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ABSTRACT
Soft-biometric privacy enhancing techniques (SB-PETs)
transform facial images to preserve identity while prevent-
ing the automatic extraction of soft-biometrics by confusing
machines through noise injections or attribute obfuscation.
However, existing SB-PETs often sacrifice image quality
for privacy enhancement, limiting practical usage, espe-
cially in applications that allow for human inspection. To
address these issues, we introduce a novel SB-PET that (i)
generates photo-realistic images with obscured gender in-
formation, which makes attribute extraction challenging for
machine-learning models, but also human observers, and (ii)
preserves identity to a significant extent. The proposed ap-
proach, abbreviated PriDSS, operates in the latent space of
the StyleGANv2 model and aims to (i) preserve the appear-
ance of facial parts from the input image carrying identity
information, and (ii) incorporate global context from im-
ages of the opposite gender, thus, obscuring the original
gender information. PriDSS shows promising results when
compared to state-of-the-art techniques from the literature,
and leads to competitive gender-privacy and face-verification
performance, while ensuring superior photo-realism.

Index Terms— soft–biometrics, privacy, verification

1. INTRODUCTION

When people provide facial biometrics for identification or
verification purposes, soft-biometric attributes like gender,
age, and ethnicity can inadvertently be extracted (without
consent), posing risks to one’s personally privacy [1,2]. Soft-
biometric privacy-enhancing techniques (SB-PETs) [3, 4]
have emerged to protect privacy by confusing automated
machine learning models attempting to extract personal in-
formation. However, current SB-PETs often trade privacy
enhancement for image quality as they focus on confusing
machines rather than humans [1]. This hampers practical use,
especially in applications where human inspection is possible
and the added noise and image artifacts that impact automatic
models have little effect on inferring soft-biometric attributes,
as illustrated in the middle column of Fig. 1.

A considerable amount of work has been done on soft-
biometric privacy over the years [2]. State-of-the-art (SoTa)
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Fig. 1: Illustration of the main idea behind PriDSS. Exist-
ing SB-PETs aim to transform the original image Ior into a
privacy-enhanced image Ipr, preserving identity and prevent-
ing soft-biometric attribute extraction. However, this often
degrades photo-realism, which we address through PriDSS.

techniques typically aim to modify the facial appearance
in a way that still allows legitimate use cases, such as face
verification, but obscures other types of potentially sensi-
tive information, such as age or gender. This is achieved
through various mechanisms, such as the addition of adver-
sarial noise [5], image perturbations [3] or image-to-image
translation techniques [4] among others. While existing tech-
niques achieve a competitive level of privacy enhancement,
they typically produce visually compromised (or low-quality)
images that still allow for attribute inference by humans. Our
goal, illustrated in Fig. 1, is, therefore, to achieve state-of-the-
art soft-biometric privacy enhancement, while maintaining
photo-realism and producing artifact-free results.

Specifically, we propose a novel SB-PET that focuses
on safeguarding the gender attribute while preserving visual
quality. The proposed approach leverages the insight that
certain facial parts (e.g., eyes, nose, mouth) contain more
identity information, while broader global context can predict
soft-biometric attributes (e.g., skin smoothness indicating
gender). Our technique, called PriDSS (Privacy through
fusion of Disentangled Spatial Segments) combines identity-
related facial parts with contextual information from the
opposite gender through image fusion in the latent space of
the pre-trained StyleGANv2 model [6]. This approach con-
founds machine classifiers, minimizes modification traces,
and enhances gender attribute privacy for human observers.
We evaluate PriDSS in comparison to its closest competitor,
PrivacyNet [4], and report highly encouraging results.



2. BACKGROUND AND RELATED WORK

SB–PETs. Given an original face image Ior and an attribute
classifier ξa, soft-biometric privacy-enhancement (ψ) aims to
produce privacy-enhanced images (Ipr) that prevent confident
prediction of attribute labels by ξa [1,2,4]. The goal of ψ is to
obscure attribute information while maintaining (visual) sim-
ilarity to the original image (Ior) in terms of retained identity
information. Two strategies are commonly used to enhance
the privacy of a specific facial attribute in an image [7]: (1)
modifying the image to confuse the classifier into making in-
correct predictions (confusing male for female or vice versa
when targeting gender), or (2) modifying the image to yield
near-random performance from the classifier for the given ex-
amples. A technique following the first strategy based on ad-
versarial noise was presented in [5]. Examples from the sec-
ond group, on the other hand, include [8–10] for methods try-
ing to enhance privacy by modifying face templates, and [3,4]
for techniques modifying visual information for privacy en-
hancement. Our work also focuses on this latter strategy and
aims to ensure near-random gender recognition performance
with the privacy-enhanced image.
Face editing using StyleGAN. In recent years, face-image
editing techniques have made significant progress, covering
deep fakes for identity alteration, beauty filters and emotion
manipulation [6, 11, 12]. While privacy-enahncing methods
like face swaps for deidentification have garnered attention,
face editing for soft-biometric privacy is still underexplored.

