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it's a irrelevant question, but on this movie, it's so easy

Figure 1: Visualization of audio and video frame predictions

ABSTRACT
The quality of synthetic data has advanced to such a degree of real-
ism that distinguishing it from genuine data samples is increasingly
challenging. Deepfake content, including images, videos, and audio,
is often used maliciously, necessitating effective detection meth-
ods. While numerous competitions have propelled the development
of deepfake detectors, a significant gap remains in accurately pin-
pointing the temporal boundaries of manipulations. Addressing this,
we propose an approach for temporal deepfake localization (TDL)
utilizing a window-based method for audio (W-TDL) and a comple-
mentary visual frame-based model. Our contributions include an
effective method for detecting and localizing fake video and audio
segments and addressing unbalanced training labels in spoofed
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audio datasets. Our approach leverages the EVA visual transformer
for frame-level analysis and a modified TDL method for audio,
achieving competitive results in the 1M-DeepFakes Detection Chal-
lenge. Comprehensive experiments on the AV-Deepfake1M dataset
demonstrate the effectiveness of our method, providing an effective
solution to detect and localize deepfake manipulations.
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1 INTRODUCTION
The quality of synthetic data has reached such a level of realism[8]
that differentiating it from real data samples is now increasingly
difficult [12]. The inexpensive production of deepfake content,
whether in the form of images, videos, or audio, is frequently uti-
lized for malicious purposes, such as spreading misinformation or
inflicting targeted reputation damage. As new and increasingly so-
phisticated techniques for generating deepfakes evolve rapidly [13],
detecting deepfakes becomes an increasingly challenging task.

Many competitions have been organized to accelerate the de-
velopment of deepfake detectors and benchmark state-of-the-art
technologies, offering new datasets [2, 7, 11, 16]. However, these ini-
tiatives overlook the crucial task of pinpointing the temporal bound-
aries of manipulations, which is essential to practical applications
that require precise detection of when and where manipulations
take place within a video or audio.

To address this gap, recent studies [4, 22, 24] and the largest
audiovisual data set released in the 1M-DeepFakes Detection Chal-
lenge [3] proposed a task called temporal deepfake localization
(TDL). In this paper, we present our solution for this challenge,
introducing a window-based approach to audio TDL called W-TDL,
effectively addressing the problem of unbalanced training labels in
spoof datasets with a complementary visual frame-basedmodel that
proved highly competitive in the competition. Our contributions
can be summarized as follows:

• We propose an effective and highly competitive method for
detecting and localizing fake video and audio segments.

• The method effectively addresses the problem of unbalanced
training labels in partially spoofed audio datasets.

2 RELATEDWORK
Deepfake detection encompasses multiple tasks based on the pro-
vided data [15, 19, 25]. We can distinguish among: (i) image-, (ii)
audio-, and (iii) video-based deepfake detection. Video-based tech-
niques can be considered a combination of image- and audio-based
techniques, where handling a sequence of images with temporal
components poses a significantly more computationally demanding
task.

Video-based detectors often process individual modalities (i.e.,
image and audio) separately, analyzing each frame to detect anom-
alies or inconsistencies, and subsequently, features extracted from
both modalities are merged to obtain a final score. After obtaining
these characteristics, temporal inconsistencies can be further an-
alyzed (e.g., discrepancies where mouth movements do not align
with the word pattern of the audio) [10, 17, 23].

Most video-based deepfake benchmarks only provide labels for
entire videos, indicating whether they are genuine or fake. To ad-
dress this, a new dataset called LAV-DF was recently proposed in
the work of [4] to enable benchmarking deepfakes at the localiza-
tion level, where the goal is to identify the specific segments that
were manipulated. Additionally, the authors introduced BA-TFD+,
which uses a Multiscale Vision Transformer as its backbone and is
trained with contrastive learning.

Xie et al. [22] proposed a partially spoofed audio detection
method known as Temporal Deepfake Location (TDL). It intro-
duced two key components: an embedding similarity module to

enhance identification between real and fake features and a tempo-
ral convolution operation to focus on position information. This
method proved to be highly effective on ASVspoof2019 Partial Spoof
dataset [21].

