 × 3 filters, interspersed with max-

pooling layers, and ending with fully connected layers

with a softmax activation function to produce class prob-

abilities. The model is trained on VGGFace2 [1] using

a cross-entropy loss, followed by fine-tuning with a stan-

dard triplet loss. On LFW [12], VGG-16 attains a verifi-

cation accuracy of 95.3%, as documented in [27].

• ResNet-Softmax: The second models uses a 50–layer

residual ConvNet from [10], trained also on the VG-

GFace2 dataset, using a softmax loss. Unlike the VGG-

16 model presented above, the ResNet-50 model contains

skip connections, impacting the way the face images are

encoded. Compared to VGG-16, the ResNet-50 model is

also fairly lightweight with around 23M trainable param-

eters. The ResNet embeddings e ∈ R
2048 needed for the

experiments are computed from the last global average

pooling layer. The model has a verification accuracy of

97.3% on the LFW database, as reported in [27].

• ResNet-ArcFace: The last model is based on a 32–layer

residual ConvNet trained on CASIA [31] using the imple-

mentation from [22]. While using the same type of back-

bone as the ResNet softmax implementation, ArcFace,

[4], adds an angular margin to the softmax loss to enhance

the discriminative power of the learned features. This

modification is designed to encourage templates from the

same identity to be near one another in an angular space,

while increasing the gap between templates from different

identities. Furthermore, feature embeddings are normal-

ized before applying the ArcFace loss to encourage the

templates to map to the surface of a hypersphere. This

modification helps with robustness to changes in pose, il-



Figure 5. Visualization of movements along the Nose directions.

Results are presented for 3 FR models (in columns) and the first 3

principal components of the PCA subspace (in rows).

lumination, and expression.

Decoder Models. For decoding the deep templates and in-

verting them back into the visual domain, we utilize the pre-

trained Deep Face Decoder models from [15]. The models

are based on an inverted VGG architecture that maps face

embedding to image reconstructions and were designed for

deep feature-space exploration. The decoder models are

pretrained for inverting the features of the VGG16-Softmax,

ResNet-Softmax and ResNet-ArcFace FR models. Exam-

ple decoding results using DFD for the three embedding

models are shown in Figure 4.

Datasets We select three datasets for the experiments, each

providing a unique environment to comprehend the nuances

of the discovered deep feature directions, i.e.:

• SiblingsDB-HQf. [25] This dataset contains 184 frontal

facial images of 92 sibling pairs captured at a resolution

of 4256 × 2832. The dataset was acquired in front of a

homogenous background and under diffuse illumination.

This dataset is used exclusively for the discovery of se-

mantic spatially isolated features. After removing dupli-

cates and excluding problematic samples, 163 images are

left for the quantitative part of the evaluation.

• NISTMedsII. [8] The NIST Multiple Encounter Dataset

(MEDS) II dataset was compiled by the FBI Data Anal-

ysis Support Laboratory (DASL) and consists of persons

with multiple frontal captures. The data is used exclu-

sively for testing the discovered feature directions.

• Multi-PIE. [9] The Carnegie Mellon University Multi-

ple Encounter Pose Illumination and Expression dataset

is a face dataset consisting of over 750,000 images of 337

people recorded in up to four sessions over five months.

Face images were collected in a laboratory environment

and have controlled variation in viewpoint, illumination,

and expression. This data is used exclusively for the

learning of intra-subject deep FR features.

5.2. SSI Feature Direction Analysis

By applying the SSI feature discovery technique to par-

ticular regions of the face, we can discover feature direc-

tions that are corresponding to each of the targeted facial

structures. As these directions represent a linear combina-

tion of the original deep features, we can consider them to

be deep features themselves. Because the feature discovery

Figure 6. Visualization of movements along the Eye Region di-

rections. Results are presented for 3 FR models (in columns) and

the first 3 principal components of the PCA subspace (in rows).

Figure 7. Visualization of movements along the Lower-Face-

Region directions. Results are presented for 3 FR models (in

columns) and the first 3 principal directions (in rows).

process is unsupervised, we use a subjective visual analysis

to associate semantic meaning to the discovered directions.