A considerable body of recent face-editing work leverages
the capabilities of StyleGAN2 [6], a deep generative model
capable of generating highly realistic images. Image edit-
ing with StyleGAN2 involves manipulating the latent space,
a low-dimensional representation of an image capturing its
essential features [13]. Among the different works in this
area, a particularly interesting approach, called StyleFusion
was presented in [14]. StyleFusion utilizes the so-called S
latent space for semantic manipulation, and allows combining
diverse semantic components (e.g., eyes, nose) from a set of
original images I1, I2, . . . , In into an artificially generated
output image. This fusion process is executed through Fu-
sionNet modules, each dedicated to a specific semantic unit
(e.g., eye swapping, mouth swapping). These modules align
images semantically and produce a fused latent space, al-
lowing control over multiple semantic factors within a single
image. The proposed PriDSS approach, described in the next
section, extends the outlined ideas into privacy-enhancing
technique for gender obfuscation.

3. METHODOLOGY

In this section, we propose a novel SB-PET, named PriDSS,
that enhances Privacy in facial images by photo-realistically
fusing Disentangled Spatial Segments from the original input
face and an artificially generated image of the opposite gen-
der, as shown in Fig. 2. This process involves two steps: (i)
the integration of various spatial segments from both images,
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Fig. 2: High-level overview of PriDSS. PriDSS modifies
the original image Iori by fusing it’s StyleGAN latent code,
si, with the latent code t of an image Ic of the opposite
gender. The fusion process preserves identity, while in-
corporating gender-related features from Ic, such as rough-
ness/smoothness of the skin and presence of beard.

and (ii) the selection of the image of the opposite gender.

Fusing spatial segments (Step 1). Let I = {Iori}Ni=1 be
a set of N original face images, with binary gender labels
ai ∈ {male, female}. The goal of PriDSS is to produce
privacy-enhanced images Ipri using a dedicated fusion tech-
nique, where ai is confounded for both human observers and
machine classifiers, while maintaining photo-realism.

For each Iori there exists a corresponding StyleGAN2
latent space representation denoted as si. The privacy-enh-
ancing fusion that forms the basis for PirDSS, involves mod-
ifying si by incorporating relevant attributes of the opposite
gender. To achieve this, for each Iori , we define a set of M
images representing individuals with the opposite gender to
ai, denoted as Ici,j , where the subscript c stands for ‘candi-
dates’, i is the index of the original image, and j enumerates
the candidates. Each image in this set serves as a candidate
image, ensuring diversity in the fusion processm which allows
us to select the best-fused candidate based on a high similar-
ity score with the original and low gender predictability. Each
Ici,j also has a corresponding StyleGAN2 latent vector ti,j .

As illustrated in Fig. 2, we obtain privacy-enhanced im-
ages Ipri,j by fusing the latent code si that captures identity
information with the latent code of the opposite gender ti,j
that corresponds to gender-specific attributes in the syn-
thesized image. The hierarchical multi-fusion module, as
described in [14], smoothly fuses relevant parts of the latent
codes generated through a face parser, preserving identity in
eyes, nose, and mouth, while incorporating gender-related
features from the global context of Ici,j , such as rough-
ness/smoothness of the skin and presence of a beard. Addi-
tionally, the fusion considers hair and background from Iori
to enhance the overall similarity between Iori and Ipri,j . The
fused latent space sfused is then passed to the StyleGAN gen-
erator to produce Ipri,j . To obtain the final privacy-enhanced
image Ipri , we utilize a best-candidate selection procedure
that, in an on-line fashion, evaluates all output images Ipri,j
with respect to the matching score with the original and the



Fig. 3: Sample images generated using StyleGANv2. Fe-
male samples are shown on top, male at the bottom.