3 METHODS
3.1 Overview
Our approach employed two distinct methodologies for visual and
audio components. For the visual analysis, we utilized the EVA
visual transformer, leveraging its robust image classification capa-
bilities to identify tampered frames within videos. For the audio
analysis, we implemented a modified Temporal Deepfake Location
(W-TDL) method to accurately detect and localize deepfake seg-
ments within audio streams. By combining these two techniques,
we aimed to achieve comprehensive and precise forgery detection
across visual and auditory data. The following sections detail the
specific methodologies and adaptations used for each modality.

3.2 Visual EVA
We employed an image frame-based approach using the EVA visual
transformer [9] to detect visually manipulated video frames. EVA,
a vanilla Vision Transformer (ViT), is pre-trained to reconstruct
masked-out, image-text-aligned vision features based on visible
image patches. We selected EVA due to its exceptional performance
on ImageNet classification benchmarks and its native resolution
of 224 × 224, which perfectly aligns with our dataset. This align-
ment ensures that no information is lost during processing, elim-
inating the need for image rescaling. Specifically, we utilized the
eva_giant_patch14_224.clip_ft_in1k model from the Timm
image library pre-trained on ImageNet 1k. Then, we fine-tuned
this model for the binary classification task of predicting whether
a given frame is real or tampered, using Cross-Entropy loss as the
learning objective.

3.3 Audio W-TDL
A technique called Temporal Deepfake Location (TDL) [22] was
used to identify audio deepfake segments. It’s composed of a wav2-
vec2-XLS-R300M [1] frontend as a feature extractor, which com-
bines these features across audio frames using temporal convolution
operations. The method incorporates an embedding similarity mod-
ule to distinguish real and fake frames in an embedding space. It
was chosen due to its impressive performance on the ASVspoof2019
Partial Spoof dataset [21].

We adapted and modified the TDL method to a window-based
approach (W-TDL), addressing the limitations of the original frame-
level prediction method. By adapting the audio model to process
windows, we overcame issues related to imbalanced training la-
bels and eliminated the need for padding. Each window consists
of 64 wav2vec2 feature vectors, corresponding to 1.28 seconds of
audio. This setup provides a resolution of 20ms, which aligns pre-
cisely with most of the audio fake segment labels, ensuring accurate
detection and localization of deepfakes.



W-TDL: Window-Based Temporal Deepfake Localization MRAC ’24, October 28-November 1 2024, Melbourne, VIC, Australia

Table 1: Dataset Split

Splits Number of Videos Percentage

Training 746,180 74.62%
Validation 57,340 5.73%

Test 196,480 19.65%

4 EXPERIMENTS
4.1 AV-Deepfake1M Dataset
The AV-Deepfake1M dataset [3] is a large-scale audio-visual deep-
fake dataset designed to advance state-of-the-art deepfake detection
and localization. It was generated using a multistage pipeline, lever-
aging a subset of real videos from Voxceleb2 [6].

The pipeline begins with extracting transcripts from the real
videos using Whisper [18]. Then a Large Language Model (LLM)
is utilized to propose modifications to the transcripts, aiming to
alter their meaning. These modifications can take one of three
forms: "delete," "insert," or "replace," with "replace" being the most
commonly used operation at 92.2% out of them all.

The modified transcripts are then used to generate artificial au-
dio using two distinct text-to-speech methods: VITS [14], which is
identity-dependent, and YourTTS [5], which is identity-independent.
Finally, the visual frames are generated using TalkLip [20], a state-
of-the-art method that leverages the subject’s original pose and
the newly generated fake audio to produce lip-synchronized fake
visual frames that align with the input audio.

Notably, this pipeline can produce a variety of high-quality
content-driven deepfake and real videos that are together cate-
gorized into four distinct types:

(1) Real: Non modified videos.
(2) Fake Audio and Fake Visual: Both audio and visual frames

are manipulated.
(3) Fake Audio and Real Visual: Only real audio correspond-

ing to replacements and deletions are manipulated, with
synchronized fake audio and real visual segments.

(4) Real Audio and Fake Visual: Only visual frames are ma-
nipulated, with the original audio remaining unchanged.

The dataset comprises a total of 2,068 unique subjects, with
each of the four distinct types of manipulations evenly represented.
This balanced distribution results in a comprehensive collection of
one million videos. These videos are partitioned subject-wise into
training, validation, and test sets (Table 1).