In Figures 5, 6, and 7, we demonstrate our technique in

the nose, eye, and lower face regions, respectively, and visu-

alize what impact movements along the first three principal

axes have on the encoded template information. For brevity

and ease of comparison between the 3 FR models, all results

are visualized using the same probe image - from Figure 4:

• Nose: We observe some consistent themes in the discov-

ered features, as illustrated in Figure 5. Consistently rep-

resented by principal component 0 (PC0), the nose length

appears to be the most significant feature. Moving fur-

ther down, PC1 appears to be tied to the prominence of

the bridge of the nose. Last of all, PC2 appears to repre-

sent the nose width among all three FR model variations.

The ResNet-ArcFace FR model has the weakest feature

disentanglement from the feature vector, possibly due to

the way with which the ArcFace loss encourages angular

margins between different identities.

• Eyes: From Figure 6, we notice a similar trend in

the common features discovered among the different FR

models for the eye region. The most significant features

consistently appear to relate to sunken or shadowed eyes,

followed by eyebrow thickness and iris color. As each of

these features can be modified using makeup, facial hair

trimming, or colored contacts, these results suggest that

modifying the eye region could be a successful method

for obscuring identity. This also provides some evidence

that the use of eye-shadow could be responsible for demo-

graphic variations in FR performance. Rather than being

exploited as a vulnerability, this knowledge could also be

used for the selective modification of these attributes dur-



Figure 8. Centroid-based Pose Features. Using the proposed ap-

proach, we discovered the feature directions associated with the

pose (in 15-degree increments) for three different FR models.
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Figure 9. Pose-angle Centroid Visualization. By using multidi-

mensional scaling (MDS) we create a 2D representation of data

labeled with different poses. We observe that despite the differing

matcher designs (subfigures 9a, 9b, 9c), they each create a very

similar horseshoe-type relationship for pose data.

Figure 10. Centroid-based Illumination Direction Features.

With the proposed approach, we are able to discover feature direc-

tions associated with the angle of illumination (in 15
◦ increments)

for three different face matchers. Best viewed zoomed-in.

ing training for increased model robustness.

• Lower-Face: Last of all, we test what deep features we

discover when targeting the lower-face region. As the de-

fault cropping of the FR inputs typically cuts off the bot-

tom of the chin, we opted to study the mouth and chin

area together. As seen in Figure 7, we notice common

features relating to facial hair, cheekbones, and nose-to-

mouth distance. Unlike cheekbones and nose-to-mouth

distance which have a strong inherent grounding to iden-

tity, we find it concerning that facial hair is found to be the

most significant lower-face feature. This can likely lead to

misidentification errors as facial hair color and style can

change frequently, particularly among men. This result

suggests that facial hair may be a source of differential

performance among different demographic groups.
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Figure 11. Illumination-angle Centroid Visualization. By using

multidimensional scaling (MDS), we create a 2D representation

of data labeled with different illumination angles. We observe that

each embedding network (subfigures 11a, 11b, 11c) has a unique

path for positive and negative illumination angles, suggesting that

the directional information is encoded in the templates. Addi-

tionally, we observe similar paths in the two softmax-based fa-

cial matchers with a unique circular path for the ArcFace-based

matcher. This suggests that loss function design influences tem-

plate feature organization more than matcher backbone design.

Figure 12. Centroid-based Expression Features. With the pro-

posed methods, we discover the feature directions associated with

5 different facial expressions (disgust, scream, smile, squint, and

surprise), for three different face matchers. The template is ad-

justed in the learned-expression direction by up to 200% of the

average centroid difference. As can be seen in the columns right

of 100%, the expression strength relationship carries beyond the

average centroid distance. Best viewed zoomed-in.

5.3. Discovering Intraidentity Deep Features

In this section, we present experiments for discover-

ing label-guided feature directions that correspond to intra-

identity variation, specifically pose-angle, illumination-

angle, and expression. We accomplish this using our two

different label-guided feature discovery techniques on a

controlled dataset. The first technique uses the relative po-

sitioning of the templates corresponding to different data

labels to compute feature directions. This technique is

flexible to different feature manifold shapes and compat-

ible with multidimensional scaling (MDS) visualizations.

Our second technique utilizes linear regression to compute

the features directions that are predictive of the desired la-

bels using linear combinations of the original deep features.