gender prediction, produced by a pretrained gender classifier.
Best-candidate selection (Step 2). For each original im-
age Ior, we first generate M privacy enhanced images Iprj ,
for j ∈ {1, . . . ,M} using M sampled candidate images of
the opposite gender Ici,j . Next, we select the best privacy-
enhanced image from the set of M generated candidates Iprj
using the following steps: (i) we subject the candidates to
a gender classifier and sort the candidates by their gender
scores, giving priority to those with a target gender proba-
bility of P (gender) = 0.5, (ii) we compute the (cosine)
similarity scores with the original input face images in the
embedding space of selected face recognition model (denoted
as SIMscore), and (iii) finally, select the candidates by the
lowest privacy–gain identity–loss coefficient (PIC) [10]. PIC
is in our case defined as PIC = |2P (male)−1|−SIMscore.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup

Investigations. We conduct comprehensive experiments to
explore various aspects of PriDSS, including:

• Gender classification performance: One of the main
goals of PriDSS is to obscure (soft-biometric) gender in-
formation and make it challenging for machine learning
models to extract such information automatically. To eval-
uate this aspect, we conduct gender recognition experi-
ments on the original images and their privacy–enhanced
versions, and utilize the state-of-the-art DeepFace gender
classifier for this task [15]. We treat gender recognition as a
binary classification problem, and, following standard eval-
uation methodology, use the Area Under the Curve (AUC)
corresponding to the generated Receiver Operating Char-
acteristics (ROC) curves to quantify performance [4, 8, 9].

• Identity verification performance. To evaluate the identity-
preservation capabilities of PriDSS, we adopt the state-
of-the-art CosFace [16] face recognition model. We ex-
tract face embeddings from the original images and their
privacy–enhanced versions, and then perform verification
experiments with 1000 mated pairs and 1000 non-mated
embedding pairs. For the mated comparisons, we use
the original input images and the corresponding privacy–
enhanced counterparts, similarly to [4].

• Evaluation of photo–realism. The Fréchet Inception Dis-
tance (FID) is a common metric regularly used in the liter-

Performance indicator Original PrivacyNet PriDSS (ours)

Gender (AUC) 0.981 0.5400 0.5900
Verification (EER) w/ Original n/a 0.0070 0.0680
Verification (FNMR@FMR10−1) w/ Original n/a 0.0005 0.0010
Photo-realism (FID) w/ Original n/a 57.499 25.386

Table 1: Performance evaluation and SoTa comparison.
The table shows results for gender-classification (AUC), ver-
ification (EER), and photo-realism evaluation (FID).

ature to assess image synthesis quality by comparing fea-
ture embeddings of real and synthetically generated images
produced by pre-trained neural networks [17]. A lower FID
score indicates better correspondence between the distribu-
tions of the real and synthesized images, and is therefore
often used as a measure of (photo) realism. In our case,
we utilize FID scores to assess the quality of the privacy-
enhanced images by comparing them to the original ones
using the standard InceptionV3 features.

• Robustness against recovery attempts: Given the known
vulnerability of SB-PETs to reconstruction attacks, where
privacy-enhanced regions are reconstructed to recover
soft biometric information, we conduct an evaluation of
their susceptibility to such attacks using the PrivacyProber
framework [7]. This framework has been purposefully de-
veloped for assessing the robustness of SB-PETs against
reconstruction attempts. We conducted tests using a set of
3 recovery strategies and report results in terms of the AUC
of the gender classifier after the recovery phase.

Experimental data. We harness the capabilities of the pre-
trained StyleGANv2 model [6] to directly generate faces
through latent-space sampling. This process allows us to
bypass the embedding step needed to project real-world faces
into the StyleGAN latent space [18, 19] and follows standard
research methodology in face editing [20]. Additional, it
enabled us to synthesize a balanced and representative test
dataset in terms of gender distribution. The final test dataset
used for the experiments, thus, consists of 1000 female and
1000 male facial images, as shown in Fig. 3, i.e., N = 2000.

4.2. Quantitative Results

Privacy-enhancement and verification. In the first series
of experiments, we investigate the privacy-enhancement and
identity-preservation capabilities of PriDSS as well as the
photo-realism of the generated images. The result of the
experiments are presented in Table 1, together with a com-
parison with the (conceptually) closest state-of-the-art (SoTa)
competitor, PrivacyNet [4]. We set PrivacyNet to only en-
hance gender privacy, and evaluate it on the same set of
generated images as PriDSS. As can be seen, the proposed
PriDSS method achieves a promising level of soft-biometric
privacy enhancement for the gender attribute, with an AUC
score of 0.59 in gender recognition experiments, indicating
(ideal) near-random performance. PrivacyNet achieves a
comparable AUC value of 0.54, suggesting that both tech-



Input image PrivacyNet PriDSS (ours)

Privacy enhanced 0.540 0.590

Recovered with
PP–D 0.545 0.603
PP-I 0.540 0.602
PP–A 0.550 0.554

Table 2: Robustness to image restoration attempts. We
use three different strategies from [7] to restore the obscured
gender information using an autoencoder (PP-A), a deonising
(PP-D) and an inpainting (PP-I) procedure. Shown are AUC
scores generated in gender recognition experiments.