4.2 Video Manipulation
TalkLip’s face detection and extraction process involves taking a
frame and identifying a bounding box around the person’s face.
This box is then resized to compact 96× 96 pixels, ready for further
processing in the pipeline. The new frames, now lip-synced to the
modified audio, are generated at this resolution. Finally, the gener-
ated frame is resized back to its original bounding box size, ensuring
the pixels in the original frame are replaced at that location.

This extraction, rescaling, and generation at lower resolution
results in the generated region being visibly lower quality than the
rest of the surrounding image, producing visible boundary lines at

the transition between the original and generated pixels. However,
when the frames are encoded back into a video, the compression
hides most of these boundaries, resulting in fakes that are harder
to detect.

4.3 Audio Manipulation
VITS [14] and YourTTS [5] generally produce high-quality fake
audio. Additionally, the creators ensured that the generated audio
included background noise similar to real recordings. They achieved
this by using a denoiser to separate the noise from speech and
adding the same noise to the generated audio. Finally, they applied
loudness normalization to further enhance the result.

Still, the generation method isn’t perfect. To determine points
of change, Whisper word transcript timestamps are used to find
the start and end points of where to insert the fake segment. As
mentioned in the Whisper paper [18], this introduces bias since the
Whisper resolution is at 0.02 seconds. Their timestamp prediction
predicts time relative to the current audio segment, quantizing all
times to the nearest 20 milliseconds, which matches the native time
resolution of Whisper models. We’ve found a strong tendency for
the fake segment to be divisible by 0.02 in terms of its length and
start and end points. In the training set, there is a 97.6% chance
it will start or end on a multiple of 0.02 and an 86.73% chance its
length will be a multiple of 0.02.

This quantization also influenced the transition between real
and fake segments. This shows in each fake segment (audio and
visual) starting and ending with a silence of about 0.01s in length.
This is observable in Figure 1, as the audio signal always flattens at
the beginning and end of the fake segments.

4.4 Task: 1 Video-Level Deepfake Detection
The goal of the first task of the 1M-Deepfakes Detection Challenge1
was to distinguish between real, unmodified videos and fake tam-
pered videos. The training was restricted to only having access to
video-level labels, meaning no segment-level labels could be used.
In theory, this should pose a greater challenge, as the model or
algorithm should use the entire video for training to even capture
the fake segments.

However, we observed that the real and modified videos can be
distinguished based on the encoder version used to encode them,
which explains why, during the training of our visual models, we
noticed a peculiar anomaly: our visual model showed an unexpected
proficiency in differentiating between unmodified real videos and
audio-manipulated videos, a task that should have been beyond its
capabilities.

Upon examination, we discovered that the counterfeit videos in
the generation pipeline had been re-encoded using ffmpeg, with
a distinct version of the encoder employed in this process. This
re-encoding process introduced visual artifacts in the video frames,
which our model subsequently learned. Additionally, the videos’
metadata bore a distinct mark, confirming the re-encoding.

Using ffprobe, we can see that fake videos use encoder version
Lavf58.45.100 while the real ones use Lavf57.83.100.

1https://deepfakes1m.github.io/

https://deepfakes1m.github.io/


MRAC ’24, October 28-November 1 2024, Melbourne, VIC, Australia Luka Dragar, Peter Rot, Peter Peer, Vitomir Štruc, Borut Batagelj

Table 2: Performance of Models and Merging Strategies on
Validation Set

Model/Strategy Subset mAP mAR Score

W-TDL A 0.87 0.92 0.89
EVA V 0.58 0.83 0.70

Audio Localization F 0.58 0.89 0.74
Overlap Merge F 0.64 0.90 0.77
Basic Merge F 0.70 0.91 0.80

Lower Visual conf. upon Audio F 0.80 0.91 0.85

This meant that the real and fake videos could be easily distin-
guishable and presented problems when using the real video subset
for training the visual model on task 2.

4.5 Task 2: DeepFake Temporal Localization
In task 2 the goal was to predict the exact start and end timestamps
of fake segments within videos. Here, competitors had access to
frame-level labels. The metrics for this task were AP (Average
Precision) and AR (Average Recall) at N most confident detections.
The final score was then calculated as follows:

Score =
1
8

∑︁
IoU∈{0.5,0.75,0.9,0.95}

AP@IoU+ 1
10

∑︁
𝑁 ∈{50,30,20,10,5}

AR@N.