Contrary to the prior technique, linear regression considers

within-label variance during the fit procedure.

Pose Deep Features. When learning pose, we focused on

five different pose angles, -30 degrees, -15 degrees, 0 de-

grees, 15 degrees, and 30 degrees. Empirically, we found
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Figure 13. Expression Centroid Visualization. With multidi-

mensional scaling (MDS) we create a 2D representation of data la-

beled with different expressions in the dataset. We observe that the

three embedding networks (subfigures 13a, 13b, 13c) have simi-

lar relative embedding distances between the different expression

centroids, suggesting they each encode expressions similarly.

Figure 14. Learned Features Directions using Linear Regres-

sion. The fitted coefficients are used for visually evaluating the

ability of the regression to model the relationship in rows a-f.

this to be the limit for left-to-right pose variation that is tol-

erated by the standard facial landmark detection pipelines.

When using the centroid-learning approach, we computed

the difference between the centroid for 0 degrees and the

central embedding of either -30,-15,15, or 30. In Figure

8, we apply these learned vectors to the probe embedding

to evaluate their semantic meaningfulness. For the two

Softmax-based models, we see the learned feature able to

control pose with minimal side effects. The ArcFace-based

model has a more muted pose response, possibly illustrating

better model robustness to pose variation. To visualize the

shape of the feature manifold, we use MDS to create a low-

dimensional representation of the relative distances between

the different centroids (Figure 9). We find that, regardless of

FR model, the relative distances between the label centroids

appear to construct a similar horseshoe shape.

Next, we applied our linear regression pipeline to learn

a single deep feature that can predict the pose label in the

dataset. As shown in row (d) in Figure 14, this technique

can learn a feature that has the desired effect on the pose an-

gle for the ResNet-softmax network. In columns (b) and (f,)

we see the features not having the desired effect for the other

two FR models, likely due to the feature manifold shape.

Illumination Deep Features. Concerning illumination, we

focused on the lighting angles -90 to 90 degrees (with 15-

degree increments) in illumination along with a no-flash

state. Using the same centroid learning approach used to

detect pose features, we computed individual deep features

for each illumination angle. Visualizing the deep features

(Figure 10), we see varying illumination content in the em-

bedding reconstructions. VGG16-Softmax is the most ex-

pressive in the visualization, able to encode both illumina-

tion intensity and direction. ResNet-Softmax and ResNet-

ArcFace on the other hand, seem to primarily encode aver-

age light intensity. In Figure 11, we visualize the relative

distances between the different light-angle centroids. We

notice that VGG16-Softmax and ResNet-Softmax produce

very similar mappings with two separate and somewhat par-

allel paths representing each illumination side. On the other

hand, the ArcFace-based FR model encodes illumination

angle and direction in a circular manifold. This suggests

that the type of loss has a substantial effect on the structure

of the feature space for these attributes.

The use of linear regression for learning the deep fea-

ture representing illumination has varying success among

the different FR networks. In row (a) of Figure 14, we see

reasonable success for the VGG16-based network. In row

(c) however, we see that the learned feature for the ResNet-

Softmax network does not have much effect. In row (e), we

see that the ArcFace-based network can express the illumi-

nation direction, but is unable to do so without entangle-

ment with other facial features.

Expression Deep Features. When learning deep features

representing different facial expressions, we rely entirely on

the centroid learning technique. This is because our dataset

labels have only binary expression information, indicating

the presence or absence of a particular facial expression. In

Figure 12 we show the effect of the learned expression vec-

tors on the probe image. We find VGG16-softmax to encode

expression with the highest fidelity, followed by ResNet-

Softmax, and then ResNet-ArcFace. When plotting the

MDS visualization for the expression centroids (Figure 13),

we observe that the models exhibit highly similar relative

distances between different expressions. This suggests that

the three embedding networks encode facial expressions in

a comparable manner, indicating that despite differences in

their architectures, these models share a similar approach to

representing expressions in the embedding space.

6. Conclusion

We presented three novel techniques for learning seman-

tically meaningful embedding space directions that can pro-

vide insights into the behavior of FR models. The tech-

niques were tested in experiments with interesting findings.
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[15] J. Križaj, R. O. Plesh, M. Banavar, S. Schuckers, and
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