Original PrivacyNet PriDSS (ours)

Match score w/ original 0.568 0.580

P (male) 0.238 0.344

Match score w/ original 0.771 0.796
P (male) 0.989 0.405

Fig. 4: Visual examples of privacy-enhanced images. Note
that both methods produce faces that lead to high match-
ing scores with the originals and effective gender obfucation.
However, the resuls produced by PriDSS exhibit a higher
level of photo-realism and are free of artifacts.

niques effectively conceal gender information. In terms of
verification performance, PrivacyNet leads to an EER score
of 0.007 when matching the privacy-enhanced images to the
originals, while PriDSS results in an EER of 0.068, which
again points to a considerable identity-preservation ability of
both tested techniques. Similar results are also observed for
other operating points.The strong point of PriDSS, however,
is the photo-realism. Here, the proposed approach signifi-
cantly outperforms PrivacyNet with an FID score of 25.386 -
an improvement of more than 2× over PrivacyNet.

Robustness against reconstruction attacks. Next, we ex-
plore how robust the proposed privacy-enhancement is w.r.t.
attempts to recover the initial visual appearance of the facial
images, or in other words, to attempts aiming to reverse the
privacy enhancement. To this end, we implement 3 variants of
the PrivacyProber (PP) recovery strategies, proposed specifi-
cally to probe the robustness of SB-PETs [7]. Here, the sym-
bols A, D, and I represent PP variants that try to recover the
obscured soft-biometric information using an auto–encoder
(A), a denoising procedure (D) and an inpainting scheme (I).
From the AUC scores, generated in gender recognition exper-
iments with the privacy enhanced and PP restored images, in
Table 2, we can see that both PrivacyNet and PriDSS are quite
robust to recovery attempts. The AUC scores do not change
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Match score 0.711 0.707 0.682
P (male) 0.596 0.546 0.490

Fig. 5: Ablation study results. We explore the impact of the
candidate-image selection procedure on the results.

much and the gender-recognition performance is still close to
random despite the application of the restoration strategies.

Computational Complexity. On a Desktop PC with an RTX
3090 GPU, PriDSS takes approximately 1800 ms to (i) gen-
erate a candidate face, (ii) compute it’s similarity score, and
(iii) calculate the gender probability. Note that this procedure
can also be parallelized using multiple GPUs.

4.3. Qualitative Results

Visual evaluation. While both PrivacyNet and PriDSS lead
to comparable verification performance in general, PriDSS
ensures significantly higher-quality images after privacy-
enhancement, as already demonstrated by the FID scores in
Table 1. In Fig. 4, we now further capitalize on this char-
acteristic with some visual examples. As can be seen from
the presented results, PriDSS generates high-quality artifact-
free images that well preserve identity information, while
effectively obscuring gender information. To support these
observations with empirical evidence, matching scores and
classifier probabilities (for male) are also reported in Fig. 4.

Ablation study. Finally, we present an ablation study in
Fig. 5 that demonstrates the impact of the candidate-image
selection procedure. Here, we observe three instances of a fe-
male identity being merged with multiple male candidate im-
ages. It is noteworthy that the identity of the fused/combined
result remains similar to that of the original image, corrob-
orated by consistently high matching scores. On the other
hand, the gender scores are close to 0.5 in all cases, mak-
ing it difficult to robustly infer gender information. While,
the final selection of the most suitable candidate involves
a comprehensive assessment of both verification and gender
probability scores, the presented visual examples offer insight
into the intricacies of the proposed approach.

5. CONCLUSION
In this paper, we presented a novel soft-biometric privacy-
enhancing technique, called PriDSS, capable of obscuring
gender information in facial images, while preserving identity
and ensuring highly photo-realistic results. Our experiments
point to highly promising results, but still offer room for
future research, where the same concept could be extended
towards other soft-biometric attributes.



6. REFERENCES

[1] Vahid Mirjalili, Sebastian Raschka, and Arun Ross,
“Flowsan: Privacy-enhancing semi-adversarial net-
works to confound arbitrary face-based gender classi-
fiers,” IEEE Access, vol. 7, pp. 99735–99745, 2019.
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