Additionally, the metric implemented in the code has a FPS
(frames per second) parameter that is used to convert the times-
tamps into frame indices, ensuring consistent and precise temporal
alignment for accurate IoU (Intersection over Union) calculation.
This conversion allows for meaningful evaluation and compari-
son of proposals and ground-truth segments across videos with
different frame rates.

This is especially noticeable with visual model predictions that
are limited to a resolution of 25 FPS since that is the frame rate
of the videos. Audio, on the other hand, can be more precise. Our
audio model operates at 50 FPS. Generally, frame-level labels were
provided at a resolution of 100 FPS, but as mentioned in Subsec-
tion 4.3, most of them fall on 50 FPS. We chose to evaluate our
models at 50 FPS for validation.

One important consideration is the sensitivity of the metric, as
most fake segments are short, with an average length of 0.326s,
or 16 frames. Therefore, a small one-frame error in the prediction
reduces the IoUmore quickly compared to the same error in a longer
segment. This indicates that precise localization is more crucial for
shorter segments because a small deviation in a short segment’s
predicted start or end frame constitutes a larger proportion of its
total duration.

4.6 Training and Data Selection
For our first experiment for task 2, we trained a visual model on
frames from real segments and frames from fake segments in visu-
ally modified videos. As mentioned in Section 4.4, this caused the
model to learn encoder artifacts, and the frame-level predictions
became noisy.

Because of that, we used non-modified and tampered frames
from visually modified videos instead, with an added 15% of the

real videos. This results in 233,257 training videos. At each pass, a
random frame is chosen from the video.

For the audio model, the selection was more complex. We used
the audio-modified and real videos from the dataset and selected
windows of 64 feature vectors or 1.28s at each fake segment. The
algorithm considers the start point of the fake segments and then
creates a window by taking 64 vectors to the right from the start.
If there are not enough vectors to the right, the window is shifted
to the left accordingly. For real videos, we chose the middle 64
vectors. This approach greatly contributed to more balanced labels
by increasing the percentage of fake frames from 3.7% to 14.4%.

We used High-Performance Computing (HPC) with Pytorch
Lightning for training. The loss function was Binary Cross-Entropy,
with the audiomodel including an additional embedding lossweight-
ed at 0.1. AdamW was the optimizer, with learning rates of 2e-5 for
the visual model and 1e-4 for the audio model, and CosineAnneal-
ingLR was used as the learning rate scheduler.

The visual model had a batch size of 4, effectively 64 when
training on 4 nodes with 4 GPUs using the Distributed Data Parallel
(DDP) strategy. The audio model had a batch size of 128 on one
GPU. Based on validation loss monitoring, training concluded at
epoch 57 for the visual model and epoch 37 for the audio model.

4.7 Segment Extraction
Both of these model output per-frame predictions at their respective
FPS. The audio model predictions are made by moving the window
through the frames. Finally, the remaining window is computed
by moving the window to the end and removing the duplicate
predictions that arise after the left boundary.

To extract segments from these per-frame predictions, an algo-
rithm creates a binary mask based on a threshold. It then creates
the segments with their confidence being the average of their frame
predictions. Post-processing operations remove short segments and
low-confidence segments, with all thresholds determined by the
validation set performance. Finally, a conversion factor is used to
get the predictions in seconds.

5 RESULTS
Several merging strategies were tested, including simply combining
both predictions (Basic Merge), using the audio predictions when
visual and audio segments overlap (Audio Localization), employing
a union approach when both overlap (Overlap Merge), and reducing
the confidence of visual segments where audio segments were found
(Lower Visual conf. upon Audio). The latter proved to be the best.

We optimized our models on the validation set of the dataset.
Performance metrics for each model on different subsets are sum-
marized in Table 2. The subsets are defined as follows: V (videos
containing visually modified segments), A (audio segments), and F
(full dataset), with the metrics being summarized as Mean Average
Precision (mAP) and Mean Average Recall (mAR). We observe that
the audio model achieves far greater results at precise temporal
localization partly because it can produce scores at a greater resolu-
tion (see Figure 1) and is unaffected by video compression; the most
optimal merging strategy confirms this. Additionally, the audio
model is significantly faster, processing each sample in approxi-
mately 0.2563 seconds compared to the video model’s 6.853 seconds
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Table 3: Results on Competition Test Set

Method Mod. AP@0.5 AP@0.75 AP@0.9 AP@0.95 AR@50 AR@30 AR@20 AR@10 AR@5 Score

BA-TFD+ [4] AV 44.42 13.64 00.48 00.03 48.86 44.51 40.37 34.67 29.88 0.2715
UMMAFormer [24] AV 51.64 28.07 07.65 01.58 44.07 43.93 43.45 42.09 40.27 0.3249

EVA&W-TDL AV 94.75 88.75 70.43 50.66 89.17 89.17 89.17 89.13 88.78 0.8262

per sample. This makes the audio model much more suitable for
large-scale applications, where speed and efficiency are crucial.

Finally, we evaluate our approach on the competition test set,
obtaining a score of 0.8262, which vastly outperforms the current
baseline methods tested by the organizers, as shown in Table 3. AP
(Average Precision) measures how well the predicted fake segments
are localized. For example, at a threshold of 0.75 IoU, which indi-
cates a moderate overlap between the predicted and actual fake
segments, our model achieves a precision of 88.75%, demonstrat-
ing its effectiveness in accurately pinpointing the location of fake
segments. Furthermore, the consistently high AR (Average Recall)
demonstrates that our model effectively captures most of the actual
fake segments, ensuring thorough detection without generating
too many unnecessary proposals. These results could be further
improved by using a sliding window approach instead of a moving
window and by implementing preprocessing steps to remove noise
from the audio, which currently causes some false detections.

6 CONCLUSION
In this paper, we present our solution for the 1M-DeepFakes De-
tection Challenge, focusing on the task of Temporal Deepfake Lo-
calization. Our approach integrates a window-based method for
audio deepfake detection (W-TDL) with a visual frame-based model
(EVA) to effectively identify and localize manipulated segments in
audio and visual data. Through competition and experiments, we
demonstrate that our method outperforms existing state-of-the-art
techniques on the AV-Deepfake1M dataset.

However, the proposed dataset has some limitations. Despite its
size, the generation pipeline is limited to only one visual genera-
tion method and an audio stitching method is limited by transcript
resolution, providing observable boundaries between fake and real
speech. Furthermore, real and fake videos are trivially distinguish-
able by the encoder versions used in their encoding.

Future work would include creating more sophisticated and di-
verse generation pipelines that create more seamless transitions
between fake and real segments, while also improving our detec-
tion methods by implementing audio-visual feature fusion. We will
also explore better metrics to more accurately evaluate the perfor-
mance of these advanced models, focusing on methods that are less
dependent on the size of the segments to ensure fairer and more
consistent assessments.

ACKNOWLEDGMENTS
The research presented in this paper was supported by the Slove-
nian Research and Innovation Agency ARIS as part of the research
project J2-50065 DeepFake DAD, and ARIS programmes P0-0250
and P2-0214.

REFERENCES
[1] Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli. 2020.

wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representa-
tions. CoRR abs/2006.11477 (2020). arXiv:2006.11477 https://arxiv.org/abs/2006.
11477

[2] Marko Brodarič, Vitomir Štruc, and Peter Peer. 2024. Cross-dataset deepfake
detection: evaluating the generalization capabilities of modern deepfake detec-
tors. In Proceedings of the 27th Computer Vision Winter Workshop (CVWW 2024).
Slovensko društvo za razpoznavanje vzorcev = Slovenian Pattern Recognition
Society, 47–56. https://cvww2024.sdrv.si/proceedings/

[3] Zhixi Cai, Shreya Ghosh, Aman Pankaj Adatia, Munawar Hayat, Abhinav Dhall,
and Kalin Stefanov. 2023. AV-Deepfake1M: A Large-Scale LLM-Driven Audio-
Visual Deepfake Dataset. arXiv preprint arXiv:2311.15308 (2023).

[4] Zhixi Cai, Shreya Ghosh, Abhinav Dhall, Tom Gedeon, Kalin Stefanov, and
Munawar Hayat. 2023. Glitch in the matrix: A large scale benchmark for content
driven audio–visual forgery detection and localization. Computer Vision and
Image Understanding 236 (2023), 103818.

[5] Edresson Casanova, Julian Weber, Christopher Shulby, Arnaldo Cândido Júnior,
Eren Gölge, andMoacir Antonelli Ponti. 2021. YourTTS: Towards Zero-ShotMulti-
Speaker TTS and Zero-Shot Voice Conversion for everyone. CoRR abs/2112.02418
(2021). arXiv:2112.02418 https://arxiv.org/abs/2112.02418

[6] Joon Son Chung, Arsha Nagrani, and Andrew Zisserman. 2018. VoxCeleb2:
Deep Speaker Recognition. CoRR abs/1806.05622 (2018). arXiv:1806.05622 http:
//arxiv.org/abs/1806.05622

[7] Brian Dolhansky, Joanna Bitton, Ben Pflaum, Jikuo Lu, Russ Howes, Menglin
Wang, and Cristian Canton Ferrer. 2020. The deepfake detection challenge (dfdc)
dataset. arXiv preprint arXiv:2006.07397 (2020).

[8] Luka Dragar, Peter Peer, Vitomir Štruc, and Borut Batagelj. 2023. Beyond de-
tection: visual realism assessment of deepfakes. In Proceedings of the 32nd Inter-
national Electrotechnical and Computer Science Conference ERK 2023. Sloven-
ska sekcija IEEE; Fakulteta za elektrotehniko, Portorož, Slovenija, 363–366.
https://erk.fe.uni-lj.si/2023/papers/dragar(beyond_detection_).pdf

[9] Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang,
Tiejun Huang, Xinlong Wang, and Yue Cao. 2023. Eva: Exploring the limits of
masked visual representation learning at scale. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 19358–19369.

[10] David Güera and Edward J Delp. 2018. Deepfake video detection using recurrent
neural networks. In 2018 15th IEEE international conference on advanced video
and signal based surveillance (AVSS). IEEE, 1–6.

[11] Marco Huber, Fadi Boutros, Anh Thi Luu, Kiran Raja, Raghavendra Ramachandra,
Naser Damer, Pedro C. Neto, Tiago Gonçalves, Ana F. Sequeira, Jaime S. Car-
doso, João Tremoço, Miguel Lourenço, Sergio Serra, Eduardo Cermeño, Marija
Ivanovska, Borut Batagelj, Andrej Kronovšek, Peter Peer, and Vitomir Štruc. 2022.
SYN-MAD 2022: Competition on Face Morphing Attack Detection Based on
Privacy-aware Synthetic Training Data. In 2022 IEEE International Joint Confer-
ence on Biometrics (IJCB). 1–10. https://doi.org/10.1109/IJCB54206.2022.10007950

[12] Sahar Husseini and Jean-Luc Dugelay. 2023. A Comprehensive Framework for
Evaluating Deepfake Generators: Dataset, Metrics Performance, and Comparative
Analysis. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 372–381.

[13] Marija Ivanovska and Vitomir Štruc. 2024. On the vulnerability of deepfake
detectors to attacks generated by denoising diffusion models. In Proceedings of
the 27th Computer Vision Winter Workshop (CVWW 2024). CPS; IEEE Computer
Society, 1051–1060. https://ieeexplore.ieee.org/document/10495703

[14] Jaehyeon Kim, Jungil Kong, and Juhee Son. 2021. Conditional Variational Au-
toencoder with Adversarial Learning for End-to-End Text-to-Speech. CoRR
abs/2106.06103 (2021). arXiv:2106.06103 https://arxiv.org/abs/2106.06103

[15] Yisroel Mirsky and Wenke Lee. 2021. The creation and detection of deepfakes: A
survey. ACM computing surveys (CSUR) 54, 1 (2021), 1–41.

[16] Bo Peng, Xianyun Sun, Caiyong Wang, Wei Wang, Jing Dong, Zhenan Sun,
Rongyu Zhang, Heng Cong, Lingzhi Fu, Hao Wang, et al. 2023. DFGC-VRA:
DeepFake Game Competition on Visual Realism Assessment. In 2023 IEEE Inter-
national Joint Conference on Biometrics (IJCB). IEEE, 1–9.

[17] Hua Qi, Qing Guo, Felix Juefei-Xu, Xiaofei Xie, Lei Ma, Wei Feng, Yang Liu, and
Jianjun Zhao. 2020. Deeprhythm: Exposing deepfakes with attentional visual
heartbeat rhythms. In Proceedings of the 28th ACM international conference on
multimedia. 4318–4327.

https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2006.11477
https://cvww2024.sdrv.si/proceedings/
https://arxiv.org/abs/2112.02418
https://arxiv.org/abs/2112.02418
https://arxiv.org/abs/1806.05622
http://arxiv.org/abs/1806.05622
http://arxiv.org/abs/1806.05622
https://erk.fe.uni-lj.si/2023/papers/dragar(beyond_detection_).pdf
https://doi.org/10.1109/IJCB54206.2022.10007950
https://ieeexplore.ieee.org/document/10495703
https://arxiv.org/abs/2106.06103
https://arxiv.org/abs/2106.06103


MRAC ’24, October 28-November 1 2024, Melbourne, VIC, Australia Luka Dragar, Peter Rot, Peter Peer, Vitomir Štruc, Borut Batagelj

[18] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and
Ilya Sutskever. 2023. Robust speech recognition via large-scale weak supervision.
In Proceedings of the 40th International Conference on Machine Learning (Honolulu,
Hawaii, USA) (ICML’23). JMLR.org, Article 1182, 27 pages.

[19] Md Shohel Rana, Mohammad Nur Nobi, Beddhu Murali, and Andrew H Sung.
2022. Deepfake detection: A systematic literature review. IEEE access 10 (2022),
25494–25513.

[20] Jiadong Wang, Xinyuan Qian, Malu Zhang, Robby T Tan, and Haizhou Li. 2023.
Seeing what you said: Talking face generation guided by a lip reading expert. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
14653–14662.

[21] Xin Wang, Junichi Yamagishi, Massimiliano Todisco, Héctor Delgado, An-
dreas Nautsch, Nicholas Evans, Md Sahidullah, Ville Vestman, Tomi Kinnunen,
Kong Aik Lee, Lauri Juvela, Paavo Alku, Yu-Huai Peng, Hsin-Te Hwang, Yu
Tsao, Hsin-Min Wang, Sébastien Le Maguer, Markus Becker, Fergus Henderson,
Rob Clark, Yu Zhang, Quan Wang, Ye Jia, Kai Onuma, Koji Mushika, Takashi
Kaneda, Yuan Jiang, Li-Juan Liu, Yi-Chiao Wu, Wen-Chin Huang, Tomoki Toda,

Kou Tanaka, Hirokazu Kameoka, Ingmar Steiner, Driss Matrouf, Jean-François
Bonastre, Avashna Govender, Srikanth Ronanki, Jing-Xuan Zhang, and Zhen-
Hua Ling. 2020. ASVspoof 2019: A large-scale public database of synthesized,
converted and replayed speech. Computer Speech and Language 64 (2020), 101114.
https://doi.org/10.1016/j.csl.2020.101114

[22] Yuankun Xie, Haonan Cheng, Yutian Wang, and Long Ye. 2023. An Efficient
Temporary Deepfake Location Approach Based Embeddings for Partially Spoofed
Audio Detection. arXiv:2309.03036 [cs.SD] https://arxiv.org/abs/2309.03036

[23] Peipeng Yu, Zhihua Xia, Jianwei Fei, and Yujiang Lu. 2021. A survey on deepfake
video detection. Iet Biometrics 10, 6 (2021), 607–624.

[24] Rui Zhang, Hongxia Wang, Mingshan Du, Hanqing Liu, Yang Zhou, and Qiang
Zeng. 2023. UMMAFormer: AUniversalMultimodal-adaptive Transformer Frame-
work for Temporal Forgery Localization. In Proceedings of the 31st ACM Interna-
tional Conference on Multimedia (MM ’23). ACM. https://doi.org/10.1145/3581783.
3613767

[25] Tao Zhang. 2022. Deepfake generation and detection, a survey. Multimedia Tools
and Applications 81, 5 (2022), 6259–6276.

https://doi.org/10.1016/j.csl.2020.101114
https://arxiv.org/abs/2309.03036
https://arxiv.org/abs/2309.03036
https://doi.org/10.1145/3581783.3613767
https://doi.org/10.1145/3581783.3613767

	Abstract
	1 Introduction
	2 Related work
	3 Methods
	3.1 Overview
	3.2 Visual EVA
	3.3 Audio W-TDL

	4 Experiments
	4.1 AV-Deepfake1M Dataset
	4.2 Video Manipulation
	4.3 Audio Manipulation
	4.4 Task: 1 Video-Level Deepfake Detection
	4.5 Task 2: DeepFake Temporal Localization
	4.6 Training and Data Selection
	4.7 Segment Extraction

	5 Results
	6 Conclusion
	Acknowledgments
	References

